
Fusion: Opportunistic Web Prototyping with UI Mashups
Xiong Zhang

University of Rochester
Rochester, NY, USA

xzhang92@cs.rochester.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
Modern web development is rife with complexity at all lay-
ers, ranging from needing to configure backend services to
grappling with frontend frameworks and dependencies. To
lower these development barriers, we introduce a technique
that enables people to prototype opportunistically by borrow-
ing pieces of desired functionality from across the web with-
out needing any access to their underlying codebases, build
environments, or server backends. We implemented this tech-
nique in a browser extension called Fusion, which lets users
create web UI mashups by extracting components from exist-
ing unmodified webpages and hooking them together using
transclusion and JavaScript glue code. We demonstrate the
generality and versatility of Fusion via a case study where
we used it to create seven UI mashups in domains such as
programming tools, data science, web design, and collabora-
tive work. Our mashups include replicating portions of prior
HCI systems (Blueprint for in-situ code search and DS.js for
in-browser data science), extending the p5.js IDE for Pro-
cessing with real-time collaborative editing, and integrating
Python Tutor code visualizations into static tutorials. These
UI mashups each took less than 15 lines of JavaScript glue
code to create with Fusion.

Author Keywords
opportunistic programming; UI mashups; web prototyping

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
The web is a powerful platform for building interactive appli-
cations, but there can be an irritatingly high barrier to getting
started on creating anything non-trivial. Modern web devel-
opment is rife with complexity at all layers. For instance,
developers first need to select and configure a motley mix of
hosting providers, cloud APIs, and authentication services on
the backend. Then they must often wrestle with tangles of
web frameworks, build systems, JavaScript/CSS transpilers,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST ’18, October 14–17, 2018, Berlin, Germany
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5948-1/18/10...$15.00
https://doi.org/10.1145/3242587.3242632

and dependency managers on the frontend before starting to
write any useful application code [13, 18].

This level of complexity is often necessary for building
production-scale web apps. However, for non-professional
programmers such as students, researchers, and UX design-
ers who want to prototype new ideas, it would be ideal to be
able to quickly get something simple up and running without
all of this boilerplate code and configuration overhead. How
can we lower the barriers to prototyping web applications?

In this paper, we propose that one way to quickly get started
on prototyping is to use the millions of web applications that
others have already built as inspiration and directly borrow
pieces of UI functionality from them. To support this oppor-
tunistic prototyping strategy [16, 24], we introduce a tech-
nique that lets developers extract components from existing
websites and write small pieces of glue code to bind them
together rather than implementing the desired features from
scratch. Our approach does not require any access to the un-
derlying source code or backend hosting servers of the fused
apps. This eliminates the hassles of setting up and maintain-
ing a full-stack web development environment and drastically
reduces the amount of code that needs to be written.

This work extends the long lineage of mashup systems [21,
22, 25, 30, 39] by letting users mash up existing web UIs
to prototype new web apps opportunistically. Whereas prior
web mashups were mostly data-centric, ours is UI-centric.

We implemented our approach in a Chrome browser exten-
sion called Fusion. Here is an example usage scenario: Imag-
ine that Alice is a UX (User Experience) designer working at
ShareLaTeX [11], a company that makes a web-based collab-
orative LaTeX editor often used by researchers when writing
papers together. One day Alice comes up with a new idea
to render previews of math equations inline in the text editor
whenever the user highlights a relevant selection. That way,
users can quickly debug and fine-tune their equations without
waiting for the full PDF document to render. She wants to see
how receptive users are to her new idea in order to determine
whether it is worthwhile for developers on her team to put in
the time and effort to implement it in the actual product.

Figure 1 shows how Alice can use Fusion to quickly proto-
type this feature so that she can test it on potential users:

(a) She finds a simple webpage called the Interactive LaTeX
Editor [32] that allows users to enter a line of LaTeX code
into a text box and instantly see the math equation that it
compiles into.

Figure 1: Create UI mashups with Fusion by extracting elements from any webpage into a widget, programming it using a scaffolded development
environment, and embedding it into a host webpage.

(b) She activates the Fusion browser extension and extracts
two relevant panes from that page—the input text box and
the rendered output display—to turn them into a widget.

(c) She writes 10 lines of JavaScript glue code to program that
widget. Specifically, whenever the user makes a text se-
lection in the browser and hits a keyboard shortcut, Fusion
should copy that selection into the widget’s input text box,
which triggers it to render the equation in its output dis-
play. Then Fusion should pop up the widget directly below
the user’s current cursor. To facilitate this programming
process, Fusion includes a code editor, visual element se-
lectors, helper code snippet generators, and test harnesses.

(d) She opens her original ShareLaTeX webpage and uses Fu-
sion to embed that widget into it as an iframe. Now she can
highlight any LaTeX within ShareLaTeX and instantly see
a pop-up rendered preview of it. (Note that her widget is
not specifically tied to ShareLaTeX; she can also embed it
into other pages to achieve similar functionality on there.)

(e) She creates a unique URL to share her prototype app with
anyone who has the Fusion browser extension installed.

Using Fusion, Alice completes a functional prototype of her
inline equation preview feature by finding an existing web
app that implements a major part of her desired functionality
(Interactive LaTeX Editor) and writing JavaScript glue code
to “fuse” it to ShareLaTeX (Figure 1). She did not need ac-
cess to the codebases or hosting servers of either web app.

If Alice did not have Fusion, then she would have needed
to: 1) set up a full-stack web development environment for
the ShareLaTeX project, 2) find and install libraries for web-
based LaTeX rendering, 3) set up a UI widget library for dis-
playing inline pop-ups, and 4) integrate all of that code into
the ShareLaTeX codebase, which is itself likely tangled in a
jumble of dependencies. (Note that Alice would not be able
to use traditional web mashup tools here since what she wants
to mash up is UI functionality from those two websites, not

data streams from APIs.) Since Alice is a UX designer and
not a software developer, this barrier to getting started may be
too immense, so she may instead resort to lower-fidelity pro-
totypes such as paper or wireframes. However, she wants her
test users to be able to write their own real LaTeX code and
feel the live experience of seeing pop-up equation previews,
so she wants to create a higher-fidelity web app prototype.

The potential significance of Fusion lies in its ability to lower
the barriers to prototyping web applications by letting peo-
ple use examples they find on the web not only as inspira-
tion but rather directly as programmable widgets that they
can manipulate within a domain-specific IDE. It enables any-
one with basic JavaScript skills (e.g., researchers or tech-
focused UX designers such as Alice) to create works-like pro-
totypes by borrowing functionality from existing websites.
The key technical contribution that underpins Fusion is a
novel approach to extracting components from existing web-
pages and turning them into self-contained widgets that en-
capsulate both UI functionality and state. These widgets can
then be embedded into other webpages in flexible ways.

