
BURRITO: Wrapping Your Lab Notebook in Computational Infrastructure

Philip J. Guo
Stanford University

Margo Seltzer
Harvard University

Abstract
Researchers in fields such as bioinformatics, CS, finance,
and applied math have trouble managing the numerous
code and data files generated by their computational ex-
periments, comparing the results of trials executed with
different parameters, and keeping up-to-date notes on
what they learned from past successes and failures.

We created a Linux-based system called BURRITO
that automates aspects of this tedious experiment orga-
nization and notetaking process, thus freeing researchers
to focus on more substantive work. BURRITO automati-
cally captures a researcher’s computational activities and
provides user interfaces to annotate the captured prove-
nance with notes and then make queries such as, “Which
script versions and command-line parameters generated
the output graph that this note refers to?”

1 Motivation

For hundreds of years, the pace of scientific research was
relatively slow, limited by the need to set up, run, and de-
bug experiments on physical apparatus. Throughout their
experiments, researchers took the time to write meticu-
lous accounts of their hypotheses, observations, analy-
ses, and reflections in handwritten lab notebooks.

In the past few decades, the pace of research has sped
up significantly as more experiments are being done on
the computer. People as diverse as the bioinformatics
Ph.D. student who is testing out sequence alignment al-
gorithms, the computer performance engineer who is
tuning optimization parameters, and the web marketing
analyst who is trying to find the best set of clickstream
features to predict purchase rates, all struggle with the
same problems in their experimental workflow [4, 6]:

• To test hypotheses, they constantly adjust their
code and re-execute to generate numerous output
data files. They struggle to remember which exact
changes to their code generated a particular output.

• They consult a myriad of resources such as docu-
mentation web pages, PDFs of related papers, code
snippets, and hand-drawn sketches while they work,
so they struggle to remember which resources influ-
enced them to make specific edits to their code.

• They struggle to maintain up-to-date notes on which
experimental trials worked and did not work. Since
they rapidly edit code, tune execution parameters,
and generate new variants of output data, notes
taken only a few hours ago might be outdated.

Researchers cope with the above problems by taking
notes using a mix of plain-text files, “sticky notes” wid-
gets, and notebook software such as Microsoft OneNote.
The fundamental shortcoming of all existing electronic
notetaking solutions is that they are not linked with the
user’s activity context, which we define as the user’s ac-
tions at a particular time, such as editing code, read-
ing documentation, and executing commands. Instead,
these tools are simply digital versions of paper lab note-
books. As a result, researchers have trouble organizing
their notes and associating them with the proper context.
These observations highlight the need for an electronic
lab notebook that keeps up with the fast pace of compu-
tational research rather than mimicking paper notebooks.

2 The BURRITO System

Researchers often work in a heterogeneous environment
where they cobble together a patchwork of ad-hoc scripts
written in multiple languages, interfacing with a mix
of 3rd-party libraries and executables from disparate
sources within a command-line environment [6]. We cre-
ated a Linux-based provenance collection and notetaking
system called BURRITO for this target audience. Related
work such as scientific workflow systems (e.g., Kepler,
Taverna, VisTrails) provide similar provenance collec-
tion and annotation features for researchers who work
exclusively within those environments [1].

NILFS versioning filesystem

Timestamped event stream

OS-level provenance

GUI window interactions

Clipboard events

Command invocations (Bash,Python,MATLAB)

Text editor interactions (Vim)

Web browsing history (Firefox, Chrome)

Sticky notes and todos (Xpad)

Digital sketches (Wacom pen tablet)

Audio recordings (microphone)

Core

Plugins

Figure 1: BURRITO platform overview: Each component
logs a timestamped stream of events to a master database.

BURRITO consists of two parts: an extensible platform
that automatically captures provenance and user activity
context and a set of applications that allow the user to
annotate and query the captured metadata stream.

3 BURRITO Platform

The BURRITO platform (Figure 1) consists of a core and
a set of plugins that integrate a rich history of user activ-
ity into a master MongoDB database on the user’s ma-
chine. Suppose that Alice is a Ph.D. student conduct-
ing computational research on a Linux machine with the
BURRITO core platform installed. The NILFS versioning
filesystem [2] automatically preserves all old versions
of her source code and data files, so that she no longer
needs to use version control or embed metadata within
filenames. An OS-level provenance collection daemon
captures execution context, such as which processes read
from and wrote to which files, and builds up a prove-
nance graph similar to PASS [5]. A GUI trace daemon
captures all of her GUI window interactions, which pro-
vides context such as which application windows she is
viewing at all times as she is working on her experiments.

BURRITO platform plugins capture Alice’s activities
within specific applications. For example, the Bash
plugin records her executed Bash shell commands, the
Firefox plugin records her web browsing history, and the
clipboard plugin traces what code she copies and pastes
from, say, tutorial websites into her scripts. Alice can
also write plugins for scientific software that she uses.

