
2	 This article has been peer-reviewed.� Computing in Science & Engineering

R e p r o d u c i b l e R e s e a r c h
f o r S c i e n t i f i c C o m p u t i n g

One technical barrier to reproducible computational science is that it’s hard to distribute
scientific code in a form that other researchers can easily execute on their own computers.
To help eliminate this barrier, the CDE tool packages all software dependencies required
to rerun Linux-based computational experiments on other computers.

CDE: A Tool for Creating
Portable Experimental
Software Packages

A lthough there are many social, cul-
tural, and political barriers that hinder
reproducible computational science re-
search,1 one technical barrier to repro-

ducibility is that it’s hard to distribute scientific
code in a form that other researchers can easily
execute on their own computers. Before your col-
leagues can run your computational experiments,
they must first obtain, install, and configure com-
patible versions of the appropriate software and
the myriad dependent libraries, which is often a
frustrating and error-prone process. If even one
portion of one dependency can’t be fulfilled, then
your experiment won’t be re-executable.

To eliminate this technical barrier to reproduc-
ibility, I created a tool called CDE—which stands
for Code, Data, and Environment packaging—
that automatically packages all of the software
dependencies required to run your computational
experiments on another computer. CDE is easy to
use: all you need to do is execute the commands
for your experiment under its supervision, and
CDE automatically packages all of the code, data,
and environment that your commands accessed.

When you send that self-contained package to
your colleagues, they can rerun those exact com-
mands on their computers without first installing
or configuring anything. Moreover, they can even
adjust the parameters in your code and rerun it
to explore related hypotheses or run your code
on their own datasets to see how well your tech-
niques generalize.

By using CDE to package your experimental
code, data, and environment when you publish a
paper, you can ensure that both you and your col-
leagues can reproduce the paper’s results in the
future. CDE currently works on 32- and 64-bit
x86-Linux operating systems. In short, if you can
run the original experiment on your own Linux
computer, then your colleagues can run and mod-
ify it on their Linux computers without any setup
effort.

CDE is free, open source software; you can
download it and view its documentation at www.
pgbovine.net/cde.html. In this article, I provide a
high-level overview of how CDE can help compu-
tational scientists. Other articles2,3 provide details
on the design, implementation, and formal evalu-
ation of CDE.

CDE Usage Example: Alice and Bob
The best way to get a sense of how CDE works is
through an example. Let’s say that Alice is a cli-
mate scientist who’s running weather simulations

Philip J. Guo
Stanford University

1521-9615/12/$31.00 © 2012 IEEE

Copublished by the IEEE CS and the AIP

CISE-14-4-Guo.indd 2 6/4/12 2:54 PM

July/August 2012 � 3

for her research. Her experiment consists of a
single script written in the Python programming
language (weather_sim.py) and a data file repre-
senting Tokyo weather data (tokyo.dat) located
in her /home/alice/cool-experiment/ direc-
tory. She normally runs the experiment by typing
the following Linux shell command:

python weather_sim.py tokyo.dat

When that command is executed, the shell finds
the python executable within /usr/bin/ and in-
vokes it with weather_sim.py and tokyo.dat as
its arguments. Figure 1 shows all the files involved
in running this command: first, the python ex-
ecutable (underlined in red) loads the standard C
library (libc-2.10.so) and the weather_sim.
py script file. Then, weather_sim.py loads the
tokyo.dat data file and the py-weather.so
library, which contains optimized weather simula-
tion subroutines.

Note that py-weather.so is an example of a
third-party Python extension library that doesn’t
come preinstalled on Alice’s computer. Before she
could run her experiments, Alice (or her system
administrator) had to first install this library and
configure her version of Python to be able to find
and use it. This process might have taken hours or
days of frustration, and she likely didn’t document
the installation steps for someone else to repeat at
a later time.

Now, let’s say that Alice’s colleague Bob wants
to reproduce her weather simulation experiment
and modify it to test some related hypotheses. Bob
simply asks Alice to zip up and email her entire
cool-experiment/ directory to him. He unzips
the directory on his computer, navigates into it,
and then tries to run her script in the same way
that she originally did:

python weather_sim.py tokyo.dat

Bob thinks that he should have no problems
running Alice’s script, because Python came pre-
installed on his Linux computer. However, when
he tries to run her script, it crashes with an er-
ror because the py-weather.so library can’t be
found (see Figure 2). He must now go through the
trouble of installing py-weather.so and config-
uring his computer’s Python interpreter to be able
to find and use it.

