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ABSTRACT

Data science courses and tutorials have grown popular in re-
cent years, yet they are still taught using production-grade
programming tools (e.g., R, MATLAB, and Python IDEs)
within desktop computing environments. Although powerful,
these tools present high barriers to entry for novices, forcing
them to grapple with the extrinsic complexities of software
installation and configuration, data file management, data
parsing, and Unix-like command-line interfaces. To lower
the barrier for novices to get started with learning data sci-
ence, we created DS.js, a bookmarklet that embeds a data
science programming environment directly into any existing
webpage. By transforming any webpage into an example-
centric IDE, DS.js eliminates the aforementioned complexi-
ties of desktop-based environments and turns the entire web
into a rich substrate for learning data science. DS.js automat-
ically parses HTML tables and CSV/TSV data sets on the tar-
get webpage, attaches code editors to each data set, provides
a data table manipulation and visualization API designed for
novices, and gives instructional scaffolding in the form of bi-
directional previews of how the user’s code and data relate.
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INTRODUCTION

Data science is now a highly in-demand skill across many
fields spanning engineering, scientific research, business,
marketing, health informatics, public policy, and data-driven
journalism [24]. In response to this surge in demand, uni-
versities are creating new data science majors [45], Massive
Open Online Courses (MOOCs) on data science are becom-
ing some of the most popular offerings [2], and professional
training bootcamps [4] are springing up around the world.
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However, despite the recent proliferation of new curricula
for data science education, these courses are still taught
using production-grade programming environments such as
MATLAB, RStudio for R, and the Jupyter Notebook for
Python, Julia, R, and other languages. These tools are often
situated within a Unix command-line environment to handle
data file management, script execution, and version control.

We found through formative interviews with data science in-
structors that these existing programming environments have
three main limitations when used for education: 1) they force
novices to grapple with the extrinsic burdens of software con-
figuration and data file management, along with the quirks
of full-blown IDEs and command-line interfaces, which de-
tract from the core learning goals of introductory data sci-
ence courses; 2) these tools are designed for professionals,
so they provide no instructional scaffolding to help novices
build mental models of how data manipulation APIs operate;
and 3) code, data, and exposition are separated, which makes
it harder to produce self-contained educational materials.

All of these limitations stem from the fact that students cur-
rently need to bring their data into monolithic environments
such as MATLAB or RStudio, but what if they could in-
stead bring a lightweight data science environment directly
to their data? In this paper, we explore this possibility with
a prototype bookmarklet (JavaScript bookmark) called DS.js,
which turns any webpage into a programming environment
for learning data science. Figure 1 shows a usage scenario:

(a) Browse to any webpage containing structured data, either
inline as HTML elements (e.g., tables, lists, divs) or linked
as external data files. Click the DS.js bookmarklet from
your bookmarks bar to inject a live programming environ-
ment directly into that webpage, which has access to all
data hosted on that webpage’s domain. DS.js eliminates
the burdens of installing software and managing data files.

(b) To help novices get started with analyzing data, DS.js uses
heuristics to automatically detect structured data sources
on the target webpage and parse them into JavaScript data
table objects. In addition, you can also use a GUI to inter-
actively select groups of webpage elements to parse.

(c) You can click on any parsed data source on the webpage
to attach an embedded JavaScript code editor to it. To help
you write analysis code to operate on that data, DS.js in-
cludes a JavaScript library suitable for introductory data
science, which mimics similar libraries for Python and R.
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Population in the world increased from 1990 to 2008 with 1,423 million and 27% growth. Measured by persons, the increase was highest in India (290 million) and China (192 million). Population growth was
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+ set("Population (thousands) 1990', x => x)

+ get_colunn('Population (thousands) 1990')

+ select_columns('Population (thousands) 1990')

« drop_columns(Population (thousands) 1990')

+ rename_column('Population (thousands) 190",
‘new_label')

« where('Population (thousands) 1990, x => true)

+ sorted('Population (thousands) 1990")

+ groupby('Population (thousands) 1990')

Figure 1. a.) DS.js is a bookmarklet that embeds a data science programming environment into any webpage. b.) It parses HTML tables and CSV/TSV
file links, c.) embeds code editors with live previews of derived tables and visualizations, d.) provides API suggestions, and e.) encapsulates state in URL.

This library contains functions for data cleaning, transfor-
mation, aggregation, basic statistics, and visualization.

(d) To help novices build proper mental models, DS.js imple-
ments instructional scaffolding in the form of bidirectional
previews of code and data. You can click on a piece of code
to visualize its effects on the corresponding data tables, and
you can also click on parts of data tables to preview sug-
gestions for what code to write to transform those parts.

(e) The entire state of user-written code is encapsulated in a
single URL. This lets you easily share your data science
explorations with others, and everyone can safely modify
their own copies without any software installation or setup.

The main novelty of DS.js as a system is that it piggybacks
off the web to make it easy for novices to gain practice with
all major phases of the data science pipeline: data acquisition,
cleaning, transformation, analysis, visualization, and commu-
nication [24]. To our knowledge, DS.js is the first attempt
to embed a data science programming environment directly
into existing webpages. The core research contribution of this
work is demonstrating that an example-centric approach [17]
using in-situ data examples on the web can potentially lower
the barriers for novices to get started with data science.

Why use the web as a substrate for learning data science?
The web is compelling since it contains enormous amounts of
structured data [18] ranging from Wikipedia tables to health-
care stats to CSV files in government archives. For instance,
the U.S. government portal data.gov has over 200,000 tab-
ular data sets, and a 2008 Google public web crawl found
over 154 million HTML webpage tables that contain well-
formatted relational data [19]. Educational materials cre-
ated with DS.js benefit from the authenticity of being situ-
ated within real-world webpages so that students can see the
original context behind their data while writing their analysis

code. Also, anyone can view, edit, and share DS.js-enhanced
webpages using ordinary URLs. This convenience facilitates
online help on Q&A sites and MOOC forums: Students can
encapsulate their buggy code in a URL, then anyone can re-
run that code to reproduce their bugs. DS.js points toward a
future where the web serves as a programmable substrate for
learning data science within the context of authentic data.