In sum, the BURRITO platform automatically captures
Alice’s work activities and their context with no percepti-
ble run-time slowdowns and disk space usage of ∼2 GB
per month (estimated by our own experiences running
BURRITO over a two-month period while developing it).

4 BURRITO Applications

We have built four applications atop the BURRITO plat-
form. These applications provide innovative ways of in-
teracting with provenance beyond simply exploring a tra-
ditional interactive graph-based visualization [3].

4.1 Activity Feed
The Activity Feed is a sidebar residing on the left portion
of the user’s Linux desktop background. It periodically
polls the master BURRITO database (every 5 seconds by
default) and displays a near real-time stream of the user’s
actions as a list of feed events in reverse chronological
order. New events appear at the top of the feed and
push down older events (Figure 2). This UI metaphor
is inspired by the Facebook news feed and Twitter tweet
stream. The feed currently displays six types of events:

• A Bash command event shows a group of Bash
shell commands executed in the same directory
without any other intervening events. The user can
click on any command to copy it to the clipboard
and paste it into a terminal to re-execute.

• A website visit event shows a set of web pages vis-
ited without any intervening events. The user can
click on any page title to open its link in a browser.

• A file modification event shows a group of files
modified by a particular process. For example, sav-
ing a source code file in a text editor will create
a new file modification event, as does executing a
script to generate an output data file.

• A digital sketch event shows a thumbnail view of
a sketch that the user has just drawn using, say, a
digital pen tablet. Researchers often draw freehand
sketches and doodles while they work.

• The user can create a status update event by enter-
ing text in the status text box and pressing the “Post”
button. This is the main way for users to take notes
about what they are currently working on at a given
moment, which helps place other events in context.
(e.g., posting “I’m now trying to optimize my B-tree
split algorithm to copy less data”).

• The user can create a checkpoint event by clicking
on either the “Happy Face” or “Sad Face” button
and then entering a note in the pop-up text box de-
scribing why they are happy or sad about the current
state of the experiment. The system takes a screen-
shot and pushes it alongside the note onto the feed.
A “happy checkpoint” is like making a commit in
a version control system, and a “sad checkpoint” is
like filing a bug report in a bug tracking system.

2

Figure 2: The Activity Feed resides on the desktop back-
ground and shows a near real-time stream of user actions.

4.1.1 Annotating feed events

Besides writing notes in status update and checkpoint
events, the user can also add text annotations to all other
types of feed events. After right-clicking on an item in
the feed (e.g., a Bash command invocation), the user can
choose the “Annotate” option from a pop-up menu. Do-
ing so creates a text box immediately below the event
where the user can enter and save a note to the database.

Use case: Researchers struggle with managing notes
files. For instance, when reading months-old notes about
tweaks made to a particular script, the user will probably
be unable to view the exact version of the script to which
the notes refer. Activity Feed annotations allow users to
make notes within the most precise context at the time
when relevant events are occurring. The user can later
retrieve the exact old version of a file to which an anno-
tation refers, even if that file has since been deleted.

4.1.2 Interacting with file modification events

The Activity Feed provides a convenient interface to
monitor and access old versions of files. Right-clicking
on a file modification event in the feed pops up a menu
where the user can make four types of actions: 1.) Open
the version of the file either right before or after the given
modification using a NILFS snapshot. 2.) Diff two cho-
sen versions of a text file. 3.) Revert a file to any older
version, thus undoing unintended edits. 4.) View the
computational or activity context surrounding modifica-
tions to the chosen file (see Sections 4.2 and 4.3).

Use case: The Activity Feed subsumes the basic features
of version control systems and sticky notes applets using
a unified interface. Rather than restoring files by time or
version control commit points, users can access old file
versions within the context of all past activities (e.g., ex-
ecuted commands, visited websites, checkpoints, notes).

4.2 Computational Context Viewer
The Computational Context Viewer allows researchers
to answer a central question in their workflow: “What
effects did changes in my source code files have on my
experiment’s output files?” The user launches this GUI
application with the desired output file (and time bound)
as an argument. It displays all versions of the chosen
output file in reverse chronological order, the parameters
of the executed command that created each version, and
the diffs of all source files that led to the creation of that
output file version via the executed command.

For example, Figure 3 shows three variants of an out-
put graph file generated by a Python data analysis script:
a line graph, a bar graph, and a bar graph with three
crucial bars highlighted in yellow. The leftmost column
shows the respective diffs in the script file that led to each
change in the output graph file (i.e., the code change re-
sponsible for turning the line graph into a bar, and then
the change for highlighting the three bars in yellow).