We demonstrate the generality and versatility of our approach
via an informal case study where we used Fusion to build
seven web UI mashups in domains such as programming
tools, data science, web design, and collaborative work (Fig-
ure 7). Our mashups include emulating the Blueprint [15]
system for integrating inline search into a web IDE, extending
the p5.js IDE for Processing [6] with real-time collaborative
editing, and integrating Python Tutor [23] code visualizations
into static tutorials. These UI mashups each took less than 15
lines of JavaScript glue code to create with Fusion.

The contributions of this paper are:

• A novel technique for opportunistic web prototyping by
creating UI mashups out of existing unmodified webpages.

• Fusion, a web UI mashup system using direct manipula-
tion, iframe-based transclusion, and JavaScript glue code.

RELATED WORK

Mashup Creation Systems
One major family of related work comprises tools that help
people create web mashups. A mashup is “a web application
that takes information from one or more sources and presents
it in a new way or with a unique layout” [33]. Program-
mers create mashups by writing code to call web service APIs
(e.g., Google Maps, Twitter) or to scrape structured data from
webpages (e.g., Craigslist, Wikipedia). Researchers have at-
tempted to lower these creation barriers by letting users make
mashups with direct manipulation and spreadsheet-like UIs.

For instance, systems such as Marmite [39], MashMaker [21],
and Vegemite [30] let users select webpage elements to parse
and export into spreadsheets; users can then pipe that struc-
tured data to pre-made visualizations such as maps or use
it to trigger further actions such as filling out web forms.
d.mix [25] allows users to visually select elements to sam-
ple from selected webpages (e.g., Flickr) that have been aug-
mented with manually-written site-to-service maps; the sys-
tem generates the corresponding web service API calls, which
users can then paste onto a wiki page to see mashed-up data
that update live. Gneiss [17] lets users create web applica-
tions using a spreadsheet and GUI interface builder connected
to web service API calls. C3W [22] lets users extract form in-
put elements from webpages and connect them together using
a spreadsheet-like interface to create interactive data views.

Our work differs from all prior web mashup systems in a
fundamental way: Rather than helping people mash up web-
based data sources to create aggregate interactive views of
data, Fusion is designed to help programmers mash up UI
functionality from existing webpages in order to prototype
interactive experiences such as the example in Figure 1. To
this end, Fusion provides affordances for capturing UI ele-
ments and events rather for obtaining and parsing data. Also,
instead of providing a code-free end-user development en-
vironment, Fusion lets users write arbitrary JavaScript code.
This design decision has the advantage of greater expressive-
ness but at the expense of higher barriers to entry: Fusion’s
users must still know how to write basic JavaScript.

Beyond web mashups, researchers have also developed tech-
niques for altering the behavior of desktop GUI apps and
for creating desktop UI mashups without requiring access to
their source code. These techniques can operate at the pixel
level (e.g., Prefab [19], WinCuts [38]), window manager level
(e.g., UI Façades [37]), or UI toolkit level (e.g., Scotty [20]).
Fusion continues the spirit of these techniques by operating at
the web’s DOM level. It benefits from the standardization of
DOM events and layout structure, along with the abundance
of free examples to draw upon when creating UI mashups.

Webpage Automation Tools
Another class of related work includes tools that automate
user actions on webpages. Browser extensions such as
Chickenfoot [14] and Greasemonkey [35] allow programmers
to write JavaScript automation code within existing web-
pages. Demonstration-based tools such as ActionShot [29],

CoScripter [28] (formerly Koala [31]), and Selenium [10] al-
low users to record a sequence of actions, which are automat-
ically turned into reusable scripts. These tools are similar to
Fusion in that they provide convenient ways to create scripts
that run directly on existing webpages. However, they were
originally designed for purposes such as web automation and
testing, not for prototyping web UI mashups.

Reusable Web Components
The Webstrates platform [26] allows programmers to create
self-contained components using standard web technologies
and then combine them in flexible ways with real-time syn-
chronization. Fusion was inspired by three major ideas from
Webstrates: a) using iframes to implement transclusion (i.e.,
including a live copy of one webpage within another), b) stor-
ing user-written JavaScript alongside page contents (as shown
in the Codestrates [36] follow-up system), and c) letting user-
written code manipulate DOM elements across iframes. Fu-
sion differs in a fundamental way because it is meant to be
used to extract elements from existing unmodified webpages
and turn them into reusable components without requiring
any server-side support. In contrast, users of the Webstrates
platform must create their own components from scratch (or
fork ones that others have made) using a dedicated Webstrates
server and accompanying JavaScript client library.

More distantly related to Fusion are tools that help users
copy-and-paste static content from webpages. Products such
as Evernote and Microsoft OneNote allow users to extract
components from existing webpages and paste them into dig-
ital notebooks with their look-and-feel preserved. Research
platforms such as Clui [34] extend these ideas by coupling
invisible metadata (e.g., a person’s contact information) with
webpage elements, which allows richer semantic data to be
transferred between pages via drag-and-drop. These systems
only support robust copying of web data whereas Fusion al-
lows websites to be connected live via user-written code.

Finally, a more distant predecessor that inspired Fusion is
HyperCard [27], a pre-web hypermedia system where each
card is a self-contained editable component with both visual
elements and runnable code. Cards can be joined into stacks
to create custom apps. Fusion lets users snip parts out of
existing pages on the web to turn them into self-contained
HyperCard-like “web cards” which can be “stacked” (i.e.,
iframe-embedded) with other components to create web apps.

FUSION SYSTEM DESIGN AND IMPLEMENTATION
We designed Fusion to be used during prototyping when a de-
veloper wants to augment an existing web application (which
we call the host) with new functionality. Instead of writing
all of that code from scratch, they browse the web to find the
desired functionality on another website and use Fusion to
extract it into a self-contained widget. Then they write a few
lines of glue code to “fuse” that widget into the host webpage.

Fusion is implemented as a Chrome browser extension and
accompanying client-side web application with ∼ 1, 900 lines
of JavaScript code. It imports jQuery and jQuery UI to ease
element selection and widget creation. It does not require a
server or backend; all work is done in the user’s browser.

Workflow: Creating UI Mashups from Existing Webpages
Fusion allows users to create self-contained widgets from ex-
isting webpages and use them as components on other pages.
There is a four-step workflow for creating these UI mashups:

1. Create a self-contained widget by extracting UI elements
from any existing webpage.

2. Program the widget by writing and testing JavaScript code
using the Fusion Editor, a scaffolded coding environment.

3. Embed the widget into a host webpage to create a mashup.

4. Share the resulting mashup with a self-contained URL.

This workflow does not require any special privileged access
to the widget or host websites; everything is done client-side
within the user’s browser using the Fusion Chrome extension.

We now illustrate these steps using the LaTeX live preview
example from Figure 1.

Step 1: Create a Widget from an Existing Webpage
The first step is to find a desirable webpage that the user wants
to borrow functionality from. When they are on the desired
page they can bookmark the webpage URL into Fusion’s lo-
cal storage and tailor it with direct manipulation (Figure 2).

