
Bespoke: Interactively Synthesizing Custom GUIs from
Command-Line Applications By Demonstration

Priyan Vaithilingam
UC San Diego

La Jolla, CA, USA
pvaithil@eng.ucsd.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
Programmers, researchers, system administrators, and data
scientists often build complex workflows based on command-
line applications. To give these power users the well-known
benefits of GUIs, we created Bespoke, a system that syn-
thesizes custom GUIs by observing user demonstrations of
command-line apps. Bespoke unifies the two main forms
of desktop human-computer interaction (command-line and
GUI) via a hybrid approach that combines the flexibility and
composability of the command line with the usability and dis-
coverability of GUIs. To assess the versatility of Bespoke,
we ran an open-ended study where participants used it to
create their own GUIs in domains that personally motivated
them. They made a diverse set of GUIs for use cases such
as cloud computing management, machine learning prototyp-
ing, lecture video transcription, integrated circuit design, re-
mote code deployment, and gaming server management. Par-
ticipants reported that the benefit of these bespoke GUIs was
that they exposed only the most relevant subset of options
required for their specific needs. In contrast, vendor-made
GUIs usually include far more panes, menus, and settings
since they must accommodate a wider range of use cases.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI);

Author Keywords
command-line interfaces, GUI synthesis, PBD

INTRODUCTION
GUIs have been the most visible form of human-computer in-
teraction in the past four decades, but command-line applica-
tions are still frequently used by programmers, researchers,
system administrators, DevOps, digital archivists, machine
learning engineers, and data scientists. Look over the shoul-
der of any of these people at work, and they probably have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’19, October 20-23, 2019, New Orleans, LA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.
https://doi.org/10.1145/3332165.3347944

multiple terminal windows open, each running a diverse ar-
ray of command-line applications. These include widely-
used tools for version control (e.g., Git [13]), software de-
velopment (e.g., GCC, LLVM, npm [21], Webpack [26],
Docker [8]), computational science (e.g., BLAST [27]), and
media processing (e.g., ImageMagick [14], FFmpeg [12]).

Command-line apps are flexible and composable: experts
can quickly tinker with parameters, connect app outputs via
pipes and files, and write scripts to chain multiple apps to-
gether. But they exhibit classic usability problems that hinder
novices, the most salient being a violation of recognition over
recall [29]: Users must recall and type in the exact arcane
syntax of parameters rather than being able to recognize items
in a GUI. For instance, here is the top forum answer on how
to use FFmpeg to overlay a new .wav audio track atop an ex-
isting .mp4 video [11]: “ffmpeg -i v.mp4 -i a.wav
-c:v copy -map 0:v:0 -map 1:a:0 new.mp4”

How can we make these complex command-line applications
more usable? It is hard to design a suitable GUI for these apps
since they often have up to hundreds of complex command-
line options, so a comprehensive GUI could have hundreds of
selectors and input boxes, dozens of panes, and grow into a
tangled mess. What about making a custom GUI for a partic-
ular app that exposes only the subset of its many options that
meet a given user’s needs? This may be feasible, but hand-
coding a bespoke GUI takes a lot of software development
effort, and it can be hard to alter UI details as user needs in-
evitably change over time. To eliminate this manual coding
effort, we present a novel technique that automatically syn-
thesizes a GUI for a set of command-line apps by having the
user demonstrate how those apps are invoked. This way, a
power user can quickly create GUIs without writing any code.

We prototyped our technique in a system called Bespoke. Fig-
ure 1 shows an example usage scenario: Alice is a senior sci-
entist in a computational biology lab. She is adept at invok-
ing the dozens of command-line apps required for her job, but
she is not a programmer. Despite not coding, she still wants to
create simplified GUIs for common computational workflows
in her lab so that her junior labmates can get their work done
without the complexities of command-line environments.

1. Alice starts Bespoke, which resembles a Jupyter note-
book [23]. She creates a new notebook cell that contains
an embedded terminal. There she types the first command
in her workflow, cutadapt (a DNA sequence filter [59]),

Figure 1: Bespoke lets users create GUIs by invoking command-line applications and annotating their workflows (see Introduction for step details).

with these arguments: input.fastq -a AACCGGTT -e 0.2

-o output.fastq. Bespoke runs that command and cre-
ates a simple GUI based on the inferred types of its argu-
ments: an input text box for -a, a numerical spinner for -e,
and file selectors for the input and output filenames.

2. Alice runs cutadapt a few more times with different ar-
guments to provide more demonstrations for Bespoke. For
instance, as she passes in different -e values, Bespoke in-
fers that it should create a GUI range slider with reasonable
bounds for that argument rather than an open-ended numer-
ical spinner. She can override any undesirable inferences.

3. She adds human-readable labels to these GUI components,
such as “Adapter Sequence” for -a and “Error Rate” for -e.

4. After she is happy with the synthesized cutadapt GUI,
she continues creating more terminal cells for additional
commands in her workflow, such as BLAST and FFmpeg.
Bespoke synthesizes those GUIs by demonstration as well.
In addition, it detects argument relationships across com-
mands, such as the output file of one being passed into the
subsequent one; this lets the GUI auto-propagate values.

5. Each cell also shows previews of text, image, audio, and
video outputs from its command, along with an inline text
editor that can be used to edit input files. The final com-
mand in Alice’s workflow is an FFmpeg call that stitches
DNA sequence images together into an animation; users
can watch that animation in the cell to check for accuracy.

6. Alice sends this synthesized GUI to her labmates to use.
To facilitate scientific experiment reproducibility, users can
export their current GUI state as a runnable shell script.

The main benefit of Bespoke is that it allows power users
like Alice to create GUIs for their command-line-based work-
flows without writing any code. The resulting GUIs are use-
ful not only for novices but also for experts like Alice, who
can quickly explore the parameter space of their experiments
using a streamlined GUI. Since each research team likely has
their own idiosyncratic workflows, it is critical to enable them
to quickly build GUIs for their own needs. In this case, an-
other biology lab may use those exact same tools (e.g., cut-
adapt, BLAST, FFmpeg) in completely different ways, so it is

unlikely that someone could build a one-size-fits-all GUI that
meets every biologist’s unique computational needs.

Bespoke makes two main research contributions: 1) It unifies
the two dominant forms of desktop human-computer interac-
tion (command-line and GUI) via a new hybrid approach that
combines the flexibility and composability of command-line
interfaces with the usability and discoverability of GUIs. 2) It
extends literate programming [44] to GUIs rather than solely
text. Both classic (e.g., CWEB [44]) and modern incarnations
(e.g., Jupyter notebooks [23]) of this long-standing idea are
based on weaving text-based code and inline documentation.
Bespoke extends the reach of literate programming by letting
users ‘write’ command-line narratives, which it synthesizes
into inline GUIs within notebook cells. This interaction style
makes it easier for data scientists, researchers, and sysadmins
to build interactive workflows intertwined with documenta-
tion. As command-line ecosystems (e.g., Docker, Kuber-
netes) grow more complex and as notebooks spread to fields
far beyond science (e.g., Netflix uses them for orchestrating
datacenter tasks [1]), we expect the ideas embodied by Be-
spoke to become more relevant to a broader set of domains.

To assess the versatility of Bespoke, we ran an open-ended
study where six users created their own GUIs in domains that
personally motivated them. They made a diverse set of GUIs
for use cases such as cloud computing management, machine
learning prototyping, lecture video transcription, integrated
circuit design, remote code deployment, and gaming server
management. Participants reported that the main benefit of
these bespoke GUIs was that they exposed only the most rel-
evant subset of options required for their specific needs.

The contributions of this paper are:

• The idea of unifying GUI and command-line interfaces via
a demonstration-based technique that interactively synthe-
sizes GUIs from command-line invocations.

• An instantiation of this technique in Bespoke, a compu-
tational notebook application that lets users create multi-
stage workflow GUIs by running command-line applica-
tions on their computer and documenting their steps.

RELATED WORK
Bespoke continues the long lineage of systems that facilitate
end-user programming, which Ko et al. define as the act of
creating software for personal use rather than for public dis-
semination [45]. Bespoke is an end-user programming tool
that synthesizes GUIs for personal use within, say, a par-
ticular scientific lab, rather than for widespread public use.
Within this genre, Bespoke is most closely related to tools for
programming by demonstration and custom UI generation.