To investigate the efficacy of DS.js for our target audience
of students and instructors, we ran an exploratory first-use
study on 4 computer science undergraduate students and 4
graduate-student teaching assistants. Each subject spent 30
minutes using DS js to create their own data analyses within
a set of webpages and then compared it to their prior expe-
riences with using traditional data science environments. All
subjects successfully used DS.js to derive intermediate tables
and created original visualizations for data sets such as sports
statistics, population demographics, and website rankings.

The contributions of this paper are:

o Limitations of production-grade data science programming
environments when used in educational settings, discov-
ered via formative interviews with four data science in-
structors who teach university courses and MOOC:s.

o An example-centric approach [17] to learning data science
that uses the web as a substrate by embedding a data-aware
programming environment within existing webpages.

e DS js, a prototype JavaScript bookmarklet that implements
this approach using components such as automatic parsing
of structured web data, live execution with data visualiza-
tions, and bidirectional previews of code and data.

o An exploratory first-use study demonstrating that students
can successfully install and use DS.js to create their own
original data analyses and visualizations within webpages.
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BACKGROUND AND RELATED WORK

DS js introduces a new kind of example-centric programming
environment for novice data scientists, which draws inspira-
tion from prior work on end-user programming of webpages.

Background: Tabular Data is Central to Data Science

DS.js is mainly designed to help novices learn to work with
tabular data. Although raw data comes in many forms (e.g.,
geographical, hierarchical, freetext), data scientists prefer to
work with tables since they are the most suitable for con-
sumption by both analysis tools and programming environ-
ments [25, 28, 47]. For instance, spreadsheets, relational
databases, visual analytics tools like Tableau [42], and data
science libraries for programming languages such as R [47]
and Python [35] are all centered on manipulating tabular data.

The central data structure in DS.js is a table called DSTable
with methods for manipulating, transforming, combining, fil-
tering, and visualizing its elements (Table 1 shows its API).
We based its API on the open-source datascience.py [10]
Python library that is currently used to teach UC Berkeley’s
introductory data science courses. We chose this API since
it was specifically designed for pedagogy and has been re-
fined by testing on thousands of students over the past two
years. If more advanced users of DS.js want to work with
non-tabular data, DS.js allows them to visually select web-
page elements and write arbitrary JavaScript code (including
importing third-party libraries for screen scraping and text
parsing) to wrangle that data into tables for further analysis.

Programming Environments for Data Science

Data scientists often write code in integrated development en-
vironments (IDEs) or in text editors coupled with command-
line interfaces [29]. IDEs for data science integrate a code
editor, interactive shell, and data visualization panes. These
exist for a variety of languages including RStudio [11] for R,
Rodeo [13] for Python, MATLAB, and Mathematica. Data
scientists have also begun adopting notebook-based program-
ming environments such as the Jupyter (née IPython) Note-
book [9] and Tempe [22, 23], which allow them to mix textual
exposition, code, and visualizations into a sharable document.

Despite the popularity of these tools, they all require users to
acquire, store, and import data into them before starting ana-
lysis, which presents a barrier to novices who are unfamiliar
with data acquisition, parsing, and filesystem management.
Recently, web-based IDEs (WIDEs) such as cloud-powered
versions of Jupyter Notebooks [3, 7] take steps toward elimi-
nating some of these barriers to software installation and con-
figuration by hosting development environments in the cloud.

DS.js takes a complementary approach by acting like an
“inside-out IDE” that embeds a programming environment
directly into existing webpages. Since users can attach arbi-
trary numbers of DS.js code editors to each HTML table or
linked data file on the webpage, those editors resemble the
code blocks in Jupyter and Tempe notebooks — interspersing
runnable code within the context of data and exposition.

The most significant experiential distinction between pro-
gramming in DS.js versus in existing (W)IDEs is that DS.js

users do not ever start working with a blank slate in a code
editor; rather, they start programming in an example-centric
manner [17] by selectively sampling data on the current web-
page and writing code to operate on that data. Kato et al. [30]
survey additional examples of such example-centric program-
ming workflows that tightly bind code and data in context.

Beyond IDEs, recent research into augmenting programming
environments for data science introduce techniques that can
further expand the scope of DS.js. For instance, Variolite [31]
supports lightweight branching inside of a code editor to sup-
port fast exploration of code variants while performing data
analysis. CodeMend [40] helps data scientists refine visual-
izations in Python using graph plotting APIs by helping them
navigate through API functions and select suitable parameter
values via natural language queries. Wrangler [25, 28] allows
users to clean and reshape data tables using direct manipula-
tion without needing to write any code. A future version of
DS.js could benefit from integrating those features.

End-User Programming on Existing Webpages

Finally, DS.js is inspired by tools that enable novices and
end-users to manipulate the contents of existing webpages in-
situ. For instance, web browser extensions such as Chicken-
foot [15] and Greasemonkey [38] embed a code editor into
the browser sidebar, which allows users to write JavaScript to
alter the behavior of existing webpages. While these could in
theory be repurposed and extended to teach data science using
the web, they were originally designed for tasks such as web-
site customization and automation. Thus, they lack important
data-centric features of the DS.js programming environment
such as automatic parsing of HTML tables and CSV files into
table objects, bidirectional expression-level previews of table
transformations, and built-in visualizations.