Tailoring means that the user selects only elements of interest
on the page, and excludes all the others, so that they can turn
it into a self-contained widget with a more focused UI when it
is inserted into the host webpage. For example, if we want to
make a LaTeX equation preview widget from an existing web
app, we may be interested only in its equation input field and
LaTeX preview pane. All the other elements (buttons, text
descriptions, navigation, advertisements, etc.) are irrelevant.

To select and remove UI elements from a webpage, the user
loads the Fusion extension in Chrome and clicks the “Cre-
ate Widget” button. This activates a visual element selection
tool. Upon activation, the user can hover over any visible
page element, and a gray translucency layer will appear over
it, indicating a selection. They can click it to select this part
to include in the widget, and repeat for other elements. If they
hover on elements with the Alt/Option key pressed, that layer
will turn red to indicate an exclusionary selection; clicking it
will exclude the highlighted elements from the widget.

Note that Fusion does not delete excluded elements, since the
webpage’s functionality may depend on the structure of the
DOM and elements inside of it. Instead, to be minimally
invasive, it hides elements using CSS display: none.
When the user is satisfied with the selection they can click
the “Done” button to complete the widget. Fusion will save
the DOM elements to include or exclude (in the form of CSS
selectors) along with the page’s URL.

Step 2: Program the Widget in the Fusion Code Editor
After creating a widget from an existing webpage (Step 1),
the next step is to write JavaScript “glue code” to interface
with host webpages. In our LaTeX previewing example, we
want to allow users to highlight a line of LaTeX in any web-
based text editor (its host webpage) and see a live preview of
the rendered equation. Thus, we need to write glue code that:

Figure 2: To create a widget from an existing LaTeX rendering web app
[32] (top), use Fusion’s visual selector to choose both its text input pane
(a) and rendered LaTeX output pane (b), which both get highlighted.
The resulting extracted widget (bottom) shows only those two panes; all
other page elements are hidden but still exist in the DOM so that the
original web app can still function.

1. Grabs the currently-highlighted text from the host webpage
when a keyboard shortcut is activated.

2. Copies the highlighted text into the widget’s equation input
field (Figure 2a). This automatically triggers the widget to
render a LaTeX preview in the bottom pane (Figure 2b).

3. Pop up the rendered LaTeX preview directly next to the
highlighted text in the host webpage.

Since Chrome extensions have access to the JavaScript exe-
cution context of all webpages in the browser, the user can
in theory write raw JavaScript code to implement this func-
tionality. However, this process can be tedious, so to make
it easier in practice, we created a web application called the
Fusion Editor to provide the necessary scaffolding (Figure 3).

To program a widget in the Fusion Editor, the user first opens
an extracted widget they saved from Step 1, which will load it
as an iframe in the left pane (Figure 3a). Then they give that
widget a name, description, and specify a type, which deter-
mines how it should be positioned on the host webpage when
it gets embedded in Step 3 (Figure 6). Fusion supports three
types of widget embeddings: pop-up, inline, and sidebar.

Pop-up: This type of widget is initially hidden but is activated
with a shortcut key to pop up at a given location on the host
webpage. This is useful for small dialogs such as our LaTeX
preview example (Figure 1). If the user chooses this widget
type, Fusion inserts the following starter code into the editor:
let widget = get_widget_document();
$Fusion(document).keypress((e) => {
if (e.ctrlKey && e.key == <key>) {

// write code to run when Ctrl+<key> is pressed
}

});

Figure 3: The Fusion Editor is a web application that allows users to (a) import a Fusion widget extracted from any existing webpage (Figure 2),
(b) give it a name and description, (c) select a widget embedding type, (d) insert pre-made helper snippets into the code editor, (e) select elements by
demonstration to generate additional helper code, (f) write arbitrary JavaScript code in an inline editor, and (g) test the widget in a harness (Figure 5).

The first line provides a handle to the DOM root of the wid-
get, and the second snippet defines a keyboard shortcut event
handler. $Fusion is a wrapper around a specific version of
jQuery and jQuery UI that Fusion uses so that it does not con-
flict with existing versions on the widget or host webpages.
This starter code is a convenient starting point for program-
ming the widget, but the user can freely replace it with other
kinds of event handlers such as mouse or scroll handlers.

Inline: This type of widget is always visible and embedded
inline directly into a specific DOM element on the host web-
page. (The user needs to specify the host element at the time
of embedding.) This is useful for times when one wants to
“graft” a widget directly onto a portion of the host webpage
to augment its functionality; for an example, see our inline
code visualizer case study in Figure 7e. Fusion inserts the
following starter code to provide convenient access to both
the widget and the element on the host webpage that it is be-
ing grafted onto, which is specified at embedding time:
let widget = get_widget_document();
let host_element = get_host_element();

Sidebar: This type of widget is inserted alongside the host
webpage in a fixed location. This is useful for augmenting a
page with an always-on sidebar pane, such as our code docu-
mentation case study in Figure 7c. Here Fusion inserts only
starter code to reference the widget itself:

let widget = get_widget_document();

Now that Fusion’s code editor has been seeded with starter
code, the user can write any desired JavaScript to implement
the widget’s functionality. This code will run as a Chrome
extension, so it has privileged access to the widget and host
webpages, as well as browser-provided information such as
the currently-highlighted text region.

All widget code runs once right after the widget gets embed-
ded into a host webpage (see Step 3), so it should perform
one-time initialization and define event handlers to respond
to events such as keyboard, mouse, and other inputs.

To assist the user in writing this widget glue code, we imple-
mented three scaffolding features into the Fusion Editor: a
select-by-demonstration visual element selector, a set of in-
teraction helper snippets, and a simulated test harness.

Select-by-Demonstration Visual Element Selector
In order to programmatically manipulate a widget’s UI, the
user must first write code to select elements of interest. In
theory they can dig into the widget’s source code to find this
information, but it is tedious to do so, especially if elements
are deeply nested or code is minified. To help the user find
relevant elements to operate on, we created a demonstration-
based selector tool within the Fusion Editor (Figure 3e).

This tool provides two demonstration modes: clicking and
typing. The user chooses a mode and clicks the “Start” but-
ton to begin a session. Then they can interact with the de-
sired webpage element to specify the one they want to select.
a) Clicking mode works in a similar way as the webpage el-
ement extraction tool from Step 1: The user hovers over an
element and sees a gray highlight and a button next to that
element. Clicking that button will generate JavaScript code
with a CSS selector for that element and insert that code into
the editor. b) In typing mode, the user needs to find an input
text box and type inside it. Fusion will capture this typing
event and again allow the user to insert JavaScript selector
code into the editor. We added the typing mode since we no-
ticed there is a common need to manipulate widget elements
that users can type into; we observed it is often easier to find
a unique CSS selector by capturing typing events than by di-
rectly clicking, since some input fields are occluded or nested
deep beneath boilerplate DOM elements from frameworks.