Programming by Demonstration
Programming by demonstration (PBD) is an end-user pro-
gramming technique where the system generates a program
by watching a user demonstrate a set of actions on their com-
puter rather than making the user write textual code [32, 48,
54]. (Some researchers call a closely-related technique “pro-
gramming by example” [37, 40, 50].) The promise of PBD is
that end-users can do programming without writing code.

One major class of PBD systems aims to synthesize task au-
tomation scripts so that users do not need to manually write
scripting code. These span a variety of application domains
including text manipulation [28, 49, 61, 64, 74, 75], file and
directory management [39, 65, 66], image editing [46, 47,
53, 60], webpage task automation [51, 52, 58, 73], web data
scraping [30, 50, 55], and data wrangling [38, 40, 43]. Al-
though their domains vary widely, these systems all generate
scripts or processed data as outputs. Bespoke differs in a fun-
damental way since it generates an interactive GUI as output.

More closely related to Bespoke are PBD systems that syn-
thesize GUIs by example. Peridot [67] and Lapidary [68]
enable users to draw UI elements (e.g., menus, radio buttons,
progress indicators), their dynamic behaviors, and data con-
straints; the systems then generate code to control the layout
and behaviors of those UI elements. Highlight [69] allows
users to demonstrate actions on a webpage and then synthe-
sizes a mobile version of the webpage’s UI based on those ob-
served actions. Bespoke shares the high-level goals of these
systems but is the first, to our knowledge, to synthesize GUIs
from user demonstrations of command-line apps. It brings
classic PBD ideas to the novel domain of making modern
command-line-based workflows more usable.

Generating Custom User Interfaces
Bespoke is more distantly related to systems that automati-
cally generate UIs in domains such as accessibility and ubi-
quitous computing. SUPPLE [34] and SUPPLE++ [35] gen-
erate custom UIs for users to accommodate their motor and
vision capabilities based on user-provided specs and an ac-
tivity trace, respectively. Projects such as UNIFORM [70]
and the Personal Universal Controller (PUC) generate cus-
tom UIs for appliances such as media consoles and printers
that are customized for each user’s individual preferences and
interaction history. Huddle [71], built atop PUC, generates
UIs to coordinate multiple electronic appliances such as those
in home entertainment sets. Bespoke shares these systems’
goals of making specialized UIs tailored to individual user
needs but does so for command-line applications rather than
by adapting the UIs of existing GUI apps.

Improving Usability of Command-Line Applications
Bespoke aims to make existing command-line applications
more usable by wrapping them in lightweight GUIs. Prior
systems have approached similar goals by designing a hy-
brid between command-line and graphical interfaces. For
instance, Inky [62] embeds a command line into the web
browser to enable power users to more efficiently perform
common browsing actions. It supplements the command line
with rich visual feedback and inline GUI widgets such as date
pickers and parameter selection menus. The browser-shell
extension to LAPIS [63] allows users to manually wrap an
HTML GUI around existing command-line apps and then in-
voke them directly from a browser-based command line. Un-
like these systems, which require users to manually create
the GUI widgets that augment their command-line interfaces,
Bespoke automatically synthesizes GUIs by demonstration.

Complementary projects make the command line more us-
able by providing richer help, error correction, and natural
language UIs. Tutorons [41] shows contextually-relevant ex-
planations of what command-line arguments mean by parsing
the documentation of commands such as wget and adapting
explanations to the user’s inputted arguments. NoFAQ [33]
provides suggestions for correct command-line invocation
syntax based on a corpus of expert-curated pairs of faulty and
fixed commands. NL2Bash [56, 57] implements a natural
language interface to the Unix command line, translating En-
glish phrases such as “display the 5 largest files in the current
directory and its sub-directories” into Bash shell commands.
Bespoke differs from these systems by synthesizing GUIs in-
stead of enhancing text-based command-line interfaces.

BESPOKE SYSTEM DESIGN AND IMPLEMENTATION
Bespoke is a cross-platform Electron [10] desktop app that
enables users to run arbitrary command-line applications in
embedded terminals and see inline GUIs synthesized from
those runs. Figure 2 shows how users can create two types
of cells: a) Markdown-formatted text cell [36] for exposition,
b) command cell where they can run a single command-line
app (often repeatedly with different arguments) and have Be-
spoke synthesize a GUI for it. This interface was inspired by
computational notebooks like Jupyter [23].

The simplest use case is to make only one command cell to
synthesize a GUI for a single command-line app (e.g., git,
docker, ffmpeg). More realistic use cases involve making
a series of command cells, each representing a stage in the
user’s workflow (e.g., Alice’s computational biology work-
flow in Figure 1). Each command cell has a Run button,
which runs that command and sends its output to the terminal
at the bottom of the interface. Commands from all cells share
one global Bash shell environment. (In this paper, we will use
the term “command” as a shorthand for command-line app.)

Bespoke does not need to know about the implementation de-
tails of any specific commands; it should work on any com-
mand that the user runs in their terminal. It has been tested
so far on macOS and Linux, whose commands usually follow
Unix-style POSIX conventions [4]. It should also work on
Windows with adjustments to account for its conventions.

Figure 2: Bespoke allows users to create: a) Markdown documentation
cells and b) command cells where GUIs are synthesized. c) new com-
mand cell before GUI is synthesized there; d) terminal showing outputs.

Within each command cell, Bespoke synthesizes a GUI in
a three-step process whenever the user runs a command:
1) parsing its command-line arguments, 2) inferring types and
value ranges for those arguments, 3) mapping those types and
value ranges to standard GUI elements. Finally, Bespoke per-
forms inter-cell value inferences to help users create multi-
stage workflows. We now describe each synthesis step:

Step 1: Parsing Command-Line Arguments
When the user runs a command in a cell, Bespoke first parses
its arguments using a grammar that we empirically derived
from studying Unix-style conventions in the official POSIX
standards guide [4], command-line parsing utility libraries in
C and Python [3, 5, 7, 9], and a curated summary of help man-
uals from dozens of popular command-line apps [72]. While
we cannot guarantee that all command-line apps will abide
by these conventions, in our experience as long-time users of
Unix-based systems, this grammar handles the most common
use cases in a variety of domains.

We will explain this grammar using a slightly-modified ver-
sion of the first command in Alice’s workflow from Figure 1:
cutadapt in1.fq in2.fq -v --seq ACG -e 0.2 -o out.fq

The first string is always the command’s name (cutadapt
in this example). All subsequent strings are its arguments,
each of which can be boolean, keyword, or positional:

• Boolean arguments start with - or -- and at least one non-
digit character (numbers like -1.3 do not count). These are
either followed by nothing or by another boolean or key-

word argument. In this example, -v is a boolean to indicate
whether cutadapt should print more verbose output.

• Keyword arguments start with - or -- followed by one or
more strings (that do not start with - or --), which are
their associated values. In this example, --seq is a key-
word argument with an associated value of ACG, -e is a
keyword argument with value 0.2, and -o is a keyword
argument with a value of out.fq. If a keyword argument
is followed by more than one string (e.g., -o out1.fq
out2.fq), they are stored in a list. Keyword arguments
and their values can also be delimited with an equals sign
instead of with whitespace: e.g., --seq=ACG

• Positional arguments are strings that do not start with - or
-- and that do not immediately follow keyword arguments.
In this example, in1.fq and in2.fq are positional ar-
guments, which are stored in an ordered list.

Following standard shell conventions, strings with spaces in
them (e.g., "hello world") must be properly quoted.

Ambiguity: To eliminate ambiguity, we strongly recommend
users follow style guide conventions of putting all positional
arguments before boolean and keyword arguments [5]. How-
ever, users are free to put arguments in any order, such as
positional ones (in1.fq and in2.fq here) at the end:
cutadapt -v --seq ACG -e 0.2 -o out.fq in1.fq in2.fq

Now Bespoke will incorrectly parse -o as a keyword argu-
ment with out.fq in1.fq in2.fq as its three values
(since keywords can be followed by any number of strings).
When it synthesizes the GUI in Step 3, the user can see the
mistake and manually tell Bespoke that -o takes only one
value (out.fq), so the other two are positional. Since Be-
spoke does not understand the semantics of individual com-
mands, it cannot guarantee a correct parse if there is such
ambiguity. But we assume an experienced user can recognize
which arguments have been misparsed once they see the GUI.