This example is actually oversimplified. In real
life, Bob might have to install and configure sev-
eral software libraries, which themselves might
depend on even more libraries or conflict with

those already installed on his computer. It could
take him hours or days of frustration before he
finishes setting up the proper dependencies to run
Alice’s script, and he could inadvertently break
other programs on his computer in the process
(for example, because of conflicting library ver-
sions or misconfigurations). Let’s see how CDE
can eliminate all of these frustrations.

Creating a CDE Package
After Alice downloads CDE to her computer, she
can create a self-contained package for her experi-
ment by simply prepending its original command
with the cde executable:

cde python weather_sim.py tokyo.dat

CDE executes her script and uses the Linux
ptrace interception mechanism to monitor
all of the files that it accesses. CDE creates a
cde-package/ subdirectory and copies all of
those accessed files there, mirroring the original

Figure 1. Alice runs her Python-based weather
simulation experiment. The Python executable
(underlined in red) loads a Python script, a data file,
and two shared libraries.

usr

lib

py-weather.so

libc-2.10.so

python

weather_sim.py

tokyo.dat

bin

alice

home

cool-experiment

Figure 2. Bob tries to run Alice’s experiment but
encounters an error. Although he has Python
installed, he does not have the custom py-weather.so
library installed, which Alice’s script requires.

usr

lib

Error: Cannot �nd
 py-weather.so

libc-2.6.so

python

weather_sim.py

tokyo.dat

bin

bob

home

cool-experiment

CISE-14-4-Guo.indd 3 6/4/12 2:54 PM

4� Computing in Science & Engineering

directory structure (see Figure 3). CDE also cre-
ates a python.cde wrapper program in the pack-
age, which is a portable version of Alice’s original
python executable.

After Alice’s script finishes executing, the
cde-package/ subdirectory (the dotted red box
in Figure 3) now contains all the files required to
run her script on another Linux computer. CDE
has packaged her code (weather_sim.py), data
(tokyo.dat), and environment (the standard C
library, Python interpreter, and py-weather.so
extension library). A package can range from sev-
eral megabytes to several hundred megabytes in
size, depending on its payload.

So, creating a CDE package is as simple as run-
ning the original program under its supervision.

Executing a CDE Package
Alice can now transfer her entire cde-package/
directory to Bob (via email or file upload). Bob
can run Alice’s script by changing into the cool-
experiment/ subdirectory within the package and

running the special python.cde wrapper pro-
gram with the same arguments as Alice’s original
command:

./python.cde weather_sim.py tokyo.dat

Note that this command looks almost exactly like
the command that Alice originally ran on her
computer.

The python.cde wrapper first creates a sand-
box within the package (the dotted red box in
Figure 4) and then invokes Alice’s version of
Python (underlined in red). Alice’s Python knows
how to find the py-weather.so library, so her
script runs properly, just like it ran on her own
computer.

All of the file access arrows in Figure 4 remain
within the sandbox. CDE uses Linux ptrace sys-
tem call redirection to ensure that commands un-
der its supervision can access only files within the
sandbox, so they can’t interfere with the rest of
Bob’s computer. Thus, even though Bob has Python
and an older standard C library (libc-2.6.so)
installed on his computer, CDE always accesses
the versions from within Alice’s package.

Programs executed from within CDE packages
will run slightly slower because of the system call

Figure 3. Alice creates a CDE package that
contains all of the code, data, and environment
that her Python script accessed when she ran her
experiment. CDE mirrors the directory and file
structure of all files that her experiment accessed
(illustrated within the dotted red box).

usr

lib

py-weather.so

py-weather.so

libc-2.10.so
Execute and
copy �les into
cde-package/

python

weather_sim.py
tokyo.dat

tokyo.dat

cde-root

usr

cde-package

lib

bin

libc-2.10.so

python

alice

cool-experiment

home

weather_sim.py

python.cde

bin

alice

home

cool-experiment

Figure 4. Bob runs Alice’s experiment from within
her CDE package. CDE creates a temporary sandbox
by redirecting all file-access system calls within the
subdirectory denoted by the dotted red box.

usr

lib

py-weather.so

libc-2.6.so

python

tokyo.dat

cde-root

usr

cde-package

lib

bin

libc-2.10.so

python

alice

cool-experiment

home

weather_sim.py

python.cde

bin

home
bob

CISE-14-4-Guo.indd 4 6/4/12 2:54 PM

July/August 2012 � 5

redirection overhead. In my experiments, slow-
downs ranged from negligible to 30 percent.2

