
HappyFace: Identifying and Predicting Frustrating
Obstacles for Learning Programming at Scale

Ian Drosos
NC State University
Raleigh, NC, USA
izdrosos@ncsu.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

Chris Parnin
NC State University
Raleigh, NC, USA
cjparnin@ncsu.edu

Abstract—Unnecessary obstacles limit learning in cognitively-
complex domains such as computer programming. With a lack of
appropriate feedback mechanisms, novice programmers can ex-
perience frustration and disengage from the learning experience.
In large-scale educational settings, the struggles of learners are
often invisible to the learning infrastructure and learners have
limited ability to seek help. In this paper, we perform a large-
scale collection of code snippets from an online learn-to-code
platform, Python Tutor, and collect a frustration rating through
a light-weight learner feedback mechanism. We then devise a
technique that can automatically identify sources of frustration
based on participants labeling their frustration levels. We found 3
factors that best predicted novice programmers’ frustration state:
syntax errors, using niche language features, and understanding
code with high complexity. Additionally, we found evidence that
we could predict sources of frustration. Based on these results,
we believe an embedded feedback mechanism can lead to future
intervention systems.

I. INTRODUCTION

Frustrating obstacles when coding [1] can cause a learner to
disconnect from the learning process and can even lower their
self efficacy. In massive open online courses (MOOCs) and
learn-to-code websites such as Python Tutor [2], frustration
can come from course difficulty, lack of support, lack of
computer literacy or self-teaching skills, and failed expecta-
tions [3]. When students cannot overcome these obstacles, they
often drop out [4], with less than 15% of learners completing
MOOCs [5]. There is a need to discover these frustrations felt
by learners so that tools which provide interventions to assist
learners can be more effective and targeted.

Learners from around the world are now writing, running,
and debugging code from introductory courses or may be
trying to debug more advanced coding assignments. While
coding, learners inevitably run into frustrating events rang-
ing from syntax errors to misunderstanding features of the
programming language. While these frustrating events do not
always have a negative impact on the learner [6], frustrations
caused by cognitive challenges can affect user retention [7]
and limit the effectiveness of the platforms the learners are
using. Specifically, in large-scale learning systems, traditional
mechanisms for overcoming learning difficulties, such as peer
feedback and tutor instruction, do not scale well. This results
in instructors having limited context about the problems being

solved, knowledge about the current mastery levels of a
learner, and insight into a learner’s potential misconceptions.

Several platforms have tried to help novice programmers at
scale. For example, HelpMeOut suggests solutions to errors
it collected from a crowd of programmers who had a similar
error in order to help inexperienced programmers understand
and correct errors [8]. While crowd-based strategies can be
effective for resolving certain types of obstacles, maintaining
incentives and quality of crowd-based systems can be difficult,
especially for rapidly evolving technologies and for obstacles
beyond interpreting an error message. Intelligent tutoring
systems have been used to automatically assist learners by pro-
viding adaptive and individualized feedback about a learner’s
work. In particular, JavaTutor has been used to predict how a
learner’s affect (i.e., emotion) changes in response to questions
from the automated tutor [9]. Unfortunately, obtaining affect
data required for such prediction requires the use of physical
sensors. For MOOCs, the population of learners is large and
diverse, so that it would be ideal to not rely on each student
having a webcam, Kinect, or any other sensor properly set up.

In this paper we present HappyFace, a system that allows
a novice programmer to annotate their learning experience.
HappyFace then automatically infers what type of learning
obstacle they may be encountering. Even with low participa-
tion rates common in MOOC-like online settings, HappyFace
can automatically discover types of frustrating experiences and
predict categories of learner frustration. Our long-term goal is
to support data-driven discovery of frustrating aspects of pro-
gramming languages, assignments, and tools in a lightweight
and unobstrusive manner. HappyFace has four components:
• Affect Survey. Embedded in a host system, HappyFace

collects the current affect of a learner when the learner
selects the face icon that best represents their current mood.