Figure 4: To generate selector code by demonstration, the user types into
any input field (a), and Fusion pops up two buttons next to it (b). The
“Selector” button inserts code for selecting that element, and the “Get
Value” button inserts code for grabbing its current contents (c). (Not
pictured is generating selector code by clicking on a DOM element.)

Figure 4 shows the element selector used in our LaTeX pre-
view example. The user activates typing mode and types
text into the LaTeX input box in the widget. Fusion detects
the CSS of that element and pops up two buttons next to it:
a) generate CSS selector code, b) generate code to grab its
contents. Clicking a button inserts that code into the editor.

Interaction Helper Snippets
It can be tedious to write raw JavaScript code to add desired
features to a widget, so we created a set of helper code snip-
pets to encapsulate typical interactions between widgets and
host webpages. We empirically designed these snippets from
our experiences of creating a diverse variety of UI mashups
using Fusion (see the Case Study section) and looking for
ways to abstract away common repetitive code.

Table 1 shows all helpers and how each one works. To use a
helper function, the user can choose it from a dropdown snip-
pet menu in the editor (Figure 3d), and Fusion inserts its code
into the editor so that it is ready for the user to customize.

For example, our LaTeX preview widget needs to grab the
currently-highlighted text in the browser so that it can copy
that text into its input box to render as LaTeX. To program
this feature, the user clicks the “Get highlighted text” snippet
from the menu, and this code gets inserted into the editor:
get_highlighted_text((text) => {
// do something with highlighted text

});

This code should go inside of an event handler, such as one
that responds to a keyboard shortcut to activate the LaTeX
preview. Note that many snippets (like this one) are asyn-
chronous with callbacks since the underlying browser exten-
sion and web APIs they depend on are asynchronous.

Simulated Test Harness
The Fusion Editor allows users to develop a widget in isola-
tion before embedding it into host webpages. This lets users
create more generic widgets that are not coupled to the spe-
cific nuances of individual hosts, although they can still write
code that is specific to each host. However, a problem that
arises here is that there is no way to test a widget in isolation
without first embedding it in a host. And once a widget is em-
bedded into a host, the host webpage’s complexity may make
testing and debugging more difficult. To address this prob-
lem, the Fusion Editor includes a simulated test harness with
a set of UI elements that are often found on host webpages.

Figure 5: The simulated test harness contains common HTML elements
on which to test widget interactions. (a) Here the user is testing that the
LaTeX preview widget pops up properly next to the Ace editor’s cursor.

When the user activates the test pane in the editor (Figure 5),
five HTML elements appear: an input textarea, an Ace code
editor, a clickable button, an empty div, and an HTML editor
where the user can define arbitrary HTML elements to test.

Fusion then runs the code that is currently in the editor. This
simulates embedding the widget into a simulated host web-
page that consists only of elements in the test pane and setting
up the proper event handlers.

The user can interact with the simulated host elements in the
test pane and the widget itself to test their code. They can use
built-in Chrome developer tools to inspect elements and print
debugging output to the console. Figure 5 shows a test session
in our LaTeX preview example, where the user is testing that
widget pops up at the location of the Ace editor’s cursor.

When they are finished coding and testing, they can save the
widget, and it is now ready to be embedded into real hosts.

Here is the final glue code for our LaTeX preview widget:
1 let widget = get_widget_document();
2 $Fusion(document).keypress((e) => {
3 if (e.ctrlKey && e.key == ’j’) {
4 let input = widget.find(’#mytextarea’);
5 get_highlighted_text((text) => {
6 input.val(text);
7 show_widget_on_text_selection();
8 });
9 }
10 });

The majority of these ten lines can be generated from helper
snippets. However, the user must properly customize them
and then test the widget in the simulated harness.

ID Helper name Generates code to ... Used in Case
Studies

A Get widget document root return the DOM root for the widget iframe 1, 2, 3, 4, 5, 6, 7

B Get the embed host element return the user-selected element when inserting an inline widget 4, 5

C Get user-highlighted text extract the text that is currently highlighted in the browser and pass it to a user-defined callback
function.

1, 2, 3

D Show pop-up at mouse
location

display a pop-up widget at the current position of the mouse. 2

E Show pop-up at text cursor display a pop-up widget at the position of the edit cursor in the focused text input area. 1

F Add keyboard shortcut monitor the user pressing a certain key combination 1, 2, 3

G Add mutation observer observe an element and call a user-defined callback function when that element changes 6

H Prompt to select an element ask the user to visually select an element for them to use in a user-defined callback function 6

I Send keys to input field simulate key typing to send text into an input field (e.g., textarea, Ace editor) 5

Table 1: Interaction helper snippets for common widget functions. Selecting one will insert a code snippet into Fusion’s code editor to help the user
implement the given functionality. Table 2 summarizes the case studies that used each of these snippets.

Step 3: Embed the Fusion Widget into a Host Webpage
Once a widget has been created, programmed, and saved into
Fusion’s browser storage, it is ready to be embedded into any
host webpage to create a mashup that combines their respec-
tive features. In theory a widget can be embedded within any
webpage, but in practice it makes sense to only embed it into
webpages that would directly benefit from that widget’s fea-
tures. For instance, the LaTeX live preview widget does not
make sense to embed into a photo sharing website.

The user embeds a widget into the browser’s current webpage
by selecting it from a menu. This will transclude [26] it as an
iframe within the host webpage’s DOM. Depending on the
widget’s type, it will be inserted in different ways, as shown
in Figure 6. Pop-up widgets are inserted as an invisible iframe
and appear only when glue code runs to make it pop up. Inline
widgets are inserted in a user-specified location on the host.
Fusion displays a visual selector (similar to Figure 2) to let
them choose the DOM element in the host to serve as the root
for the inline iframe embed. Sidebar widgets are inserted in a
pane beside the host webpage.

After the widget’s iframe finishes loading, Fusion runs the
glue code that the user wrote in the code editor when origi-
nally creating the widget. This sets up the proper initialization
code and event handlers to connect the widget to the host. In
our example, we embed the LaTeX preview widget as a pop-
up into ShareLaTeX, a collaborative LaTeX editor [11].

Since the host and widget webpages likely come from differ-
ent domains, how can JavaScript code interact with both the
host and widget? Modern browsers block this sort of cross-
domain scripting for security reasons. Since Fusion is meant
to be used in a prototyping context, we assume that UX de-
signers or prototypers trust the glue code. Thus, they should
start Chrome with a developer flag to disable cross-domain
checks, such as --disable-web-security to disable
the Same-Origin Policy for scripts. This is the most straight-
forward and convenient way to set up the browser for Fusion.