In essence, CDE lets Bob transfer a “slice” of
Alice’s computer onto his computer, so that he
can safely run and modify her experimental code.
Bob doesn’t have to install any software depen-
dencies before running Alice’s weather simula-
tion script. In fact, he doesn’t even need to have
root (administrator) access, so he can run her
CDE package on, say, a shared university com-
puter cluster. In addition to reproducing Alice’s
script run, Bob can also modify weather_sim.py
to explore alternative hypotheses, test other
datasets, or write new scripts that build off
Alice’s script.

CDE isn’t limited to Python; it works on arbi-
trary Linux programs written in any language. If
Alice can run a command on her computer, then
CDE enables her colleagues to run that same
command on theirs.

CDE Package Portability
Alice’s CDE package can execute on any Linux
computer with an architecture and kernel version
that are compatible with its constituent binaries.
CDE currently works on 32- and 64-bit variants
of the ubiquitous x86 architecture. Users have
been able to create CDE packages on modern
x86-Linux computers and run them on versions
of Linux that are up to five years old. However,
CDE doesn’t emulate software licenses or cus-
tom hardware, so those are additional limits to
portability.

Users can combine CDE with a virtual machine
to achieve greater portability. For example, if
Alice wants her colleagues who run Windows,
Mac OS, or an antiquated Linux to reproduce her
experiments, she can put her CDE package within
a Linux virtual machine (VM) and distribute the
entire VM image. However, the price to pay for
such portability is increased file size: A VM im-
age file can be 10 to 100 times larger than a CDE
package because it contains the entire operating
system.

Finally, unlike language-based portability tech-
nologies (such as Java or Python virtualenv),
CDE works on Linux programs written in any
language or mix of languages.

H ere, I focused on how scientists can
use CDE to instantly make their
Linux-based computational experi-
ments portable across a wide range

of Linux distributions. However, others have

found many creative uses for CDE beyond experi-
ment reproducibility:

•	 Researchers, designers, and hobbyists have used
CDE to distribute their prototype software in a
portable format so that users can instantly run
their software without the hassles of installation.

•	 Scientists have used CDE to deploy “embar-
rassingly parallel” computations to clusters and
cloud computing (such as Amazon EC2) with-
out needing root access or installing dependen-
cies on the remote machines.

•	Web developers have used CDE to deploy cus-
tom software stacks to their hosting providers’
Web servers without needing root access.

•	 Students have used CDE to collaborate on class
programming assignments without requiring
each teammate to go through a laborious soft-
ware installation procedure.

•	 People have used CDE to run software that’s
hard to install on their preferred Linux distri-
bution due to library incompatibilities. They
first install the desired software on a compatible
Linux distribution (often within a VM), pack-
age it using CDE, and then transfer that pack-
age to their own computer to execute.

Because CDE is a research project, I’m still ac-
tively recruiting new users to evaluate its effective-
ness in real-world use cases. Visit www.pgbovine.
net/cde.html to learn more and try it out.�

References
1.	 V. Stodden, “The Scientific Method in Practice:

Reproducibility in the Computational Sciences,”

MIT Sloan Research Paper No. 4773-10, 2010; http://

dx.doi.org/10.2139/ssrn.1550193.

2.	 P.J. Guo, “CDE: Run Any Linux Application On-Demand

Without Installation,” Proc. 2011 Usenix Large Installa-

tion System Administration Conf., Usenix Assoc., 2011;

http://static.usenix.org/events/lisa11/tech/full_papers/

Guo.pdf.

3.	 P.J. Guo and D. Engler, “CDE: Using System Call

Interposition to Automatically Create Portable Soft-

ware Packages,” Proc. 2011 Usenix Annual Tech. Conf.,

Usenix Assoc., 2011; http://static.usenix.org/events/

atc11/tech/final_files/GuoEngler.pdf.

Philip J. Guo recently graduated from Stanford Univer-
sity with a PhD in computer science and now works
at Google Research in Mountain View, California.
Visit www.pgbovine.net to learn more about his re-
search interests, which involve making programming
easier for people who aren’t professional software
engineers. Contact him at philip@pgbovine.net.

CISE-14-4-Guo.indd 5 6/4/12 2:54 PM