Repetitions: If a keyword argument is listed multiple times,
all of their values are appended together into a single list. For
instance, -o out1.fq -o out2.fq -o out3.fq is
identical to -o out1.fq out2.fq out3.fq. If a
boolean is listed multiple times, it will turn into a counter:
e.g., -v -v -v parses as -v with a count of 3. This is a
common Unix idiom to specify output verbosity count levels.

Splits: Some commands let users group multiple boolean ar-
guments together with a single - for convenience. For in-
stance, tar -zxvf is often used instead of tar -z -x
-v -f, and ls -lhG is shorter than ls -l -h -G. By
default Bespoke parses each as a single boolean argument,
but the user can manually override it in the GUI to split them
into multiple single-letter arguments. (Note that -vvv will
split into -v -v -v and parse as a counter of 3.)

Redirection operators: Bespoke parses basic shell redirec-
tion operators such as < (take input from a file), > (write stan-
dard output to a file), >> (append standard output to a file),
and 2> (write standard error to a file), along with its filename.

Pipes: Bespoke parses Unix pipes | that split a command
into multiple sub-commands connected by an input-output
pipe. Each sub-command parses normally, and the GUI ren-
ders them as sub-cells within a single command cell (Step 3).

Special shell syntax: Glob wildcards [31], environment vari-
ables, and other special syntax are not expanded before pars-
ing. For instance, a wildcard argument named *.mp3 will
appear to Bespoke as that literal string instead of as a list of
all mp3 files in this user’s current directory. The rationale
for this design is that wildcards encapsulate user intent better
than their expanded forms. In this case, the user intended to
operate on all mp3 files, so a GUI rendered with *.mp3 as
an option will work more robustly on other users’ machines,
which likely contain mp3 files with different filenames.

Parser limitations: We designed this parser to handle a
wide variety of command-line app invocations, including
those with complex argument types, redirection operators,
and pipes. However shells such as Bash are actually full pro-
gramming languages with conditionals, control flow opera-
tors, and other special forms. Bespoke is not meant to parse
the full scope of shell languages. We recommend users to
write complex shell scripts in separate files and then invoke
them within a command cell just like any other command so
that Bespoke can generate GUIs for those script invocations.

Step 2: Inferring Types and Value Ranges
After the parser finishes, it produces a structure like the fol-
lowing one for our cutadapt example (in JSON notation):
{
"--seq": "ACG",
"-e": "0.2",
"-o": "out.fq",
"-v": true,
"positional": ["in1.fq", "in2.fq"]

}

All values are strings by default (except booleans args). Be-
spoke infers more specific types from strings using heuristics:

• Numbers: Anything parsable as an integer or floating-
point number, such as 0.2 in this example.

• Dates and times: We use the Moment.js library [20] to
parse date and time strings written in a wide variety of for-
mats, such as 2019-04-01 and 03:15:20.

• Filenames: After Bespoke runs each command, it checks
whether any string arguments match the names of files or
directories that exist on disk. If there is a match, then it in-
fers that value is a filename. In this example, in1.fq and
in2.fq are input files, which presumably exist on disk
prior to the run, and out.fq is an output file that is cre-
ated after the command finishes. Bespoke will detect that
these are filenames and give the user an option to expand
them to full absolute paths if desired.

Although Bespoke can infer types from a single run, in prac-
tice users will run the same command multiple times with
different argument values as they are experimenting within a
single command cell. For instance, suppose that Alice ran
cutadapt three times in a cell:

cutadapt in1.fq in2.fq -v --seq ACG -e 0.2 -o out.fq
cutadapt in3.txt --seq TA -e 0.5 -o out2.fq out3.fq
cutadapt in4.fq --seq GC -e -1.3 -o out4.fq

Bespoke refines its inferences for each argument based on
values observed in these multiple runs. Here -e took on
values of 0.2, 0.5, and -1.31, and the first positional argu-
ment was in1.fq, in3.txt, and in4.fq. Bespoke infers
value ranges using the following heuristics:

• Number ranges and step sizes: Here -e took on values in
the range of -1.3 to 0.5, with a likely step size of 0.1 since
there is one significant digit of decimal precision. (If the
user then passed in 0.25, it would infer a step size of 0.01.)
• Date/time ranges: Similar to numbers, Bespoke infers the

ranges of dates and times along with likely step sizes based
on the most granular resolution (e.g., days, hours, seconds).
• Filename extensions: In this example Bespoke infers that

the first positional argument can have an extension of
*.fq or *.txt, and that -o is likely *.fq.

Bespoke continually updates inferences as the user invokes
the same command repeatedly with different argument val-
ues. If the user attempts to invoke a different command, Be-
spoke will prompt them to start a new cell, since each cell
synthesizes a GUI for (multiple runs of) a single command.

If Bespoke infers different types for the same argument across
multiple runs (e.g., a date then a filename), then it will simply
default to marking it as a string. Finally, each cell shows a his-
tory of all past command invocations, so the user can delete
any of them to prevent those from being used for inference.

Step 3: Synthesizing a GUI from Type+Range Inferences
Bespoke synthesizes a GUI for the command in each cell by
mapping inferred types and ranges for its arguments into cor-
responding GUI elements. Figure 3 illustrates the mappings:

• Boolean values render as checkboxes.
• Strings render as text input boxes augmented with auto-

complete suggestions based on observed past values. In
addition, a dropdown menu shows the five most common
values for each argument so the user can quickly choose
amongst them. This is convenient for commands whose
arguments have a small set of string values. For instance,
the first positional argument to git is usually one of a few
strings, such as pull, add, commit, push, or status.
• Dates render as a calendar date picker widget, and times

render as a time spinner widget. The user can manually
override these to select a different granularity.
• Numbers render as either a numerical spinner or a slider

widget, depending on the user’s preference, with the in-
ferred step size. The user can also manually enter numbers.
• Filenames and directory names render as input text boxes

augmented with a pop-up file selector widget. The file se-
lector defaults to the inferred extension types to help filter.

The user can inspect the synthesized GUI and manually
change the types and value ranges of any element. If the user
1Note that -1.3 is not misparsed as the name of a boolean or keyword
argument since those strings must start with letters and not digits.

Figure 3: The main kinds of GUI elements that Bespoke synthesizes from observing the user’s command-line app invocations: file selectors (e.g., Input
Video), text box with dropdown menu (Codec), date/time picker (Start Time, Duration), checkbox (Hide Metadata), and numerical slider (Audio Rate).

makes any changes, Bespoke will no longer attempt to run
inferences on those arguments since it assumes that the user
wants to take manual control of them from now on. For in-
stance, in a cell the user may always want the first positional
argument of git to be fixed to the string commit in order to
make a GUI to specify options for git commit.

To prevent incorrect inferences due to user typos, if a com-
mand run results in an error, as indicated by a non-zero exit
status code, then Bespoke will ask the user whether they ac-
tually want to add it to their history for inference.

Element labels and tooltips: By default each GUI element is
labeled with the name of its corresponding argument. Users
can manually change labels to more human-readable ones,
such as replacing “--seq” with “Adapter Sequence” in Fig-
ure 4. To provide additional guidance, Bespoke parses the
man (manual) pages and --help pages of the given com-
mand, if available, to extract the lines of documentation for
that argument (similar to Tutorons [41]). It displays that doc-
umentation as a pop-up tooltip on mouse hover. Users can
also manually write tooltips to provide custom instructions.

Inline file viewer and editor: For all filenames that the user
selects in the GUI, Bespoke shows an inline preview of those
files in the cell if they are text, images, videos, or audio clips.
We use the Unix file command [2] to detect file types, since
it is more robust than file extensions. For unsupported types,
Bespoke adds a button to open those files in the OS’s default
handler program. In addition, text files can be edited and
saved in the cell. In our cutadapt example, the user can
edit *.fq files within the cell since those are text files.