However, sometimes it is necessary to leave the same origin
policy mechanism enabled, perhaps when deploying to beta
testers online. In this case, accessing DOM elements from
one iframe to another will be prohibited by the browser, so

Figure 6: Three ways that widgets can be embedded into host webpages.

we created an alternative setup: We set up a proxy server to
work as middleware between users’ browsers and the servers
where the widget and host webpages reside. Users need to
go to a special URL and load both the widget and host pages
from there (they will both be iframes in this case). In this
way, all webpages (loaded as iframes) will be under the same
domain (the proxy’s domain), and scripts can freely interface
with all iframes without breaking the same origin policy.

Step 4: Share Fusion Mashups with a URL
Fusion provides an easy way to share the mashups that users
create by embedding widgets into host webpages. Fusion has
a “share” button that, when clicked, generates a URL consist-
ing of the host’s URL along with a query string containing a
full serialized copy of the widget. This includes the widget’s
name, description, type, base URL, selected CSS elements,
and JavaScript glue code written in the Fusion Editor. This
URL can be shared with others or run through a shortener.

If someone has the Fusion Chrome extension installed, when
they visit one of these URLs, it will bring them to the host
page and embed the widget whose data is fully encapsu-
lated in the URL itself. This mechanism enables sharing of
mashups without requiring a hosting server. One concern is
that URLs may limit the size of widgets that can be shared
this way. However, our case study (next section) shows that

in practice, a wide array of useful widgets can be written in
less than 15 lines of JavaScript code, which easily fits within
the 2MB URL length limits of modern browsers [1].

DISCUSSION: SYSTEM SCOPE AND LIMITATIONS
We envision Fusion as a medium-fidelity web prototyping
tool for use when working in an opportunistic manner, which
“emphasizes speed and ease of development over code ro-
bustness and maintainability” [16, 24]. It is higher fidelity
than non-code-based prototyping tools such as Balsamiq [2],
InVision [5], and Sketch [12] since it is able to create func-
tional web apps. However, Fusion is lower fidelity than man-
ually coding up the desired features from scratch, so it is not
meant to be used to create production-scale finished products.

Fusion works off the premise that a developer can find some
website that implements part of their desired functionality
and turn that into a widget to fuse into their host webpage.
This link between a widget and its host is often feasible due
to three properties of web apps: 1) Useful web functional-
ity is often bound to state changes of DOM elements, which
JavaScript can detect, 2) third-party glue code can attach ex-
tra event handlers to existing elements without disturbing the
original intended functionality of the apps, and 3) assum-
ing cross-domain issues are handled (see Step 3: Embed),
JavaScript can freely manipulate the UIs of multiple web apps
embedded as iframes as though they were a single unified
app. Thus, Fusion fails if the developer cannot find a relevant
webpage to turn into a widget, if that page’s owner disallows
iframe embedding, or if they cannot discover the relevant UI
elements and event handlers to put into their glue code (which
can be challenging in complex web apps like Google Docs).

Fusion is not an end-user development environment; it tar-
gets users who have some programming background, such
as web developers, technical UX designers, and researchers.
As our case studies show, it is possible to create a variety
of Fusion mashups with only a few lines of code (see next
section). However, this still requires users to know how to
write JavaScript and understand the concepts of event han-
dling, callbacks, and DOM APIs. The Fusion Editor has scaf-
folding to make it easier to write and test common kinds of
glue code. But that scaffolding cannot cover all possible use
cases. Thus, users must still write their own glue code, which
presents some barrier to entry. We originally designed Fu-
sion as a code-free visual environment but quickly brushed up
against expressiveness limitations. Thus, we opted for a lim-
ited coding environment with domain-specific scaffolding.

Fusion does not make attempts to generalize user intent or
selections, in contrast to programming-by-demonstration sys-
tems for scripting web browsing [28, 29, 31]. For instance, it
saves the literal CSS paths of UI elements that the user selects
while creating and programming widgets; if those webpages
change in layout in the future, then those selectors may break.

Finally, Fusion is a UI-centric mashup tool, so it is not well-
suited for deeper integrations between web apps that require,
say, manipulating a shared backend or data store that is not
exposed in the UI. In those cases, the user must manually
write the backend code to implement the desired integration.

CASE STUDY OF BUILDING FUSION MASHUPS
What kinds of web app prototypes can feasibly be built with
Fusion? How much effort does it take to implement them?
How does Fusion compare with alternative approaches to cre-
ating these sorts of web app mashups? To investigate these
questions, we performed an informal case study by building
seven Fusion mashups and reporting on our experiences.

First we summarize the seven app prototypes that we built:

Live Inline Preview of LaTeX Equations
This is the running example that we used throughout this pa-
per. When editing LaTeX documents, it is helpful to see an
inline preview of equations to facilitate debugging. However,
collaborative editors such as ShareLaTeX do not have this
feature; the user must wait for the entire document to recom-
pile and then navigate and zoom to find their equation of in-
terest. To implement this feature, we found a simple web app
where the user types in a LaTeX equation and it shows a ren-
dered version (Figure 2). We created a pop-up widget from
it and wrote 10 lines of glue code to have it pop up when-
ever the user makes a text selection within the Ace editor in
ShareLaTeX. Figure 7a shows our final prototype.

Within-IDE Code and Docs Search (emulating Blueprint [15])
Blueprint [15] demonstrated the utility of integrating inline
search for code snippets and documentation into an IDE. To
emulate basic parts of its functionality, we prototyped two
extensions to Repl.it [8], a web-based IDE.

Figure 7b shows how we created a pop-up widget from
searchcode [9], a popular code search engine. In a similar
way as the LaTeX equation previewer, the user can highlight
any string in the IDE and use a shortcut key to search for rele-
vant code snippets on the web where that string appears. This
widget is useful for quickly finding usage examples of how a
particular function, class, or method is used in the wild.

Figure 7c shows how we embedded the official Python docu-
mentation [7] as an always-on sidebar widget to the right of
the IDE. When the user highlights a piece of code in the IDE,
it will send that code to the search box in the Python docs
webpage and click the search button so that it brings the user
to the documentation for that code. This is useful for quickly
looking up the definitions of standard library APIs. We chose
a sidebar widget format here to give the viewer more space,
since documentation pages are often longer and more exten-
sive than individual code snippets.

In-Browser Data Science Environment (replicating DS.js [40])
DS.js [40] is a web-based data science environment that con-
tains an inline JavaScript code editor, data manipulation API,
and common data visualizations. It was originally imple-
mented as a specialized bookmarklet that injected its editor
UI into existing webpages such as Wikipedia. We took the
editor component of DS.js and turned it into a Fusion widget.
This way, users can embed it into any webpage that contains
tabular data, and it will parse the data on the host page and
import it into the DS.js editor (Figure 7d). This fully repli-
cates DS.js’s embedding functionality using Fusion instead
of relying on its original bookmarklet-based code injector.