In addition, other web browser extensions help end users
reformat existing webpages without writing any code:
Sifter [27] semi-automatically parses structured webpage
content and allows end users to add filtering and sorting func-
tionality. Reform [44] allows end users to attach lightweight
extensions to websites. Piggy Bank [26] scrapes HTML
on webpages that the user visits and restructures them into
RDF format for the Semantic Web. Marmite [48] and Veg-
emite [33] let users extract tabular data from websites into a
spreadsheet-like interface to create mashups. Vispedia [21]
is a bookmarklet that detects tables, lists, and infoboxes on
Wikipedia pages and allows end users to generate pre-set vi-
sualizations out of them without writing any code. Unlike
the aforementioned tools, which all target non-programmers,
DS.js offers a text-based coding environment so that stu-
dents can learn to write code to manipulate and visualize web
data. Although a simplified visual programming environment
could benefit greater numbers of end users, we wanted to de-
sign for students learning to write traditional text-based code.

FORMATIVE INTERVIEWS AND DESIGN GOALS

To discover limitations of current programming environments
for learning data science, we conducted formative interviews
on four data science instructors at large U.S. universities. All
four are tenure-track/tenured professors who regularly teach



large undergraduate data science courses with up to 500 stu-
dents per term. Two of them also teach a popular data sci-
ence MOOC (Massive Open Online Course) on Coursera.
All four teach using production-grade programming environ-
ments: two use a Python data science stack within the Jupyter
notebook, and two use R within the RStudio IDE. They put
example data sets on course websites for students to down-
load, manage, and analyze on their own computers. Their
main rationale for using these tools is that they feel that these
are what professional data scientists use. However, through-
out our interviews we discovered three recurring themes re-
garding the limitations of these tools when used in education:

Extrinsic software complexities: The most salient theme
mentioned by all four subjects was the difficulties of helping
students deal with the extrinsic complexities of installing, set-
ting up, and debugging software tools/libraries in ecosystems
surrounding R and Python across multiple operating systems
(e.g., Windows and Mac on personal computers, Linux on
university servers). Also, since most data science students
are not programmers or computer science majors, they are
unfamiliar with Unix-like command-line interfaces and the
minutiae of filesystem management (e.g., file types, file per-
missions, directory management, Unix vs. Windows line end-
ings, UTF-8 encodings) when managing data sets on disk.

The instructors were especially frustrated by the fact that all
of the time spent dealing with these issues was time taken
away from conveying the core pedagogical lessons of their in-
troductory data science courses; in other words, these issues
had nothing to do with data science, yet were necessary to
resolve since students were using complex software tools. To
address these recurring problems, the two Coursera instruc-
tors ended up creating a separate mini-course on software
tool and command-line setup that they made as a pre-requisite
for their introductory data science course [5]. Although this
worked well in a self-paced MOOC context, they said it was
unrealistic to expect university students to take an additional
course like this before taking their first data science course.

All four subjects were excited by the prospect of using a
more streamlined programming environment in data science
courses to get rid of these extrinsic complexities, but did not
know of any in existence. As a counterpoint, though, two
mentioned how they wanted students to eventually learn to
use production-grade tools and to learn to deal with these real-
world complexities, since professional data scientists need to
do so in their jobs. But they acknowledged that those skills
should probably not be emphasized in an introductory course.

Lack of instructional scaffolding: A secondary theme that
emerged from interviews was that data manipulation APIs
can be opaque and hard for novices to understand. Data sci-
ence code is often written as chains of functional (side-effect-
free) API calls that transform, filter, and aggregate data tables.
When that code is run within an IDE, Jupyter notebook, or
terminal, students see only the inputs and outputs, but not the
intermediate steps that were taken to transform the inputs into
the outputs. Students can manually break up sub-expressions
into separate statements and insert print statements to inspect
intermediate table state, but doing so is cumbersome.

The instructors wished that these APIs came with some form
of instructional scaffolding to help novices understand how
each function operates. On a related note, all four wished for
a simplified minimalist API for teaching data science so as not
to overwhelm novices with too many possibilities for how to
accomplish basic tasks. Currently, they use production-grade
data science APIs in R and Python but manually suggest a
subset of basic functions for students to use in class.

Code, data, and exposition are separated: Instructors also
mentioned the logistical hassles of keeping data sets, starter
code, and textual exposition in sync for their class materials.
Specifically, since data files must be acquired, downloaded,
and imported into tools, that data is far removed from their
original contexts. Instructors must also write expository text
in their lessons to explain the origins and formats of the ac-
quired data sets. We inferred that this loosely-coupled setup
could make it hard to produce self-contained materials, since
code, data sets, and exposition must be separately managed.

We reflected on the challenges uncovered by our interviews
to formulate a set of design goals for our DS.js prototype:

e D1: Minimize the extrinsic complexities of software instal-
lation/configuration and on-disk data file management.

e D2: Provide a minimalist data manipulation API.

e D3: Provide instructional scaffolding to show novices how
data manipulation API functions operate step-by-step.

e D4: Make it easy to share self-contained educational ma-
terials with code, data, and exposition bound together.

DS.JS SYSTEM DESIGN AND IMPLEMENTATION

DS.js is a bookmarklet with 2,500 lines of {Java|Type}Script
code. It also imports libraries such as jQuery, D3 [16] and
Vega-Lite [41] for visualizations, and NumlJs [8] for numeri-
cal vector operations. We designed DS.js as a bookmarklet to
make it trivial for users to “install” by dragging its URL into
their browser’s bookmark bar. Unlike an extension, a book-
marklet works across all modern browsers and requires no in-
stallation or privileged permissions, which helps eliminate the
extrinsic complexities of software setup (Design Goal D1).