Being able to view output files makes it convenient for users
to iterate effectively with instant visual feedback. For in-
stance, when using the GUI to tune argument values for image
processing algorithms in the ImageMagick [14] command,
the user can see the processed output images in the cell and
adjust accordingly. Also, being able to edit input text files
makes it convenient for users to adjust configuration settings
for certain commands, which are often specified in text files.

Figure 4: The GUI that Bespoke synthesizes for our cutadapt exam-
ple, showing a) input elements, b) inline text file editor, c) edit button to
provide additional command-line examples to refine the synthesis.

Some commands read and write files that are not explic-
itly passed in as arguments. For instance, running make
without any arguments reads a Makefile in the current
directory, docker reads a Dockerfile, and npm reads
package.json. To detect these implicit arguments, Be-
spoke uses a heuristic of comparing access and modification
times of files in the current directory and sub-directories both
before and after each command invocation. It lists those ac-
cessed/modified files in the cell so users can view/edit them.

Figure 4 shows the final synthesized GUI for our cutadapt
example: the input and output file choices are exposed as
file selector widgets, “Adapter Sequence” is a text box with
suggested dropdown values, and “Error Rate” is a numeri-
cal slider. The user can also edit input files directly in the cell
(Figure 4b) and provide additional command-line invocations
as examples (Figure 4c) to refine the synthesis.

Supporting Multi-Stage Workflows
So far we have described how Bespoke synthesizes a GUI for
a single command within one cell. If that command includes a
Unix pipe, then it is split into multiple sub-commands, which
each render as sub-cells in that cell. However, more complex
user workflows involve multiple independent commands. For
instance, a user may ssh into a remote server and then run a
series of commands on there. Bespoke allows users to create
multiple independent cells (e.g., Figure 5 and Figure 6).

In addition, Bespoke detects if the same argument values are
being passed into commands in different cells. For example,
the same filename, numerical thresholds, or username may be
passed into multiple commands, even if their keyword argu-
ment names differ. For example, in one command the user
might specify their username as -u alice and in another,
--username=alice, but both get detected as the same
value alice. In those cases, Bespoke asks the user whether
they want to link or lift those common argument values:

• Link: When the user enters a linked argument value in the
GUI of the first cell where it occurs, its value propagates
to the corresponding GUI input elements in all other cells.
The user can override those values in each individual cell.
• Lift: Bespoke lifts up all common arguments that the user

selects into a special top-level cell at the top of the UI. This
optimization can make the synthesized GUIs much more
compact since the same arguments are not repeated across
different cells. For instance, if a workflow has ten com-
mand cells that each requires its own username input, lift-
ing that up to the top will generate a GUI with only one
username input text box instead of ten.

Each cell has its own Run button. Just like computational
notebooks, there is a Run All button that runs all cells in a
series, waiting for each one to finish before starting the next
one. Finally, to foster reproducibility, the user can export the
current state of Bespoke as a shell script containing all com-
mand argument values that they have currently set in the GUI.

DISCUSSION: SYSTEM SCOPE AND LIMITATIONS
The main benefit of Bespoke’s GUIs is that they expose only
the subset of options required for a particular team’s work-
flow. In contrast, any official GUI made by an app’s manufac-
turer would need to include far more options, since they must
accommodate a wider range of use cases. For instance, web-
based GUIs for managing cloud computing services such as
Microsoft Azure or Amazon AWS are notoriously hard to
navigate, with dozens of hierarchically nested pages each
with complex option selectors [6, 16, 42]. (One of our study
participants used Bespoke to create a minimal Azure GUI.)

Bespoke GUIs are similar to shell scripts in that they connect
command-line apps together in ad-hoc, personalized ways.
However, unlike scripting, Bespoke exposes arguments in a
GUI and allows users to view input/output files inline to fa-
cilitate interactive exploration. Each cell in Bespoke runs in-
dependently and asynchronously as users tinker with options,
unlike scripts which are text-based and non-interactive. Also,
once the user is happy with argument values they have tuned
in a Bespoke GUI, they can export its state as a Bash script.

Bespoke’s programming-by-demonstration approach is sim-
ple, which has both benefits and drawbacks. The main ben-
efit of simplicity is interpretability: Each time the user runs
a command, it gets added to the cell history and its synthe-
sized GUI updates accordingly. Users can manually remove
history entries to see their effects on synthesis. They can also
override any GUI elements to change types or value ranges.
Since Bespoke does not infer conditionals, loops, or advanced
programming constructs, there is usually a simple one-to-one
mapping between user demonstrations and synthesis results.

The main drawback of simplicity is limited expressiveness:
Bespoke-generated GUIs are fairly low-level, correspond-
ing one-to-one with underlying command-line arguments. It
does not perform higher-level inference of user intent such
as grouping sets of related arguments together into a single
higher-level option. It also does not perform value infer-
ences within strings, so it misses out on DSLs implemented
within string arguments of commands such as sed, awk, or
ffmpeg. Finally, it does not infer subcommand hierarchy:
e.g., if the user runs both git commit and git diff in
the same cell with various arguments, the synthesized GUI
will contain arguments for both commit and diff, which looks
confusing. We suggest users create separate cells for, say git
commit and git diff to make separate GUIs for each.

Relatedly, as Figure 3 shows, Bespoke GUIs consist of ba-
sic input elements such as text boxes, range sliders, and date
pickers. It cannot generate more advanced input elements in-
volving custom widgets or multi-page interactions. Its ex-
pressive range is limited to single-page, form-based GUIs.

Another limitation of Bespoke is that it does not handle soft-
ware environment differences between users’ computers. A
Bespoke-generated GUI is simply a graphical wrapper that
calls the underlying command-line apps on the host computer.
Thus, it is the user’s responsibility to ensure that they have all
of the requisite commands installed, or else their GUI will
not work as intended. Even if those commands are installed
properly, if their versions differ too much from the creator’s
version, then some options may not work as originally in-
tended. Pairing Bespoke with software package managers,
Docker containers [8], or VMs can alleviate these issues.

EXPLORATORY FIRST-USE STUDY OF BESPOKE
What kinds of GUIs might first-time users create with Be-
spoke? How would these bespoke GUIs potentially benefit
their colleagues? What are some shortcomings and limita-
tions of Bespoke, in their view? To explore these questions,
we recruited six graduate students who worked extensively
with command-line applications in their jobs as engineering
interns, scientific researchers, and teaching assistants.

Procedure: We began each individual session with a 15-
minute tutorial of Bespoke by walking the participant through
its features. Then we asked them to brainstorm what pos-
sible uses Bespoke could have in their workplace. We en-
couraged them to think about workflows that involved multi-
ple stages, interactive exploration, and manual inspection of
outputs. Otherwise they could just write scripts to automate
those tasks, so Bespoke would not be as necessary. Once

Participant User population # stages # arguments used # arguments available lift?
P1: Azure cloud computing system administrators 5 8 ∼50 yes
P2: machine learning data scientists 5 5 ∼50 no
P3: lecture video to searchable PDF students 3 4 hundreds no
P4: integrated circuit design electrical engineers 4 6 ∼100 yes
P5: FTP-style code deployment computing students 6 3 ∼10 yes
P6: Minecraft gaming server game organizers 10 15 ∼50 yes

Table 1: GUIs created by our user study participants, shown with the number of workflow stages in each GUI, total number of arguments used across
all stages, number of available arguments in underlying command-line apps, and whether it lifted common arguments across stages into a top-level cell.

they were satisfied with their workflow idea, they used Be-
spoke to run the appropriate commands on their machines to
synthesize and customize their GUIs. Along the way, we en-
couraged them to think aloud about the perceived benefits and
limitations of Bespoke. Each session lasted around 1.5 hours.

Study Design Limitations: We designed this study as an
open-ended exploration of the range of potential use cases
for Bespoke. Thus, we gave each participant the freedom to
develop a GUI that was personally meaningful to them. We
did not rigorously assess user performance on a controlled
set of tasks, nor did we compare Bespoke against alterna-
tive methods such as manually coding up a GUI. Even though
we wanted participants to create GUIs of their own design, it
was still done in a lab setting with Bespoke’s creator present
to guide their brainstorming; a more realistic setting would
be people voluntarily using it on their own without us being
present. Finally, we did not test the GUIs synthesized by Be-
spoke on end users to assess their benefits and limitations, es-
pecially for novices without much command-line experience.
We relied only on our participants’ anecdotes about what they
perceived to be benefits and drawbacks of using these GUIs.