• Feature Extraction. HappyFace automatically analyzes the
code the learner was working on when they reported their
current affect. This step is done via static program analysis
through the parsing of abstract syntax trees to extract
features, and stylometric analysis through the extraction of
features relating to the style of the code.

• Correlation. HappyFace correlates the extracted features
with the user’s affect vote to discover frustrating features.

• Prediction. HappyFace predicts the type of learning obsta-
cle a learner is facing when they report their affect.978-1-5386-0443-4/17/$31.00 c©2017 IEEE

In a 2.5-month online study, we found that many learners
were willing to provide feedback about their current emotional
state during a learning experience. We integrated HappyFace
into an existing learn-to-code website called Python Tutor [2].
Python Tutor lets users to write code inside their browser
and then visualize each execution step of their code, allowing
the user to better understand what is going on inside their
code. 2,385 Python users elected to use HappyFace during
their coding session, which represented 2.35% of all Python
Tutor users during the time span of the study. From learner
annotations we found that syntax errors, features that increase
code complexity, and niche language features, such as the
Python Slice Operator and Globals, correlated with frustration
in learners. An odds ratio analysis found that syntax and
indentation errors doubled the odds of learner frustration, and
each occurrence of boolean comparators, library imports, and
use of Globals increased the odds of frustration by 1.5 to 1.7
times. In a follow-up study, we found that annotations could
be used to help identify and predict frustrating experiences.
Using logistic regression, we predicted when learners did not
understand their code with 80% precision.

Despite HappyFace’s affect survey being a simple 5-choice
survey (Figure 2), the data we collected yielded an abundance
of useful information on learner frustration without using
more complex or invasive methods of data collection such as
physical sensors. We were able to use this data to discover fea-
tures causing frustration with only lightweight static program
analysis. Based on these results, we believe our approach can
be used to support future learning interventions at scale.

Fig. 1: Code example from a frustrated learner on Python Tutor with
the HappyFace 5-choice affect survey shown below the code editor.

II. MOTIVATING EXAMPLE

For example, take a professor who is teaching an introduc-
tory programming MOOC and has just given the 1000+ stu-
dents in the course a new programming assignment involving
splitting strings and printing results. Since this is an introduc-
tory course, many of these students are new to programming
and thus inevitably run into various issues completing the

assignment. In previous semesters, the professor had to ask the
TAs to obtain sources of frustration felt by the students and
causes of errors in student code. The TAs attempted to obtain
this information through interviews of the students via forum
threads, but this requires a lot of manual effort. Also, while
the TAs are able to find some categories of frustration, most
of the students do not yet have the knowledge or experience
to accurately convey the root causes of problems they faced.

Instead, the professor has deployed HappyFace this semester
so students can report exactly when they are frustrated during
an assignment. One student, Ada, is using Python Tutor to
code up the assignment but when she executes her program
she receives a SyntaxError (Fig 1). Ada grows frustrated as
she does not understand why she is getting this error since she
is not aware of the new syntactic rules in version 3 of Python.

When she encounters this error, Ada clicks a face icon that
represents frustration on the HappyFace survey, located under
the code editor. HappyFace can then analyze her code and
report valuable information to the professor that shows some
of the students are frustrated when dealing with SyntaxErrors.
The professor can now adjust the lecture to include strategies
to solving this error, alleviating any unnecessary frustration
that may be felt by students like Ada attempting similar work.

III. THE HAPPYFACE SYSTEM

Fig. 2: HappyFace affect survey with 5 choice buttons

HappyFace allows a learner to annotate their learning ex-
perience. We embed a survey to analyze these annotations by
creating an abstract syntax tree (AST) from code snippets and
process the code for language features and other stylometric
features, such as types of whitespace, code complexity, and the
standard deviation of line length. These scores are run through
randomized logistic regression (RLR) for feature selection to
identify potentially frustrating learning experiences. RLR finds
features that are often selected over several runs of randomized
“subsampling of the training data and fitting a L1-penalized
LogisticRegression model” [10]. These frequently selected
features can be considered good candidates for correlation
with frustration. HappyFace is then extended to allow for
participants to select additional reasons for frustration. Using
our code metrics, we then predict the problem categories a
code snippet will fall into.