Use case: Using this graphical interface, researchers can
answer the question, “Which version of my source code
produced the graph that looked like this?” The inline diff
view allows users to focus on significant changes without
needing to learn to use a version control system.

4.3 Activity Context Viewer
The Activity Context Viewer allows researchers to an-
swer the following question: “What actions influenced
me to make these edits to my source code?” Researchers
rarely edit code in isolation; while they work, they often
consult documentation web pages, related research pa-
pers in the form of PDF or Word documents, and other
source code. They sometimes write code comments,
notes, or hand-drawn sketches to explain the rationale
for their edits, but doing so is a tedious manual process.

3

Figure 3: The Computational Context Viewer shows how
diffs in input source code files and command-line param-
eters affect each version of a given output file.

BURRITO automatically captures all of this context
surrounding code edits and makes it visible to the user
via the Activity Context Viewer. This GUI application
looks similar to Figure 3, except that each row displays
four fields about one version of the chosen source file:

• Diffs of the source file against the previous version.
• Resources read while working on edits to the cur-

rent version, including web pages visited, on-disk
documents viewed, and other source code files read.

• Resources written while working on this version,
including other edited source code files, check-
points, status updates, and digital sketches drawn.

• Annotations that the user can write for this version.

Use case: Researchers can use this tool to re-create their
prior work context. For example, “When I left work last
week, I was editing this part of my script and had a col-
lection of reference materials open ... what were they?”

4.4 Lab Notebook Generator
The Lab Notebook Generator creates an HTML file sum-
marizing the user’s activities and notes in a given time
period. It currently provides the following functional-
ity: 1.) Feed events are grouped into phases separated
by user login sessions, checkpoints, and status updates.
2.) Within a phase, all files read/written are displayed in
a directory tree along with any annotations. Bash com-
mands and visited websites are displayed along with an-
notations. 3.) Digital sketches and output image files are
rendered as inline HTML images.
Use case: Lab notebook HTML files can be archived,
shared with colleagues, and used as the basis for writing
status reports and preparing notes for meetings.

5 Future Visions

Although BURRITO can be useful for an individual re-
searcher, we are more excited about discussing the pos-
sibility of using it to disseminate knowledge. BURRITO
traces could allow students, colleagues, and skeptics to
learn from someone’s entire research process, not just
from their final results as presented in a published paper.

In this vision, all Ph.D. students would use BURRITO
to capture and archive the complete trials and tribulations
of their 5–6 years’ worth of experiments. This “Ph.D.-
in-a-box” could be used to train new students and to pass
down all of the implicit knowledge, experiences, tricks,
and wisdom that are rarely captured in a dissertation.

Even more ambitiously, imagine an online library
filled with the collected BURRITO archives of all com-
putational research projects. It now becomes possible to
perform pattern recognition and aggregation across mul-
tiple projects to discover common “tricks-of-the-trade”.
Someone new to a field, say machine learning, can now
learn from the collective “behind-the-scenes” wisdom of
thousands of expert machine learning researchers rather
than simply reading their published papers.

One could argue that, in the limit, such a system would
be like “indexing” all of those researchers’ brains and
making that knowledge widely accessible. We actu-
ally believe that such a system can be more effective
than “brain indexing”, since people subconsciously ap-
ply tricks from their intuitions and often forget the details
of what they were working on (especially failed trials).
In this vision of the future, a paper is merely a facade for
the true contributions of the full research process.

Acknowledgments: Special thanks to Elaine Angelino,
Ewen Cheslack-Postava, Eunsuk Kang, Imran Haque,
Robert Ikeda, Adam Marcus, Rob Miller, and Jean Yang
for giving me helpful feedback on this project and paper.

References
[1] FREIRE, J., KOOP, D., SANTOS, E., AND SILVA, C. T. Prove-

nance for computational tasks: A survey. Computing in Science
and Engineering 10 (May 2008), 11–21.

[2] KONISHI, R., AMAGAI, Y., SATO, K., HIFUMI, H., KIHARA, S.,
AND MORIAI, S. The Linux implementation of a log-structured
file system. SIGOPS Oper. Syst. Rev. 40 (July 2006).

[3] MACKO, P., AND SELTZER, M. Provenance Map Orbiter: Inter-
active exploration of large provenance graphs. TaPP ’11.

[4] MACLEAN, D. Provenance, PASS & People: A Research Report.
Tech. rep., Harvard University, 2007.

[5] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. USENIX
’06, USENIX Association.

[6] PRABHU, P., JABLIN, T. B., RAMAN, A., ZHANG, Y., HUANG,
J., KIM, H., JOHNSON, N. P., LIU, F., GHOSH, S., BEARD, S.,
OH, T., ZOUFALY, M., WALKER, D., AND AUGUST, D. I. A
survey of the practice of computational science. In State of the
Practice Reports (2011), SC ’11, ACM.

4