(a) Live inline previews of LaTeX equations (b) Within-IDE code search [15] (c) Within-IDE documentation search [15]

(d) In-browser data science environment [40] (e) Code visualization [23] in tutorial webpage (f) CSS restyler [4] for HTML table

Figure 7: Fusion mashups that we created for our case study. The red arrows point to the widgets that are embedded as iframes in the host webpage.
Note that the p5.js real-time collaborative IDE mashup is not shown since its embedded Firepad widget is invisible.

Enhancing Tutorials with Code Execution and Visualization
Programming tutorials often contain code examples. How-
ever, these are usually static webpages that do not provide a
way for learners to execute those code examples. To enhance
these tutorials, we created a widget out of Python Tutor [23],
a web-based code execution and run-time state visualization
website. Anyone with Fusion installed can embed this widget
inline below a block of code on any website, and Fusion will
copy that code into Python Tutor, click a button to trigger its
execution, and display the resulting step-by-step visualization
of its run-time state (Figure 7e). The user can edit that code
in the inline Python Tutor widget to experiment with variants.
This mashup saves the effort of copying-and-pasting tutorial
code into the Python Tutor website in separate browser tabs.

Adding a CSS Restyler to Existing Webpages
Designers who want to prototype CSS style adjustments on
webpages that they are developing either edit CSS files or
use the browser’s built-in developer tools. To find inspira-
tional ideas, they often turn to style picking apps on the web
that incorporate more advanced aspects of design theory. To
facilitate this process, we created a mashup that embeds a
CSS style picking web app [4] as a sidebar into any existing
host page (Figure 7f). This way, the designer can manipulate
styles in the widget and see them show up live on the host
page by automatically changing, say, the styles of an HTML
table. We wrote glue code to bind the selected table styles
in the widget with a trigger to dynamically change the CSS
of the host page. This interaction allows designers to exper-
iment with table styles in a more advanced style picking app
while seeing their results show up live on the host page.

Adding Real-Time Collaborative Editing to Web IDEs
Many web-based IDEs now exist, and some are coupled with
rich output modalities such as graphical canvases. For ex-
ample, p5.js is a web-based variant of the Processing envi-
ronment for programming visual designs [6]. However, these
IDEs usually do not support real-time collaborative editing.
We wanted to augment existing web IDEs with this feature so
that people can engage in remote pair programming. To do
so, we took the demo web app from Firepad [3], a collabora-
tive text editor like Google Docs, and turned it into a Fusion
widget. We hooked up this widget to the code editor compo-
nent of web IDEs such as p5.js so that textual changes get sent
bidirectionally. That way, when two (or more) users with this
widget installed visit the p5.js IDE webpage, any code that
they write will get sent through the Firepad widget and syn-
chronized with the code editor in their partner’s browser. The
unique aspect of this widget is that it remains invisible, since
we only need its text sync feature; in essence, we are using its
UI as an interface to a real-time synchronization backend.

Reflecting on Our Mashup-Building Experiences
Table 2 summarizes the seven mashups that we built, which
each took less than 15 lines of glue code (“LOC” column). It
took us less than 1 hour to complete the glue code for each,
but that was largely because we were already familiar with
Fusion’s API. The most challenging part of the process was
finding the right DOM elements to operate on and testing that
our event handlers were firing properly. During this process,
we iteratively refined the visual element selector and test har-
ness in the Fusion Editor (Figure 3) to facilitate these tasks.

Host Widget Widget Glue Code
ID Webpage Webpage Type LOC snippets
1 ShareLaTeX Equation Preview [32] Pop-up 10 A,C,E,F
2 Repl.it IDE SearchCode [9] Pop-up 12 A,C,D,F
3 Repl.it IDE Python Docs [7] Sidebar 11 A,C,F
4 Wikipedia DS.js [40] Inline 4 A,B
5 StackOverflow PythonTutor.com [23] Inline 4 A,B,I
6 HTML.com Table Style Picker [4] Sidebar 12 A,G,H
7 p5.js [6] IDE Firepad [3] Pop-up 13 A

Table 2: Summary of Fusion mashups that we created, along with lines
of code (LOC) and helper snippets (Table 1) used to help write that code.

We also iteratively refined our set of helper snippets (Table 1)
by noticing when we were writing similar code across differ-
ent mashups and finding ways to generalize those patterns.
However, we still needed to write a few lines of custom code
for each widget since not everything could be generalized.

In our experience, the power and fun of Fusion came from the
fact that we did not need to know how these web apps were
implemented under the hood or what their software depen-
dencies were; we only needed to come up with ways to mash
up their UIs to do what we wanted. With only a superficial
understanding of how these web apps work at the UI level,
we could combine them together in opportunistic ways [16,
24] to perform useful new tasks.

That said, choosing the proper webpages to turn into widgets
was critical for making these mashups work well in practice.
The target webpage needs to expose the desired functionality
in its UI and allow itself to be iframe-embedded into other
pages (which is true by default unless the creator disables it).
For our case study, we were either trying to replicate or embed
existing HCI systems (e.g., Blueprint [15], DS.js [40], Python
Tutor [23]), or create mashups in domains we were familiar
with (e.g., LaTeX writing, web design, programming). Thus,
we had a strong sense for which webpages to pick. However,
an open question that still remains is: How can we train new
users to choose the proper webpages for their mashups?

Zooming out, we believe an even bigger challenge to adopt-
ing Fusion is not necessarily writing the glue code but more
about understanding the scope of what kinds of apps are even
feasible to build with it. As its creators, we were very familiar
with the scope and limitations of Fusion (see prior Discussion
section). However, if we gave this system to brand new users
without any context, it would likely be hard for them to come
up with properly-scoped mashup ideas. To provide the nec-
essary scaffolding, we plan to turn our case studies into a live
example gallery (Figure 7) so that potential users can see the
breadth of what is possible to build and consult our glue code
as examples to adapt into their own mashups.

In sum, this informal case study helped us to refine Fusion’s
core features and demonstrate the range of mashups that are
possible to build with it. The next step is for us to develop
the instructional scaffolding and training materials required
for people to be able to adopt it in practice. Then we need to
perform a formal evaluation of Fusion on first-time users to
assess its learnability, expressiveness, and usability.

Comparing to Alternative Mashup Approaches
Finally, we reflect on the following question: What would we
need to do to create these mashups if we did not have Fusion?

The most time-consuming but robust way to create the
mashups in our case study is to manually integrate the under-
lying code of their host and widget websites. For example,
to embed Python Tutor into StackOverflow, one needs to in-
tegrate the Python Tutor editor and visualizer codebase into
the StackOverflow forum rendering codebase. This approach
requires having access to the code, dependencies, and build
environments of their web apps, which presents a high barrier
to entry. Even if one owns that code or acquires it as open-
source components, one must still set up the proper develop-
ment tools and provide hosting for the resulting mashups.