Activating DS.js and Automatically Finding Tabular Data
The user activates the DS.js bookmarklet by simply clicking
on it in the bookmark bar whenever their browser has loaded
a webpage containing data that they want to analyze. Upon
activation, DS.js immediately parses the HTML of the current
webpage and looks for tabular data within it. DS.js recognizes
tabular data from two common data sources:

e Links to CSV and TSV data files (comma- and tab-
separated values, respectively), which are commonly found
on websites that host tabular data sets (e.g., data.gov).

e HTML data tables, which are found on hundreds of mil-
lions of websites [19]. To distinguish between HTML ta-
bles that likely contain data and those that provide layout
support (in lieu of CSS), we use a simple heuristic: DS.js
parses only HTML tables whose cells do not contain any
nested tables. The parser ignores all markup and extracts
only the textual content within HTML table cells.
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Figure 2. When the DS.js bookmarklet is activated, a.) an “Append DS.js
editor” button appears next to each data source on the webpage. In the
above data.gov webpage, the data sources are yellow CSYV file links.
b.) When that button is clicked, a new JavaScript code editor appears
below it. Any number of editors can be appended to each data source.

For each CSV/TSV link and HTML data table on the web-
page, DS.js inserts an “Append DS.js editor” button next to
its HTML element (Figure 2). Since DS.js piggybacks off of
existing webpages as data sources, it eliminates the extrinsic
complexities of on-disk file management (Design Goal D1).
But it relies on the owner not to alter or delete those pages.

Appending Code Editors to Data Sources

The first time that the user clicks the “Append DS.js edi-
tor” button beside any CSV/TSV link or HTML table, DS.js
parses its contents into a special JavaScript DSTable object
(Table 1 shows its API) and then appends a small code ed-
itor directly below that element on the webpage (Figure 2).
Each editor contains a code input box with JavaScript syn-
tax highlighting alongside a visual output pane where derived
data tables and visualizations are displayed. Any number of
additional code editors can be attached to each data link/table.

Our rationale for attaching small code editors to each data
source rather than having a single large code editor like in a
traditional IDE is that we wanted to intertwine sets of code
and data in a literate programming [32] style. Each code ed-
itor should be used to mostly write code that manipulates the
data source to which it is attached; that code will either out-
put an analysis result or display a visualization. Thus, when
someone visits a DS.js-enhanced webpage, they can read a
mix of exposition, data sets, user-written code, and analysis
results in a notebook-like narrative similar to Jupyter note-
books. This format resembles what data science instructors
already use for in-class lessons and homework assignments.

Recall that DS.js parses each data source (CSV/TSV link or
HTML data table) into a DSTable JavaScript object as soon
as the user opens the first code editor attached to that data

select_columns(names)
drop_columns(names)
sort(column, sort func)
where(column, filter func)
groupby(column, group func)
pivot(columns, rows, values)
add_row(new row) join(column, table, column)
add_column(new column) lineplot(x column, y col)
rename_column(oldname, new)barplot(x column, y col)
copy-table() scatterplot(x column, y col)
summary_statistics() boxplot() — plot all columns
sample_n_random_rows(n) histogram(column name)

Table 1. The API for DSTable, with methods for basic table manipula-
tion, statistics, and visualizations. All methods are purely functional.

get_element(row, column)
get_row(index)
get_column(column name)
num_rows()
num_columns()
get_column_names()

source. To give the user programmatic access to those objects
from within code editors, DS.js assigns a sequentially-named
global variable to each one. For instance, if there are three
data sources on a webpage, their respective DSTab 1e objects
would be named t 1, t2, and t 3. These variable names are
pre-filled as the first line of code in each attached code editor
to give the user something to start manipulating right away.

Note that even though we suggest for code within each ed-
itor to mostly operate on the data set that it is attached to,
these variables (e.g., t1, t2, £ 3, ...) are globally-scoped, so
code written in any editor on the webpage can access any data
source on that page. This is similar to the semantics of Jupyter
notebooks, which has a single global scope per notebook.

DSTable: A Minimalist API for Learning Data Science

We created a tabular data structure called DSTable as a cen-
tral component of DS.js. Although users can write arbitrary
JavaScript code within each editor, much of their code manip-
ulates DSTable objects since each data source on the web-
page is parsed into a DSTable. A DSTable is a 2-D table
of cells where each column has a unique name. This design is
similar to a table in a relational database and a data frame in
R [47] and the Python pandas library [35]. Since JavaScript
is dynamically typed, DSTable cells can hold values of any
type, but numerical and string values are ideal for analysis.

Our main goal in designing the DSTable API was min-
imalism (Design Goal D2). Thus, we based it on the
datascience.py [10] Python library that is currently used
to teach UC Berkeley’s data science courses, since that was
specifically made for pedagogy and has been refined by
testing on thousands of students over the past two years.
datascience.py, in turn, was iteratively designed by taking
production-grade APIs from R, Python, and SQL, and dis-
tilling them down to the minimal set of data transformation,
aggregation, visualization, and basic statistics functions re-
quired to teach introductory data science courses.

Table 1 shows a summary of DSTable API methods. Most
notably, we decided to make this API purely functional [37],
which means that none of the methods have side effects
or mutate their receiver/parameters. For instance, calling
t1l.drop.columns (["name"]) will return a new DSTable
that contains all columns from t1 except for the "name"
column; but t 1 is unchanged by the call.
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Figure 3. DS.js running on a Wikipedia page: a.) The source data table
of country populations. b.) An appended DS.js editor with code written
to filter and visualize that data. c.) When the user moves the cursor over
line 3 in the code editor, the visual output pane shows the bar plot that
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Figure 4. In the example in Figure 3, when the cursor is over line 2, the
visual output pane on the right shows that line’s return value, which is a
filtered data table. (Full table not shown in the figure for space reasons.)