Results: Table 1 summarizes the GUIs that our participants
created using Bespoke. These workflows spanned domains
such as cloud server management, electronic circuit design,
and machine learning. Most had around half a dozen stages
and exposed only a small fraction of the dozens of available
arguments in their underlying command-line apps. Note that
a comprehensive GUI would show dozens or even hundreds
of total available arguments, which would overwhelm users.
Bespoke’s strength is in allowing creators to easily expose a
narrow slice of these commands’ interfaces to suit their own
needs. We now describe each participants’ experiences:

P1: Managing Azure Cloud Computing Resources
P1 used Bespoke to create a GUI for managing cloud re-
sources such as virtual machines (VMs) on the Microsoft
Azure platform [16]. They regularly used Azure to manage
VMs for .NET software development and configured it using
the default web-based GUI. They mentioned that this GUI
was far too complex for their use cases: They needed to navi-
gate through many panes to find the few options they wanted
to adjust and simply left the vast majority of settings at their
defaults. They decided to make their own GUI by running the
Azure command-line app (called az) within Bespoke.

They created a five-stage workflow with each stage in its own
cell. In the first cell they ran the az command to create a
resource group with a group name and datacenter location:

az group create --name myGroup --location EastUS

In the next cell they created a VM in this group (myGroup):
az vm create --resource-group myGroup --name myVM \
--image UbuntuLTS [more options omitted for space]

Next they configured this VM (myVM) to open port 80 to ac-
cept HTTP connections so that it could become a web server:
az vm open-port --port 80 -g myGroup -n myVM

They added two more cells for attaching virtual hard disks,
network cards, and other peripherals. Bespoke synthesized
an initial GUI with those argument values as defaults; but as
they run those same commands in the future with different
values, the GUI input elements will generalize accordingly.
Figure 2 shows the top portion of this synthesized GUI.

Benefits: Bespoke synthesized a compact GUI and lifted up
arguments that were common across multiple stages. Here it
recognized that myGroup and myVM were entered in multi-
ple stages, so it lifted them up to a top-level cell where users
can enter their values once. P1 added Markdown documen-
tation to explain each cell and added links to Azure refer-
ence webpages. They mentioned that such a streamlined GUI
could serve as a quick-start tutorial for novices getting started
with Azure and would be less intimidating than using either
the command-line interface or the default web GUI.

Limitations: P1 observed that Bespoke still produced out-
puts in plain text on the terminal since it runs the underlying
command-line apps. They wished Bespoke could parse those
text outputs to display them in a visual way. They also wanted
to use parts of those outputs as GUI input elements of down-
stream workflow stages. For instance, if a command listed a
set of available datacenter locations, they wanted to use those
as selectable options for the datacenter input field.

P2: Prototyping Machine Learning with a Bespoke GUI
In early 2019 Uber released Ludwig [15], a command-line
app that allows users to train, test, and visualize a variety of
machine learning (ML) models without writing any code. To
use it, they pass in training/test data as .csv files and specify
the type of model and parameter settings using a configura-
tion file. For example, to train a model, they can run:
ludwig train --data_csv train.csv \
--model_definition_file model.yaml

There is currently no official GUI for Ludwig, so the only
way that people can use it is via this command-line interface,
with has over 50 arguments, each with many possible values.
P2 used Bespoke to synthesize a multi-stage GUI that uses

Figure 5: P2’s GUI for training a machine learning model to predict
Titanic survivors [25] and showing debugging visualizations in real time.

Ludwig commands to: 1) train a binary classifier model on
an input data set, 2) test the model on new data, and 3) create
debugging visualizations such as learning and loss curves.

Benefits: Bespoke allowed P2 to quickly explore hyperparam-
eter settings as they tuned their model. They can do so both
by adjusting GUI input elements and by editing the configu-
ration file (e.g., model.yaml) inline within each cell. As
they tune their model, running the GUI synthesized for the
ludwig visualize command lets them see the resulting
debugging visualizations directly in that cell since Ludwig
produces image files as output (Figure 5). Since Ludwig can
work with many different types of models, P2 mentioned that
a power user could make a specialized GUI for each specific
model type and distribute it to novice users to run on their
own input data without having to learn command-line tools.

Limitations: Bespoke’s GUI input elements are fairly generic
(Figure 3). P2 would have liked the ability to create custom
input widgets for their ML workflows, such as one for inter-
actively labeling input image data via direct manipulation.

P3: Converting Lecture Videos to Searchable PDFs
P3 often watches lecture videos on YouTube, which consist
of lecture slides with instructor narration. They wanted to
search for specific text within those video. Thus, they used
Bespoke to create a three-stage GUI that lets them extract im-
ages of text-heavy slides from lecture videos, run OCR (op-
tical character recognition) on those slide images to extract
their text, and produce a PDF containing the slide images and
searchable text. This workflow demonstrates chaining three
different command-line apps into a single GUI: 1) PyScene-
Detect [24] for detecting scene changes in videos and splitting

Figure 6: Excerpt from P3’s GUI for processing lecture videos, showing
a) scene detection, b) OCR, and c) visual previews of extracted frames.

clips based on scenes (e.g., discrete slide transitions in these
lecture videos), 2) FFmpeg for postprocessing videos and ex-
tracting still frames from them, 3) Tesseract for performing
OCR and producing the final searchable PDF. The resulting
GUI exposed only four input arguments out of the hundreds
available for those complex command-line apps.

Benefits: The main benefit of a Bespoke-generated GUI over
writing a command-line script for this kind of workflow is
that scene detection and OCR both involve a lot of parameter
tuning followed by manual inspection of outputs to determine
accuracy. Each lecture video will likely require different set-
tings to extract its text optimally. Bespoke allows users to
tune parameters and see the split video clips directly in the
GUI itself. It also allows them to tune OCR settings and see
the recognized text inline in the cell. Figure 6 shows a portion
of the GUI that renders extracted still frames from the video.

Limitations: Some commands take strings with syntactical
structure, such as -vf "select=gt(scene,0.05)"
for requesting scene detection with an app-specific threshold
value of >0.05. Bespoke cannot parse those strings, so it ren-
ders them in the GUI as text input fields. A more advanced
inference system could infer grammars for string arguments
to present them as more structured input elements.

P4: Designing Integrated Circuits
P4 is an electrical engineering graduate student who works
in integrated circuit design for SoC (system on chip) devices.
They collaborate with industry partners to use command-line
tools such as Synopsys PrimeTime [22] to perform layout
prototyping, testing, and performance analysis of such cir-
cuits. These tools are complex, with instruction manuals up
to thousands of pages long, and tend not to come with GUIs.

The GUI that P4 created with Bespoke used the Synopsys
PrimeTime tool suite to perform static timing analysis, with
cells for users to add buffers to sets of circuit pins and then
test for different types of timing violations. Depending on the
results of these tests, they may have to run additional diag-
nostics to assess failure severity and then perform different
tests. These tasks cannot be fully automated by a script since
each requires manual inspection of outputs and iterative tun-
ing of parameters. With a Bespoke-produced GUI, engineers
can see the output images and text files in the cell as they are
tuning parameters. These tasks also sometimes need to be run
in different orders, which is better supported by a GUI than
by fixed command-line scripts.

Benefits: P4 noted that Bespoke would be a good match for
this domain since electrical engineers usually do not have the
software development skills to manually code up such GUIs.
Each individual team also has idiosyncratic needs and navi-
gates those tools in their own ways. Thus, a senior engineer
could use Bespoke to create a GUI for their team’s workflows
and distribute it to junior team members.

Limitations: Users can manually override any of Bespoke’s
suggested values in the GUI. However, P4 wanted to be able
to specify hard limits on allowed argument value ranges,
since running PrimeTime with out-of-range values can risk
damaging the chip hardware.