Another approach is to use browser automation tools such as
Chickenfoot [14], Greasemonkey [35], or Selenium [10] to
create these mashups. One can even write code directly into
the browser’s JavaScript console. While these tools can tech-
nically be used, they were not specially designed for creating
UI mashups. For instance, they do not provide convenient
means for hooking up widgets to their hosts across iframes,
which is a core part of making web UI mashups. In contrast,
Fusion is specifically designed with affordances for extracting
and connecting components across iframes. It also includes
a domain-specific coding environment (Figure 3) with scaf-
folding to create UI mashups end-to-end in a unified location.

Lastly, the rich lineage of data-centric mashup tools [17, 21,
22, 25, 30, 39] cannot be used to create the kinds of UI
mashups that Fusion is meant for, such as those in our case
study. Data-centric mashup tools require either a web ser-
vice backend to provide data APIs or structured data to scrape
from webpages. And the output of such tools is usually some
aggregated interactive view of data in a spreadsheet, HTML
table, or annotated map. In contrast, Fusion relies on binding
together UI actions from multiple webpages, and its output
consists of new user interactions derived from the UIs of the
widget and host webpages. Despite sharing the terminology
of “mashups,” these tools serve very different purposes.

CONCLUSION
In this paper, we introduced the idea of opportunistically pro-
totyping web apps by creating UI mashups. The key insights
that make our idea feasible is that web apps expose a wide
variety of useful functionality in their UIs and that iframe-
based transclusion [26] with small amounts of JavaScript glue
code can effectively bind together disparate web apps without
needing access to their underlying codebases or development
environments. To facilitate making web UI mashups entirely
client-side, we built a Chrome browser extension called Fu-
sion. Fusion points toward a future where web prototyping
becomes more accessible to a broader range of stakeholders
including UX designers, researchers, and students who may
not have deep knowledge of full-stack web programming.

ACKNOWLEDGMENTS
Thanks to Jonathan Edwards, Kandarp Khandwala, Alok
Mysore, and the UCSD Design Lab for their feedback.

REFERENCES
1. 2017. Maximum length for url in chrome browser.

https://stackoverflow.com/questions/15090220/
maximum-length-for-url-in-chrome-browser/
25383986#25383986. (2017).

2. 2018. Balsamiq. Rapid, effective and fun wireframing
software. https://balsamiq.com/. (2018).

3. 2018. Firepad: Open source collaborative code and text
editing. https://firepad.io/. (2018).

4. 2018. HTML Table Styler CSS Generator.
https://divtable.com/table-styler/. (2018).

5. 2018. InVision: Digital Product Design, Workflow &
Collaboration. https://www.invisionapp.com/.
(2018).

6. 2018. p5.js. https://p5js.org/. (2018).

7. 2018. Python 3.6.5 documentation.
https://docs.python.org/. (2018).

8. 2018. repl.it - Online REPL, Compiler & IDE.
https://repl.it/. (2018).

9. 2018. searchcode: Search over 20 billion lines of code
from 7,000,000 projects. https://searchcode.com/.
(2018).

10. 2018. Selenium - Web Browser Automation.
https://www.seleniumhq.org/. (2018).

11. 2018. ShareLaTeX: LaTeX, Evolved The easy to use,
online, collaborative LaTeX editor.
https://www.sharelatex.com/. (2018).

12. 2018. Sketch - The digital design toolkit.
https://www.sketchapp.com/. (2018).

13. Raphaël Benitte, Sacha Greif, and Michael Rambeau.
2017. The State of JavaScript 2017.
https://stateofjs.com/. (2017).

14. Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C. Miller. 2005. Automation and
Customization of Rendered Web Pages. In Proceedings
of the 18th Annual ACM Symposium on User Interface
Software and Technology (UIST ’05). ACM, New York,
NY, USA, 163–172. DOI:
http://dx.doi.org/10.1145/1095034.1095062

15. Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. 2010. Example-centric
Programming: Integrating Web Search into the
Development Environment. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). ACM, New York, NY, USA,
513–522. DOI:
http://dx.doi.org/10.1145/1753326.1753402

16. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two Studies of
Opportunistic Programming: Interleaving Web
Foraging, Learning, and Writing Code. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’09). ACM, New York, NY,
USA, 1589–1598. DOI:
http://dx.doi.org/10.1145/1518701.1518944

17. Kerry Shih-Ping Chang and Brad A. Myers. 2014.
Creating Interactive Web Data Applications with
Spreadsheets. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). ACM, New York, NY, USA, 87–96. DOI:
http://dx.doi.org/10.1145/2642918.2647371

18. Eric Clemmons. 2015. Javascript Fatigue.
https://medium.com/@ericclemmons/
javascript-fatigue-48d4011b6fc4. (2015).

19. Morgan Dixon and James Fogarty. 2010. Prefab:
Implementing Advanced Behaviors Using Pixel-based
Reverse Engineering of Interface Structure. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 1525–1534. DOI:
http://dx.doi.org/10.1145/1753326.1753554

20. James R. Eagan, Michel Beaudouin-Lafon, and
Wendy E. Mackay. 2011. Cracking the Cocoa Nut: User
Interface Programming at Runtime. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). ACM, New York,
NY, USA, 225–234. DOI:
http://dx.doi.org/10.1145/2047196.2047226

21. Rob Ennals and David Gay. 2007. User-friendly
Functional Programming for Web Mashups. In
Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’07).
ACM, New York, NY, USA, 223–234. DOI:
http://dx.doi.org/10.1145/1291151.1291187

22. Jun Fujima, Aran Lunzer, Kasper Hornbæk, and Yuzuru
Tanaka. 2004. Clip, Connect, Clone: Combining
Application Elements to Build Custom Interfaces for
Information Access. In Proceedings of the 17th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’04). ACM, New York, NY, USA,
175–184. DOI:
http://dx.doi.org/10.1145/1029632.1029664

23. Philip J. Guo. 2013. Online Python Tutor: Embeddable
Web-based Program Visualization for CS Education. In
Proceedings of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 579–584. DOI:
http://dx.doi.org/10.1145/2445196.2445368

24. Björn Hartmann, Scott Doorley, and Scott R. Klemmer.
2008. Hacking, Mashing, Gluing: Understanding
Opportunistic Design. IEEE Pervasive Computing 7, 3
(July 2008), 46–54. DOI:
http://dx.doi.org/10.1109/MPRV.2008.54

25. Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R.
Klemmer. 2007. Programming by a Sample: Rapidly
Creating Web Applications with D.Mix. In Proceedings
of the 20th Annual ACM Symposium on User Interface
Software and Technology (UIST ’07). ACM, New York,
NY, USA, 241–250. DOI:
http://dx.doi.org/10.1145/1294211.1294254

https://stackoverflow.com/questions/15090220/maximum-length-for-url-in-chrome-browser/25383986#25383986
https://stackoverflow.com/questions/15090220/maximum-length-for-url-in-chrome-browser/25383986#25383986
https://stackoverflow.com/questions/15090220/maximum-length-for-url-in-chrome-browser/25383986#25383986
https://balsamiq.com/
https://firepad.io/
https://divtable.com/table-styler/
https://www.invisionapp.com/
https://p5js.org/
https://docs.python.org/
https://repl.it/
https://searchcode.com/
https://www.seleniumhq.org/
https://www.sharelatex.com/
https://www.sketchapp.com/
https://stateofjs.com/
http://dx.doi.org/10.1145/1095034.1095062
http://dx.doi.org/10.1145/1753326.1753402
http://dx.doi.org/10.1145/1518701.1518944
http://dx.doi.org/10.1145/2642918.2647371
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4
http://dx.doi.org/10.1145/1753326.1753554
http://dx.doi.org/10.1145/2047196.2047226
http://dx.doi.org/10.1145/1291151.1291187
http://dx.doi.org/10.1145/1029632.1029664
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1109/MPRV.2008.54
http://dx.doi.org/10.1145/1294211.1294254

26. Clemens N. Klokmose, James R. Eagan, Siemen
Baader, Wendy Mackay, and Michel Beaudouin-Lafon.
2015. Webstrates: Shareable Dynamic Media. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ’15).
ACM, New York, NY, USA, 280–290. DOI:
http://dx.doi.org/10.1145/2807442.2807446

27. Matthew Lasar. 2012. 25 years of HyperCard—the
missing link to the Web.
https://arstechnica.com/gadgets/2012/05/
25-years-of-hypercard-the-missing-link-to-the-web/.
(2012).

28. Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter: Automating & Sharing How-to
Knowledge in the Enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08). ACM, New York, NY, USA,
1719–1728. DOI:
http://dx.doi.org/10.1145/1357054.1357323

29. Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and
Allen Cypher. 2010. Here’s What I Did: Sharing and
Reusing Web Activity with ActionShot. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY,
USA, 723–732. DOI:
http://dx.doi.org/10.1145/1753326.1753432

30. James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher,
and Tessa A. Lau. 2009. End-user Programming of
Mashups with Vegemite. In Proceedings of the 14th
International Conference on Intelligent User Interfaces
(IUI ’09). ACM, New York, NY, USA, 97–106. DOI:
http://dx.doi.org/10.1145/1502650.1502667

31. Greg Little, Tessa A. Lau, Allen Cypher, James Lin,
Eben M. Haber, and Eser Kandogan. 2007. Koala:
Capture, Share, Automate, Personalize Business
Processes on the Web. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’07). ACM, New York, NY, USA, 943–946. DOI:
http://dx.doi.org/10.1145/1240624.1240767

32. Paul Lutus. 2012. Interactive LaTeX Editor.
https://arachnoid.com/latex/. (2012).

33. Daniel Nations. 2016. What is a Mashup? Exploring
Web Mashups. https:
//www.lifewire.com/what-is-a-mashup-3486655.
(2016).

34. Hubert Pham, Justin Mazzola Paluska, Rob Miller, and
Steve Ward. 2012. Clui: A Platform for Handles to Rich
Objects. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 177–188.
DOI:http://dx.doi.org/10.1145/2380116.2380141

35. Mark Pilgrim. 2005. Greasemonkey Hacks: Tips & Tools
for Remixing the Web with Firefox (Hacks). O’Reilly
Media, Inc.

36. Roman Rädle, Midas Nouwens, Kristian Antonsen,
James R. Eagan, and Clemens N. Klokmose. 2017.
Codestrates: Literate Computing with Webstrates. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17).
ACM, New York, NY, USA, 715–725. DOI:
http://dx.doi.org/10.1145/3126594.3126642

37. Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips,
and Nicolas Roussel. 2006. User Interface FaçAdes:
Towards Fully Adaptable User Interfaces. In
Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology (UIST ’06).
ACM, New York, NY, USA, 309–318. DOI:
http://dx.doi.org/10.1145/1166253.1166301

38. Desney S. Tan, Brian Meyers, and Mary Czerwinski.
2004. WinCuts: Manipulating Arbitrary Window
Regions for More Effective Use of Screen Space. In CHI
’04 Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’04). ACM, New York, NY, USA,
1525–1528. DOI:
http://dx.doi.org/10.1145/985921.986106

39. Jeffrey Wong and Jason I. Hong. 2007. Making Mashups
with Marmite: Towards End-user Programming for the
Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’07). ACM,
New York, NY, USA, 1435–1444. DOI:
http://dx.doi.org/10.1145/1240624.1240842

40. Xiong Zhang and Philip J. Guo. 2017. DS.Js: Turn Any
Webpage into an Example-Centric Live Programming
Environment for Learning Data Science. In Proceedings
of the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST ’17). ACM, New York,
NY, USA, 691–702. DOI:
http://dx.doi.org/10.1145/3126594.3126663

http://dx.doi.org/10.1145/2807442.2807446
https://arstechnica.com/gadgets/2012/05/25-years-of-hypercard-the-missing-link-to-the-web/
https://arstechnica.com/gadgets/2012/05/25-years-of-hypercard-the-missing-link-to-the-web/
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.1145/1753326.1753432
http://dx.doi.org/10.1145/1502650.1502667
http://dx.doi.org/10.1145/1240624.1240767
https://arachnoid.com/latex/
https://www.lifewire.com/what-is-a-mashup-3486655
https://www.lifewire.com/what-is-a-mashup-3486655
http://dx.doi.org/10.1145/2380116.2380141
http://dx.doi.org/10.1145/3126594.3126642
http://dx.doi.org/10.1145/1166253.1166301
http://dx.doi.org/10.1145/985921.986106
http://dx.doi.org/10.1145/1240624.1240842
http://dx.doi.org/10.1145/3126594.3126663

	Introduction
	Related Work
	Mashup Creation Systems
	Webpage Automation Tools
	Reusable Web Components

	Fusion System Design and Implementation
	Workflow: Creating UI Mashups from Existing Webpages
	Step 1: Create a Widget from an Existing Webpage
	Step 2: Program the Widget in the Fusion Code Editor
	Select-by-Demonstration Visual Element Selector
	Interaction Helper Snippets
	Simulated Test Harness

	Step 3: Embed the Fusion Widget into a Host Webpage
	Step 4: Share Fusion Mashups with a URL

	Discussion: System Scope and Limitations
	Case Study of Building Fusion Mashups
	Live Inline Preview of LaTeX Equations
	Within-IDE Code and Docs Search (emulating Blueprint Brandt2010)
	In-Browser Data Science Environment (replicating DS.js ZhangUIST2017)
	Enhancing Tutorials with Code Execution and Visualization
	Adding a CSS Restyler to Existing Webpages
	Adding Real-Time Collaborative Editing to Web IDEs

	Reflecting on Our Mashup-Building Experiences
	Comparing to Alternative Mashup Approaches

	Conclusion
	Acknowledgments
	REFERENCES