We designed a purely functional API with immutable
DSTable objects to make it easier for novices to under-
stand and debug their table manipulation code due to lack
of side-effects. Functional programmers have long champi-
oned purely functional APIs and immutability for leading to
easier-to-debug code [37]. However, the main downside of
a purely functional API is potential lack of efficiency due to
data copying on every function call. In practice, we have not
found this to be a limiting factor in the modest-sized data sets
used in educational settings. But if this becomes a problem
in the future, we could reimplement some of the internals of
DSTable using standard copy-on-write optimizations [37].

Finally, to support efficient vectorized computations on nu-
merical data in the style of MATLAB and R, the get_row
and get_column methods extract a row or column from the
DSTable, respectively, and returns it as a special NumlJs [8]
array. This data structure supports vectorized operations such
as function mapping, vector arithmetic, and linear algebra.

Live Execution Environment and Visual Output Pane

To give rapid and continual feedback, DS.js presents a live
programming environment [1, 43] alongside a visual output
pane. We adopted a simple live execution model: Whenever
the user finishes writing each statement of code within the
editor (terminated either by a newline or semicolon), DS.js
runs the entire block of code in that editor. It runs the en-
tire block rather than only the last statement to match Jupyter
notebook’s semantics that each block executes atomically.

Each code editor encapsulates its own local scope. But note
that just like in Jupyter, global JavaScript variables created
within an editor are accessible from all other code editors
on the current webpage. This can be a convenient way to
share data across editors. However, it can also lead to hard-to-
debug problems where outputs differ depending on the order
and frequency in which blocks are executed. To ameliorate
these problems, DS js issues a warning whenever user-written
code declares or assigns to a global variable, implemented via
static analysis based on JSHint [6]. Besides being generally
useful, this warning guards against users accidentally clob-
bering global values of pre-parsed data sources on the page
(e.g., by writing t1 = t1.drop_columns(...)).

Whenever the user moves the cursor over a line in the code
editor, DS.js uses the visual output pane to the right of the
editor (Figure 3c) to display the return value of the statement
on that line; for an assignment statement, it shows the value
of the assignee variable. If that value is a JavaScript primi-
tive, object, or array, it will display it verbatim as though the
user had inserted a print statement there. But if that value is a
DSTable, it will render its contents as an HTML table (Fig-
ure 4) that supports data-to-code previews (see next section).
Finally, if that value is a visualization object (e.g., the result
of calling the barplot () method), then it will render the ap-
propriate data visualization (Figure 3c). This lightweight in-
terface enables users to live-preview the results of executing
each line by simply moving the cursor within each editor.

Bidirectional Previews as Instructional Scaffolding

We found through formative interviews that novices often
struggled to build mental models of how data science code
works step-by-step. As a representative example, one of the
instructors we interviewed wrote the following code during a
lesson on probability (renamed to match the DSTable API):

chances = tl.select_columns ("Sum", "Chance")
.groupby ("Sum", sum).rename_column(l, "Chance")

This line takes t 1, selects two columns, performs a group-
by operation, renames one of the resulting columns, and then
assigns the result to chances. Similar to how jQuery and
D3 code often chain several pure functions together within a
line, data science code also tends to be heavily chained. Since
the input and output tables (t 1 and chances, respectively)
have different shapes and values, it can be hard for novices to
understand how exactly that code turned t1 into chances.
To address this understandability challenge, we augmented
the DSTable API with bidirectional visual previews to serve
as instructional scaffolding for novices (Design Goal D3).

Code-to-Data Previews: To help novices understand how
each code expression (whether standalone or within a chain)
transforms its receiver DSTable object, DS.js allows the
user to click on any DSTable method call within the
code editor (e.g., select_columns (), groupby (), and
rename_column () in the prior example), and it pops up
an overlay that shows a preview of what that method does to
its receiver. Thus, by clicking on each method in a chain,
the user can see what happens step by step and incrementally
debug if the table transformation looks incorrect.
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Figure 5. Code-to-Data Previews: When the user clicks on a DSTable method call in their code, an inline visual preview summarizes the results of
running that method. The above example shows previews of three chained method calls on a single line: drop_columns(), where(), and groupby().
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Figure 6. Data-to-Code Previews: When the user clicks on portions of a table in the visual output pane (e.g., right part of Figure 4), an inline preview
shows which DSTable method calls are available to operate on the selected rows or columns. Clicking on a method name inserts that code into the editor.

Figure 5 illustrates the user clicking on several chained
DSTable method calls manipulating a basketball player data
set and seeing previews of each respective return value. Each
preview pops up inline next to the cursor and, to save space,
summarizes a few of the relevant rows and columns from the
DSTable object that results from calling that method. Here
the preview for drop_columns () shows the RANK column
to be dropped; the preview for where () shows the subset of
rows where the value of its SALARY (M) column is greater
than 10; and the preview for groupby () shows the rows of
the receiver table being grouped by the TEAM column.

Framed through a classical HCI lens, these code-to-data pre-
views help novices overcome the gulf of evaluation [36] —
given a block of code, they can select portions of it and see
exactly what each constituent part does to the respective data
tables. Without these previews, they would need to resort to
inserting print statements or using a symbolic debugger.

Data-to-Code Previews: We call the previews produced by
DS.js “bidirectional” because aside from selecting code and
previewing its effects on data, the user can also select data and
preview what kind of code to write to operate on it. Recall
that when the user’s cursor is positioned over a line of code
that returns a DSTable object, DS.js renders its contents as
an HTML table in the visual output pane beside that code ed-
itor (Figure 4). Seeing this output table naturally lends itself
to the question: What operations can I perform on this table?
To help novices discover possible operations, DS.js shows
context-specific suggestions for relevant DSTable method
calls whenever the user clicks on a given cell in the table.

Figure 6 shows how if the user clicks on a DSTable cell in
the output pane, DS.js pops up contextually-relevant sugges-
tions of relevant DSTable methods that operate on the re-
spective cell/row/column, along with other methods that op-
erate on the entire table at once. The user can also select mul-
tiple columns to get suggestions for multi-column operations
(Figure 6¢). DS.js pre-fills the selected cells/rows/columns as
the relevant method parameters and offers sensible defaults
for other parameters. When the user clicks one of the sugges-
tions, that code is appended to the current line in the editor.