P5: Deploying Student Code with a Bespoke FTP Client
P5 is a teaching assistant for an introductory operating sys-
tems course where students need to run their code on school
servers with a specialized set of tools installed on them. How-
ever, many students were not yet comfortable with Linux
command-line environments, so they found it cumbersome
to ssh into the server, edit code in terminal-based editors such
as Vim or Emacs, and run that code from the command line.
They much rather preferred coding with an IDE on their own
computers. To facilitate this workflow, P5 used Bespoke to
create a GUI that lets students 1) select files to copy to school
servers using scp, 2) log into a selected server with ssh,
3) run commands on that server to compile and test their code,
4) run scp again to copy the output files of their tests back to
their own computer for inspection. In essence, they created a
bespoke FTP client for students in this course.

Benefits: This GUI demonstrated how, even though Bespoke
is a local desktop app, it can be used to control remote servers
via a graphical wrapper around ssh. It gives students the con-
venience of working in their own local IDE but running code
remotely, without needing to alter existing IDEs. Bespoke
also lifted up common string arguments such as the student’s
username, password, and home directory into a top-level cell
to avoid repetition. (P5 did not mention any limitations.)

P6: Administering a Minecraft Game Server
P6 is a graduate student who uses their own server to run pri-
vate instances of the popular Minecraft [17] multiplayer game
for their friends. They currently administer this server us-
ing the free command-line tool MSM [19] (Minecraft Server
Manager). Commercial server administration GUIs do exist,
but they are complex and costly (over $100 per year [18]).

Thus, P6 decided to use Bespoke to create a server admin-
istration interface, with one cell for each type of task such
as creating game instances, adding worlds, players, and other
entities to them, adjusting permissions, and deleting games.

Benefits: This GUI is different from the others in our study
since it is not a step-by-step workflow. Each cell is inde-
pendent and can be run any time with the requested settings
whenever the user wants to perform a specific action, such as
adding a world to the game. P6 noted that such an interface
could be useful for hobbyists who do not need the full power
of an expensive production-grade server administration GUI.

Limitations: P6 was the only one to use link but mentioned
that it was confusing since it caused values to change with-
out their intent. They also said that a benefit of professional
Minecraft administration tools is that they have real-time
dashboard visualizations of server state, which Bespoke does
not provide. Also, since Bespoke cells do not know about one
another, sometimes option values go stale as the user changes
the state of the server. For instance, if the user deletes a
game from one cell, then its settings might still show up as
selectable option values in other cells. A more advanced sys-
tem would link inter-cell values in more sophisticated ways
than what Bespoke currently does with exact string matches.

CONCLUSION
Bespoke is an interactive system that synthesizes form-
based workflow GUIs by observing user demonstrations of
command-line apps. It aims to bring some long-standing
benefits of GUIs (discoverability, visibility, recognition over
recall) to the millions of command-line apps that now per-
vade many technical domains. Most of these apps are in the
long tail where GUIs will never get created for them, and the
few official GUIs that do exist often turn into overly-complex
monoliths since they must serve a broad user base. The key
insight that inspired Bespoke is that each individual or or-
ganization has idiosyncratic technical needs, which they can
easily demonstrate by running selected command-line apps.

Zooming out, we learned three sets of lessons from building
Bespoke that generalize to future systems: 1) Demonstration
bootstraps declarative: Users may not know upfront what
they want to write in declarative specs (e.g., for construct-
ing GUIs), so it can be easier for them to first imperfectly
demonstrate what they want. Once they see an initial sketch,
that bootstraps the process of fine-tuning it using more pre-
cise declarative means. 2) Multiple linked representations
empower user choice: Our study participants often flipped
back-and-forth between command-line and GUI versions of
cells while developing their notebooks. This helped them bet-
ter understand and debug how the synthesis process worked.
They ended up preferring command-line for simpler actions
and GUIs for more nuanced ones, especially those involv-
ing parameter tuning or visual outputs. 3) Narrative makes
tools feel personal: P2, P4, and P5 quickly generated several
GUI variants for their command-line tools of choice, each one
telling a specialized narrative that they preferred over mak-
ing one monolithic general-purpose GUI. Letting users easily
make niche tools by writing personal narratives can poten-
tially make those tools feel more like their own.

ACKNOWLEDGMENTS
Thanks to Imran Haque for helping with the computational
biology motivating example and Xiong Zhang for feedback
and BibTeX wizardry.

REFERENCES
[1] 2018. Beyond Interactive: Notebook Innovation at

Netflix. https://medium.com/netflix-techblog/
notebook-innovation-591ee3221233. (2018).
Accessed: 2019-07-14.

[2] 2018. file command. http://pubs.opengroup.org/
onlinepubs/9699919799/utilities/file.html.
(2018). The Open Group Base Specifications Issue 7,
2018 edition.

[3] 2018. getopt command. http://pubs.opengroup.org/
onlinepubs/9699919799/functions/getopt.html.
(2018). The Open Group Base Specifications Issue 7,
2018 edition.

[4] 2018. POSIX Utility Conventions.
http://pubs.opengroup.org/onlinepubs/
9699919799/basedefs/V1_chap12.html. (2018). The
Open Group Base Specifications Issue 7, 2018 edition.

[5] 2019. argparse — Parser for command-line options,
arguments and sub-commands. https:
//docs.python.org/3.7/library/argparse.html.
(2019). Accessed: 2019-04-02.

[6] 2019. AWS Management Console.
https://aws.amazon.com/console/. (2019).
Accessed: 2019-04-02.

[7] 2019. click: Python package for creating beautiful
command line interfaces.
https://click.palletsprojects.com/en/7.x/.
(2019). Accessed: 2019-04-02.

[8] 2019a. Docker: Shape Your Digital Future.
https://www.docker.com/. (2019). Accessed:
2019-04-02.

[9] 2019b. docopt: Command-line interface description
language. http://docopt.org/. (2019). Accessed:
2019-04-02.

[10] 2019. ELECTRON: Build cross platform desktop apps
with JavaScript, HTML, and CSS.
https://electronjs.org/. (2019). Accessed:
2019-04-02.

[11] 2019. ffmpeg - replace audio in video.
https://superuser.com/questions/1137612/
ffmpeg-replace-audio-in-video. (2019). Accessed:
2019-04-02.

[12] 2019. FFmpeg: A complete, cross-platform solution to
record, convert and stream audio and video.
https://ffmpeg.org/. (2019). Accessed: 2019-04-02.

[13] 2019. git –local-branching-on-the-cheap.
https://git-scm.com/. (2019). Accessed:
2019-04-02.

[14] 2019. ImageMagick. https://www.imagemagick.org/.
(2019). Accessed: 2019-04-02.

[15] 2019. Introducing Ludwig, a Code-Free Deep Learning
Toolbox.
https://eng.uber.com/introducing-ludwig/.
(2019). Accessed: 2019-04-02.

[16] 2019. Microsoft Azure portal. https://azure.
microsoft.com/en-us/features/azure-portal/.
(2019). Accessed: 2019-04-02.

[17] 2019. Minecraft. https://www.minecraft.net.
(2019). Accessed: 2019-04-02.

[18] 2019. Minecraft Server Hosting Pricing.
https://apexminecrafthosting.com/pricing/.
(2019). Accessed: 2019-04-02.

[19] 2019. Minecraft Server Manager. http://msmhq.com/.
(2019). Accessed: 2019-04-02.

[20] 2019. Moment.js: Parse, validate, manipulate, and
display dates and times in JavaScript.
https://momentjs.com/. (2019). Accessed:
2019-04-02.

[21] 2019. NPM. https://npmjs.com/. (2019). Accessed:
2019-04-02.

[22] 2019. PrimeTime Static Timing Analysis. https:
//www.synopsys.com/implementation-and-signoff/
signoff/primetime.html. (2019). Accessed:
2019-04-02.

[23] 2019. Project Jupyter. http://jupyter.org/. (2019).
Accessed: 2019-04-02.

[24] 2019. PySceneDetect. https:
//pyscenedetect.readthedocs.io/en/latest/.
(2019). Accessed: 2019-04-02.

[25] 2019. Titanic: Machine Learning from Disaster.
https://www.kaggle.com/c/titanic/. (2019).
Accessed: 2019-04-02.

[26] 2019. webpack. https://webpack.js.org/. (2019).
Accessed: 2019-04-02.