Framed through a classical HCI lens, these data-to-code pre-
views help novices overcome the gulf of execution [36] —
given a table and a mouse selection over part of it, the user
can see what possible operations (methods) make sense to run
on that selection. Without these previews, they would need to
resort to consulting API documentation or example code.

Visually Selecting Semi-Structured Data to Parse

DS.js is mainly meant for working with tabular data, but more
advanced users may want to pull in arbitrary semi-structured
data from the webpage to analyze. Although they can directly
write CSS selectors in the code editor, DS.js also provides a
visual selection mechanism (based on SelectorGadget [20])
that makes it easier to select groups of page elements to parse.

The user activates the visual selector via a “Select Data” but-
ton in the code editor. They can now click on any DOM
element on the page, and the tool infers the most general
CSS selector that matches all elements of that type. In Fig-
ure 7b, it infers 1i for all list elements. Those elements all
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Figure 7. An example of visually selecting data to parse: a.) A demo web-
page containing two HTML lists encapsulated by different CSS classes
(.people and .cities, respectively). b. ) Clicking on “Doug” se-
lects all 11 list elements since it is the most general matching selection.
c.) Then clicking on “London” excludes the .cities elements from
consideration, leaving only .people 1i selected. Accepting this selec-
tion will parse those four list elements and insert them into the editor as
this JavaScript array: ['Alice’, ’'Bob’, ’'Carol’, ’Doug’]

get highlighted in yellow, and the user can now click on an-
other element to exclude from the selection (Figure 7c). The
tool refines the CSS selector to exclude the most recent selec-
tion while still including the original one (e.g., .people 1iin
Figure 7c). The user can keep clicking on elements to alter-
natively include and exclude them, which further refines the
selector. If the user accepts the final visual selection, DS.js
parses the text of the selected CSS elements (without any
markup) and pastes it into the code editor as a JavaScript array
so that their code can programmatically operate on that data
(e.g., ["Alice’, 'Bob’, ’'Carol’, ’'Doug’] in Figure 7C).

Encapsulating DS.js Application State in a Shareable URL
As the user writes code within DS js, it continually updates
the URL of the current page in the browser’s address bar to
append its current application state onto the page’s original
URL. The encoded state includes the contents of the code
within all editors and the current edit cursor position in each
editor, which is necessary to determine what gets rendered in
the visual output pane. This lightweight technique makes it
easy for the user to select the URL at any time and share what
they are currently working on with others (Design Goal D4).
When someone clicks on a DS.js-enhanced URL, they will
be brought to the target webpage. Then they must click the
DS.js bookmarklet in their bookmark bar, which will parse
the extra data in the URL, activate DS.js with each code editor
pre-populated with code from the URL, and run that code.

Design Discussion: Scope, Scale, and Limitations

Scope: We designed DS.js as a lightweight, zero-install pro-
gramming environment for learning data science using real-
world data from existing webpages. It is novel because it
carves a new point in the design space of programming tools
for data scientists: Whereas existing production-grade tools
are mainly meant for professionals, DS.js focuses on provid-
ing a low barrier to entry for novices. That said, it also pro-
vides a higher ceiling to accommodate more advanced learn-
ers: Users can write arbitrary JavaScript code and use our
custom importer function to import any library from the web.
User code can also make Ajax calls to fetch live data from
web services. Finally, visual output panes are just DOM ele-
ments, so users can write D3 code to render directly to them.

Scale: We believe that DS.js is well-suited for the modest
scale of code examples and data sets used in education. We

never envisioned anyone using it to write, say, 100,000-line
programs operating on terabytes of data. To quantify our ex-
pected size range, we obtained all code examples and data
sets from three popular data science books whose contents
are freely available online: Computational and Inferential
Thinking: The Foundations of Data Science [14] (which uses
the datascience.py library on which DSTable is based),
Python Data Science Handbook [46] and Python for Data
Analysis [35]. These books all intersperse self-contained code
examples with expository text and diagrams, just like how
DS.js and Jupyter notebooks are intended to be used.

Averaged over all 3,472 code examples across all three books,
the median number of non-comment, non-blank lines in each
example was 2 lines (mean=2.8 lines). This is because, in
practice, lots of data science code consists of sets of “one-
liners” that make heavy use of chained API calls to transform
and visualize data. 99% of the examples were shorter than
20 lines. Thus, we envision users typically writing less than
20 lines of code within each DS.js code block, which makes
per-block live execution and visual previews tractable. Fur-
thermore, the median size of each code example was 53 bytes
(mean=99 bytes), so even with a very conservative legacy-
browser-compatible URL length limit of 2KB [12], on av-
erage 20 code examples can fit into a single shared URL.
Modern browsers like Chrome have 2MB URL limits [12],
which can fit around 20,000 examples, or around 40,000 lines
of code. In terms of data set sizes, the median size of all
209 CSV data sets used by these three books was 113.5 KB
(mean=1.1 MB), which is well within range of what a modern
browser can fit into memory and even within CPU caches.

However, for larger-scale analyses or those requiring more
complex libraries or data integration workflows, we still rec-
ommend using desktop or cloud-based IDEs instead of DS.js.

Limitations: Our decision to implement DS.js as a book-
marklet maximizes convenience for users but also leads to
some limitations. For instance, bookmarklets cannot make
cross-domain Ajax calls without CORS or JSONP, so if a
webpage links to data sets hosted on another domain, those
sometimes cannot be fetched. These limitations can be over-
come by reimplementing DS.js as a browser extension and
running our own proxy server that makes server-side cross-
domain requests on behalf of users. Browser extensions also
enable more advanced functionality such as access to multiple
tabs and user profiles, and more robust local data storage and
versioning. However, this approach requires a more complex
user installation process and maintaining a dedicated proxy
server. Instead, our goal was to make DS.js a zero-install
serverless prototype to lower adoption barriers for novices.

We also do not have any security mechanisms to protect DS.js
users from executing malicious code passed via URLs. For
our initial use case in education, we assume that users are re-
ceiving links from trusted sources such as course instructors.

Finally, we recognize that Python and R are now the most
popular languages for data science, yet DS.js is JavaScript-
based. However, in our experience, basic data science
concepts (e.g., table manipulation, statistical computations,



data visualizations) are language-agnostic. Also, modern
JavaScript offers rich libraries for data manipulation and vi-
sualization, and it is similar enough to Python for high-level
concepts and even some code to transfer. Our DSTable API
is modeled on a Python API [10]. In the future, we can ex-
tend DS.js to Python and R by having the bookmarklet make
cross-domain Ajax calls to run that code on our own server.

EXPLORATORY FIRST-USE STUDY OF DS.JS

Can students and teaching assistants (TAs) who are first-time
users successfully use DS.js to create their own data analyses
and visualizations? How would they implement these analy-
ses if they did not have DS.js? How do they feel DS.js com-
pares to traditional programming environments for data sci-
ence? To explore these questions, we recruited 4 undergradu-
ates with data analysis experience and 4 graduate-student TAs
(two TA’ed for data science courses, one for intro. Python,
one for mobile app programming) for a one-hour user study.

Procedure: We started each session with a 10-minute tutorial
of DS.js — showing the subject a demo webpage with data
tables, using the DSTable API to manipulate that data, and
introducing live execution and bidirectional previews.

We then gave the subject a list of eight webpages with data
sources either embedded as HTML tables or linked as CSV
files: 1.) Moz500 table of 500 most popular websites, 2.) CSV
data sets from the R project home page, 3.) U.S. government
CSV data collection, 4.) London election results statistics,
5.) NBA basketball statistics, 6-—8.) Wikipedia pages with ta-
bles of supercomputers, website statistics, and world popula-
tion demographics. We picked these webpages to be repre-
sentative of the scale and types of data that would potentially
be used in educational settings such as classes and tutorials.

We told the subject to choose any webpages from the given
list and spend 30 minutes using DS.js to analyze its data and
draw some original conclusions. We purposely left the task
very open-ended to simulate an exploratory data analysis sce-
nario. The subject could choose to work with as many web-
pages and tables as they wanted within the time limit.

We spent the final 20 minutes interviewing the subject to
have them compare DS.js to traditional programming envi-
ronments. Our interview focused on the following questions:
a) What are your favorite programming languages and envi-
ronments for doing data science? b) If you did not have DS js,
how would you implement the same data analyses that you
just completed in DS.js? c¢) In what situations do you think
DS.js is more useful than the tools you would normally use?
d) In what situations do you think it is less useful?

Results: All subjects could install and activate the DS.js
bookmarklet without any problems. Most started their open-
ended analysis task by trying out several DSTable method
calls on the parsed data tables to make sure that the methods
actually worked the way they expected. For example, they
would call add_column () to append a new test column and
move the cursor to get live visual outputs of each line of code.

After subjects got comfortable with the API, they moved onto
creating their own original analyses. Table 2 summarizes the

T717te; // This table is denoted as to T
2 t@.summary_statisticsQ);
3  t@.sort('External Links', true);
4  t@.sort('Domain mozRank', true);
5 t@.sort('Domain mozTrust', true);
6 tl = t@.select_columns('Root Domain', 'Linking Root Domains');
7 t2 = t@.select_columns('Rank', 'Root Domain', 'Linking Root Domains',
"External Links');
8 t1 = t@.select_columns('Rank').sort('Rank").rename_column('Rank",'LinkRank"

H

9 t3 = t2.sort('External Links', true).add_column('LinkRank', t1.get_column
('LinkRank'));

10 t4 = t3.add_column('Difference', t3.get_column('Rank").subtract(t3
.get_column('LinkRank')));

11 t5 = t4.select_columns('Rank’, 'Root Domain', 'Difference').sort
('Difference');

12 t5.scatterplot('Rank', 'Difference');

Difference
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Figure 8. A data analysis/visualization created by user study subject S3.

properties of all subjects’ analyses. Most worked with HTML
tables, derived a few intermediate tables, and then generated
visualizations on columns of interest. histogram () was
the most popular visualization. For example S7 generated his-
tograms of country populations from a Wikipedia table. The
average lines of code per analysis was 8, which is consistent
with the sizes of examples found in the three data science
books that we analyzed (mean=2.8 lines per code example).

Although most were only able to perform basic analyses and
draw simple conclusions within the 30-minute time limit as
first-time users, some did discover more sophisticated in-
sights. For example, S3 analyzed the Moz500 data set of
the 500 most popular websites (Figure 8). After some API
exploration, he sorted the table based on the “Linking Root
Domains” and “External Links” columns then calculated the
difference of their ranks. He made a scatterplot of each web-
site’s ranking versus that difference. By observing a slight
positive correlation between these two variables, he hypothe-
sized that more popular websites (i.e., lower ranking) should
have proportionally more even numbers of “Linking Root Do-
mains” and “External Links” (i.e., smaller difference).

In sum, the main observed benefit of DS.js was that first-time
users could quickly code up non-trivial — albeit simple — ana-
lyses (e.g., Figure 8) with almost no training. Several men-
tioned they appreciated the convenience of having all neces-
sary code and data integrated together in a single webpage.