[27] Stephen F. Altschul, Warren Gish, Webb Miller,
Eugene W. Myers, and David J. Lipman. 1990. Basic
local alignment search tool. Journal of Molecular
Biology 215, 3 (1990), 403 – 410. DOI:
http://dx.doi.org/https:
//doi.org/10.1016/S0022-2836(05)80360-2

[28] Alan F Blackwell. 2001. SWYN: A visual
representation for regular expressions. In Your wish is
my command. Elsevier, 245–270.

[29] Raluca Budiu and Nielsen Norman Group. 2019.
Memory Recognition and Recall in User Interfaces.
https://www.nngroup.com/articles/
recognition-and-recall/. (2019). Accessed:
2019-04-02.

https://medium.com/netflix-techblog/notebook-innovation-591ee3221233
https://medium.com/netflix-techblog/notebook-innovation-591ee3221233
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getopt.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getopt.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://docs.python.org/3.7/library/argparse.html
https://docs.python.org/3.7/library/argparse.html
https://aws.amazon.com/console/
https://click.palletsprojects.com/en/7.x/
https://www.docker.com/
http://docopt.org/
https://electronjs.org/
https://superuser.com/questions/1137612/ffmpeg-replace-audio-in-video
https://superuser.com/questions/1137612/ffmpeg-replace-audio-in-video
https://ffmpeg.org/
https://git-scm.com/
https://www.imagemagick.org/
https://eng.uber.com/introducing-ludwig/
https://azure.microsoft.com/en-us/features/azure-portal/
https://azure.microsoft.com/en-us/features/azure-portal/
https://www.minecraft.net
https://apexminecrafthosting.com/pricing/
http://msmhq.com/
https://momentjs.com/
https://npmjs.com/
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
http://jupyter.org/
https://pyscenedetect.readthedocs.io/en/latest/
https://pyscenedetect.readthedocs.io/en/latest/
https://www.kaggle.com/c/titanic/
https://webpack.js.org/
http://dx.doi.org/https://doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/https://doi.org/10.1016/S0022-2836(05)80360-2
https://www.nngroup.com/articles/recognition-and-recall/
https://www.nngroup.com/articles/recognition-and-recall/

[30] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik.
2018. Rousillon: Scraping Distributed Hierarchical
Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology
(UIST ’18). ACM, New York, NY, USA, 963–975.
DOI:http://dx.doi.org/10.1145/3242587.3242661

[31] Mendel Cooper. 2014. Advanced Bash-Scripting Guide.

[32] Allen Cypher, Daniel C. Halbert, David Kurlander,
Henry Lieberman, David Maulsby, Brad A. Myers, and
Alan Turransky (Eds.). 1993. Watch What I Do:
Programming by Demonstration. The MIT Press.

[33] Loris D’Antoni, Rishabh Singh, and Michael Vaughn.
2017. NoFAQ: Synthesizing Command Repairs from
Examples. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE 2017). ACM, New York, NY, USA,
582–592. DOI:
http://dx.doi.org/10.1145/3106237.3106241

[34] Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE:
Automatically Generating User Interfaces. In
Proceedings of the 9th International Conference on
Intelligent User Interfaces (IUI ’04). ACM, New York,
NY, USA, 93–100. DOI:
http://dx.doi.org/10.1145/964442.964461

[35] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S.
Weld. 2007. Automatically Generating User Interfaces
Adapted to Users’ Motor and Vision Capabilities. In
Proceedings of the 20th Annual ACM Symposium on
User Interface Software and Technology (UIST ’07).
ACM, New York, NY, USA, 231–240. DOI:
http://dx.doi.org/10.1145/1294211.1294253

[36] John Gruber. 2019. Markdown.
https://daringfireball.net/projects/markdown/.
(2019). Accessed: 2019-04-02.

[37] Sumit Gulwani. 2011. Automating String Processing in
Spreadsheets Using Input-output Examples. In
Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’11). ACM, New
York, NY, USA, 317–330. DOI:
http://dx.doi.org/10.1145/1926385.1926423

[38] Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and
Jeffrey Heer. 2011. Proactive Wrangling:
Mixed-initiative End-user Programming of Data
Transformation Scripts. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’11). ACM, New York, NY,
USA, 65–74. DOI:
http://dx.doi.org/10.1145/2047196.2047205

[39] Daniel Conrad Halbert. 1984. Programming by
example. Ph.D. Dissertation. University of California,
Berkeley.

[40] William R. Harris and Sumit Gulwani. 2011.
Spreadsheet Table Transformations from Examples. In
Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI ’11). ACM, New York, NY,
USA, 317–328. DOI:
http://dx.doi.org/10.1145/1993498.1993536

[41] Andrew Head, Codanda Appachu, Marti A. Hearst, and
Björn Hartmann. 2015. Tutorons: Generating
context-relevant, on-demand explanations and
demonstrations of online code. In 2015 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 3–12. DOI:
http://dx.doi.org/10.1109/VLHCC.2015.7356972

[42] Jeremy Howard. 2019. fastec2: AWS computer
management for regular folks.
https://www.fast.ai/2019/02/15/fastec2/. (2019).
Accessed: 2019-04-02.

[43] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2011. Wrangler: Interactive Visual
Specification of Data Transformation Scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 3363–3372. DOI:
http://dx.doi.org/10.1145/1978942.1979444

[44] Donald E. Knuth. 1984. Literate programming.
Comput. J. 27 (1984), 97–111.

[45] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan
Blackwell, Margaret Burnett, Martin Erwig, Chris
Scaffidi, Joseph Lawrance, Henry Lieberman, Brad
Myers, Mary Beth Rosson, Gregg Rothermel, Mary
Shaw, and Susan Wiedenbeck. 2011. The State of the
Art in End-user Software Engineering. ACM Comput.
Surv. 43, 3, Article 21 (April 2011), 44 pages. DOI:
http://dx.doi.org/10.1145/1922649.1922658

[46] David Kurlander and Steven Feiner. 1992. A
History-based Macro by Example System. In
Proceedings of the 5th Annual ACM Symposium on
User Interface Software and Technology (UIST ’92).
ACM, New York, NY, USA, 99–106. DOI:
http://dx.doi.org/10.1145/142621.142633

[47] David Joshua Kurlander. 1993. Graphical Editing by
Example. Ph.D. Dissertation. New York, NY, USA.
Advisor(s) Feiner, Steven. UMI Order No.
GAX94-12791.

[48] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and
Daniel S. Weld. 2003. Programming by Demonstration
Using Version Space Algebra. Machine Learning 53, 1
(01 Oct 2003), 111–156. DOI:
http://dx.doi.org/10.1023/A:1025671410623

[49] Tessa A Lau, Pedro M Domingos, and Daniel S Weld.
2000. Version Space Algebra and its Application to
Programming by Demonstration.. In ICML. 527–534.

http://dx.doi.org/10.1145/3242587.3242661
http://dx.doi.org/10.1145/3106237.3106241
http://dx.doi.org/10.1145/964442.964461
http://dx.doi.org/10.1145/1294211.1294253
https://daringfireball.net/projects/markdown/
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.1145/2047196.2047205
http://dx.doi.org/10.1145/1993498.1993536
http://dx.doi.org/10.1109/VLHCC.2015.7356972
https://www.fast.ai/2019/02/15/fastec2/
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1145/1922649.1922658
http://dx.doi.org/10.1145/142621.142633
http://dx.doi.org/10.1023/A:1025671410623

[50] Vu Le and Sumit Gulwani. 2014. FlashExtract: A
Framework for Data Extraction by Examples. In
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 542–553.
DOI:http://dx.doi.org/10.1145/2594291.2594333

[51] Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. 2008. CoScripter: Automating & Sharing
How-to Knowledge in the Enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’08). ACM, New York, NY,
USA, 1719–1728. DOI:
http://dx.doi.org/10.1145/1357054.1357323

[52] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and
Allen Cypher. 2010. Here’s What I Did: Sharing and
Reusing Web Activity with ActionShot. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY,
USA, 723–732. DOI:
http://dx.doi.org/10.1145/1753326.1753432

[53] Henry Lieberman. 1994. A User Interface for
Knowledge Acquisition from Video. In Proceedings of
the Twelfth National Conference on Artificial
Intelligence (Vol. 1) (AAAI ’94). American Association
for Artificial Intelligence, Menlo Park, CA, USA,
527–534. http:
//dl.acm.org/citation.cfm?id=199288.199319

[54] Henry Lieberman (Ed.). 2000. Your Wish is My
Command: Giving Users the Power to Instruct their
Software. Morgan Kaufmann.