Comparisons with traditional data science environments:
While the experience of using DS.js was still fresh on each
subject’s mind, we used the 20-minute post-study interview
to have them compare it to the kinds of programming environ-
ments they already use for data science. These subjects have
analyzed data in a variety of environments such as MATLAB,
RStudio, Python using the PyCharm, Jupyter, Vim, Atom,
and Sublime editors, Mathematica, and Java with Netbeans.



Subject | Table Type and Description Table Size | LOC |API Methods | Intermediate Tables | Visualizations | Code-to-Data | Data-to-Code
S1 HTML: Moz500 top websites 500 x 7 17 9 7 6 1 16
S1 CSV: R demo data sets 6x2 3 2 1 1 0 0
S1 CSV: R demo data sets 7x17 9 7 6 2 4 10
S1 CSV: R demo data sets 89 x2 5 4 2 2 1 3
S1 CSV: R demo data sets 248 x 8 6 3 1 1 0 2
S2 HTML: NBA statistics 50 x 15 8 6 4 1 2 12
S3 HTML: Moz500 top websites 500 x 7 12 8 16 1 0 12
S4 HTML: NBA statistics 50 x 15 1 1 0 1 0 6
S4 HTML: Wikipedia demographics 20x 4 3 2 1 0 0 2
S4 HTML: Wikipedia demographics 11x5 6 5 3 3 0 9
S5 HTML: Wikipedia website stats 133 %6 17 8 28 6 1 19
S6 HTML: Wikipedia website stats 133 %6 8 6 4 3 0 17
S7 HTML: Wikipedia website stats 133 %6 6 5 2 0 0 7
S7 HTML: Wikipedia demographics 8x3 4 3 2 1 0 5
S7 HTML: Wikipedia demographics 11x5 2 2 2 0 0 2
S8 HTML: Moz500 top websites 500 x 7 9 7 4 1 1 14
S8 HTML: Wikipedia supercomputers 35%x6 12 7 6 1 0 16

Mean 8 5 5 2 1 9

Table 2. Each row summarizes a table that a user study subject analyzed with DS.js, showing its size (rows x columns), lines of code written (LOC), and
the numbers of unique DSTable API methods, intermediate tables, visualizations, and Code-to-Data/Data-to-Code previews used for the analysis.

In general, subjects expressed excitement about using DS.js
for introductory data science courses, although they felt that
more advanced use cases required production-grade tools.

Several subjects mentioned that if they did not have a tool
like DS.js, they would need to do a lot of tedious manual
work to download, import, and properly parse the desired
data. For example S5, who has TA’ed a data science course,
said: “DS.js is definitely helpful when showing live demos in
class, because I don’t need to write and debug extra code to
parse HTML tables, and I don’t even have to leave the web-
page.” Likewise, S7 said that she did not even know how to
start writing code to parse an HTML table in the first place.
S8, who has also TA’ed a data science course, also mentioned
that it would be useful for in-class live coding demos where
the instructor can pull up CSV data sets from any website and
start writing code to transform and visualize them.

Subjects pointed out the Code-to-Data and Data-to-Code pre-
views as unique and useful aspects of DS.js that they had not
seen in traditional environments. Table 2 shows that Data-to-
Code previews were used frequently as inline API references
(mean=9 times per analysis). Note that although Code-to-
Data previews were not used much in the open-ended task,
subjects made extensive use of them during the tutorial to ac-
quaint themselves with the DSTable APIL Those with TA
experience reported that even if an expert knows the API well
and does not need these previews to help them code, visual
previews can still be helpful for teaching the API to others.

Subjects also said that the “zero-installation” feature of DS.js
made it convenient for doing “quick-and-dirty” impromptu
analyses, especially if they are demoing on a computer that is
not theirs since they may not want to install software on there.
All subjects felt that sharing DS.js code and analyses via a
URL was intuitive to them. Without this feature, they would
normally share their code, data, and visualizations either on
GitHub, by emailing source code and data/image files to their
colleagues, or by uploading them to shared cloud drives.

Subjects also conveyed their perceived limitations of DS.js
and cited situations in which they would want to use a more

traditional programming environment. First, even though
they liked the responsiveness of the live programming envi-
ronment, some wished to be able to “freeze-frame” certain in-
termediate tables and visualizations so that they can see more
than one at a time on-screen. Next, since DS.js comes only
with a basic DSTable API along with D3, Vega-Lite, and
NumlJs, many still preferred the vast library ecosystem of R,
Python, or MATLAB for more complex analysis tasks. Fi-
nally, everyone acknowledged that while DS_js is well-suited
for writing code examples of the sort that would be appro-
priate for classes or online tutorials, they would probably not
use it for any large-scale production-grade analyses that they
would need to do for their research or internship projects.

CONCLUSION

With DS.js, we have carved out a new point in the design
space of programming tools for data scientists by focusing on
providing a low barrier to entry for novices. Our novel insight
is to leverage the abundance and diversity of structured data
on existing webpages to provide a zero-install embedded data
science programming environment as a bookmarklet. The de-
sign of DS.js was inspired by formative interviews with four
data science instructors and tested in an exploratory first-use
study on eight students. Our user study showed that students
found DS.js easy to use to create their own original analyses
and perceived it as being valuable in educational settings.

DS.js points toward a future where the entire web becomes an
example-centric substrate for learning data science. The sig-
nificance of our lightweight in-situ approach lies in its poten-
tial to motivate novices to practice data science using an en-
gaging and ubiquitous medium that they already interact with
daily: the web. Just like how breadboards lowered the barrier
for novices to experiment with electronic circuits without sol-
dering and how Processing [39] lowered the barrier for digital
artists to create interactive visual designs without becoming
expert programmers, DS.js aspires to enable similar sorts of
low-risk, impromptu, and joyful tinkering for data science.
More broadly, a future direction for DS js is to extend it to
support citizen data scientists [34] by letting anyone quickly
prototype, share, and remix their analysis results on the web.
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