[55] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen
Cypher, and Tessa A. Lau. 2009. End-user
Programming of Mashups with Vegemite. In
Proceedings of the 14th International Conference on
Intelligent User Interfaces (IUI ’09). ACM, New York,
NY, USA, 97–106. DOI:
http://dx.doi.org/10.1145/1502650.1502667

[56] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin
Vu, Luke Zettlemoyer, and Michael D. Ernst. 2017.
Program synthesis from natural language using
recurrent neural networks. Technical Report
UW-CSE-17-03-01. University of Washington
Department of Computer Science and Engineering,
Seattle, WA, USA.

[57] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NL2Bash: A Corpus and
Semantic Parser for Natural Language Interface to the
Linux Operating System. In Proceedings of the
Eleventh International Conference on Language
Resources and Evaluation (LREC 2018). Miyazaki,
Japan.

[58] Greg Little, Tessa A. Lau, Allen Cypher, James Lin,
Eben M. Haber, and Eser Kandogan. 2007. Koala:
Capture, Share, Automate, Personalize Business
Processes on the Web. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems
(CHI ’07). ACM, New York, NY, USA, 943–946.
DOI:http://dx.doi.org/10.1145/1240624.1240767

[59] Marcel Martin. 2011. Cutadapt removes adapter
sequences from high-throughput sequencing reads.
EMBnet.journal 17, 1 (2011), 10–12. DOI:
http://dx.doi.org/10.14806/ej.17.1.200

[60] David L. Maulsby, Ian H. Witten, and Kenneth A.
Kittlitz. 1989. Metamouse: Specifying Graphical
Procedures by Example. In Proceedings of the 16th
Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’89). ACM, New
York, NY, USA, 127–136. DOI:
http://dx.doi.org/10.1145/74333.74346

[61] Robert C. Miller. 2002. Lightweight structure in text.
Ph.D. Dissertation.

[62] Robert C. Miller, Victoria H. Chou, Michael Bernstein,
Greg Little, Max Van Kleek, David Karger, and mc
schraefel. 2008. Inky: A Sloppy Command Line for the
Web with Rich Visual Feedback. In Proceedings of the
21st Annual ACM Symposium on User Interface
Software and Technology (UIST ’08). ACM, New York,
NY, USA, 131–140. DOI:
http://dx.doi.org/10.1145/1449715.1449737

[63] Robert C. Miller and Brad A. Myers. 2000. Integrating
a Command Shell into a Web Browser. In Proceedings
of the Annual Conference on USENIX Annual
Technical Conference (ATEC ’00). USENIX
Association, Berkeley, CA, USA, 15–15. http:
//dl.acm.org/citation.cfm?id=1267724.1267739

[64] Dan H. Mo and Ian H. Witten. 1992. Learning text
editing tasks from examples: a procedural approach.
Behaviour & Information Technology 11, 1 (1992),
32–45. DOI:
http://dx.doi.org/10.1080/01449299208924317

[65] Francesmary Modugno and Brad A. Myers. 1993.
Graphical Representation and Feedback in a PBD
System. In Watch What I Do. The MIT Press,
Chapter 20.

[66] Francesmary Modugno and Brad A. Myers. 1994.
Pursuit: Visual Programming in a Visual Domain.
Technical Report. Pittsburgh, PA, USA.

[67] Brad A. Myers. 1990. Creating User Interfaces Using
Programming by Example, Visual Programming, and
Constraints. ACM Trans. Program. Lang. Syst. 12, 2
(April 1990), 143–177. DOI:
http://dx.doi.org/10.1145/78942.78943

[68] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin,
Andrew Mickish, and Philippe Marchal. 1990. Garnet:
comprehensive support for graphical, highly interactive
user interfaces. Computer 23, 11 (Nov 1990), 71–85.
DOI:http://dx.doi.org/10.1109/2.60882

http://dx.doi.org/10.1145/2594291.2594333
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.1145/1753326.1753432
http://dl.acm.org/citation.cfm?id=199288.199319
http://dl.acm.org/citation.cfm?id=199288.199319
http://dx.doi.org/10.1145/1502650.1502667
http://dx.doi.org/10.1145/1240624.1240767
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1145/74333.74346
http://dx.doi.org/10.1145/1449715.1449737
http://dl.acm.org/citation.cfm?id=1267724.1267739
http://dl.acm.org/citation.cfm?id=1267724.1267739
http://dx.doi.org/10.1080/01449299208924317
http://dx.doi.org/10.1145/78942.78943
http://dx.doi.org/10.1109/2.60882

[69] Jeffrey Nichols and Tessa Lau. 2008. Mobilization by
Demonstration: Using Traces to Re-author Existing
Web Sites. In Proceedings of the 13th International
Conference on Intelligent User Interfaces (IUI ’08).
ACM, New York, NY, USA, 149–158. DOI:
http://dx.doi.org/10.1145/1378773.1378793

[70] Jeffrey Nichols, Brad A. Myers, and Brandon
Rothrock. 2006a. UNIFORM: Automatically
Generating Consistent Remote Control User Interfaces.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’06). ACM, New
York, NY, USA, 611–620. DOI:
http://dx.doi.org/10.1145/1124772.1124865

[71] Jeffrey Nichols, Brandon Rothrock, Duen Horng Chau,
and Brad A. Myers. 2006b. Huddle: Automatically
Generating Interfaces for Systems of Multiple
Connected Appliances. In Proceedings of the 19th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’06). ACM, New York, NY,
USA, 279–288. DOI:
http://dx.doi.org/10.1145/1166253.1166298

[72] Dan Poirier. 2019. Dan’s Cheat Sheets.
https://cheat.readthedocs.io/en/latest/. (2019).
Accessed: 2019-04-02.

[73] Atsushi Sugiura and Yoshiyuki Koseki. 1998. Internet
Scrapbook: Automating Web Browsing Tasks by
Demonstration. In Proceedings of the 11th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’98). ACM, New York, NY, USA,
9–18. DOI:
http://dx.doi.org/10.1145/288392.288395

[74] Andrew J. Werth and Brad A. Myers. 1993. Tourmaline
(Abstract): Macrostyles by Example. In Proceedings of
the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems (CHI ’93). ACM, New
York, NY, USA, 532–. DOI:
http://dx.doi.org/10.1145/169059.169532

[75] Kuat Yessenov, Shubham Tulsiani, Aditya Menon,
Robert C. Miller, Sumit Gulwani, Butler Lampson, and
Adam Kalai. 2013. A Colorful Approach to Text
Processing by Example. In Proceedings of the 26th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’13). ACM, New York, NY,
USA, 495–504. DOI:
http://dx.doi.org/10.1145/2501988.2502040

http://dx.doi.org/10.1145/1378773.1378793
http://dx.doi.org/10.1145/1124772.1124865
http://dx.doi.org/10.1145/1166253.1166298
https://cheat.readthedocs.io/en/latest/
http://dx.doi.org/10.1145/288392.288395
http://dx.doi.org/10.1145/169059.169532
http://dx.doi.org/10.1145/2501988.2502040

	Introduction
	Related Work
	Programming by Demonstration
	Generating Custom User Interfaces
	Improving Usability of Command-Line Applications

	Bespoke System Design and Implementation
	Step 1: Parsing Command-Line Arguments
	Step 2: Inferring Types and Value Ranges
	Step 3: Synthesizing a GUI from Type+Range Inferences
	Supporting Multi-Stage Workflows

	Discussion: System Scope and Limitations
	Exploratory First-Use Study of Bespoke
	P1: Managing Azure Cloud Computing Resources
	P2: Prototyping Machine Learning with a Bespoke GUI
	P3: Converting Lecture Videos to Searchable PDFs
	P4: Designing Integrated Circuits
	P5: Deploying Student Code with a Bespoke FTP Client
	P6: Administering a Minecraft Game Server

	Conclusion
	Acknowledgments
	References