A. Design Goals

To define HappyFace’s design goals, we examined multiple
feedback surveys in use today. Further, we tested a few pro-
totype designs to assess which style of survey implementation
would elicit the most responses from online learners. Lastly,
in order to gather and analyze data provided by learners,

HappyFace must be adopted by learning frameworks. Based
on these observations, we adhered to these design goals:
Brief and Minimalist: To encourage participation, the design
must be brief and minimalist. If the survey clashes with the
learning platform it is embedded in, that will serve as an
unwanted distraction to the learning process. Thus, HappyFace
is designed to be as brief as possible so a learner can use
the platform as intended. HappyFace is also designed to be
minimal. It is an inline survey that takes only the amount
of visual space it requires. When a learner decides to cast a
frustration vote, any further parts of the survey expand to allow
the learner to provide more information and then collapse
once a learner has finished answering the survey. This allows
HappyFace to provide a feedback tool that minimally disrupts
the appearance of the learning platform it is embedded in and
allows learners to quickly return to their learning workflow.

The first prototype of HappyFace included a slider that
manipulated the color and smile of a smiley face above the
slider. When the user neared the maximum frustration rating
the face became red and had a frown, when the user neared
the minimum frustration rating the face became green and
had a smile. This first prototype also had a free-form text area
to allow the learner to explain why they were or were not
frustrated in their own words. Once the frustration score was
selected, the user could then press a button to submit their
frustration score, frustration reason, and code snippet. This
prototype survey was hosted on Python Tutor for a week but
did not receive a sufficient amount of responses. We attribute
this to the fact that it took multiple steps to answer the
survey, potentially adding additional frustration to an already
frustrated learner. Thus, we sought to redesign the interface.

To implement this design goal, we drew inspiration from the
work of Bieri et al. on the self-assessment of pain severity [11].
The authors asked children to look at a set of faces depicting
different levels of pain and order them from no pain to the
most pain. The aim of the authors was to create a scale with
“minimal cognitive demands”. The authors found that their
face-based pain scale required little direction of the child as
they are simply told to point to the face that matches the
amount of pain they feel. The quick and simple face-based
pain scale showed that it could be used reliably and validly
for the self-reporting of pain in children.

Thus, the HappyFace survey became a simple five button
design that took inspiration from the pain scales used by
medical professionals (Fig 2). The five buttons had faces with
a range of emotions, from happy to angry. The only instruction
provided to the learner is text saying “I’m feeling...”, implying
to the learner they should select the face that best represents
their current feeling. Self-reporting of frustration on Happy-
Face is also very quick: a one-button click on the face that most
represents the learner’s frustration is all that is needed from
the learner. Once a learner clicks a face, HappyFace collects
the rest of the relevant data automatically.
Problem and Language Agnostic: To ease adoption, the
design of the system must be able to accommodate the many
different programming problems as well as programming

TABLE I: Extracted Features

Feature Notes
Frustration Score Given by user
AST Nodes The Python standard library “ast” [15] [16] detailing

the abstract syntax grammar of the code. Each node
occurrence is collected

Stylometric
Features

Occurrences of reserved Python keywords (keyword
and builtin [17] [18] libraries), line count, average
length of lines, standard deviation and variance of
line length, white space count, types of white space
used, underscore usage, comment count, count of
lines starting with comment or tab character, empty
lines. Derived from [13] Tables 2, 3, and 4

Wordgrams Wordgrams extracted using regex to detect com-
monly used words in the code

Full Details For more detailed information on features see
https://github.com/wddlz/HappyFaceInfo

languages that a learning platform may support. For example,
several approaches for automated feedback of student assign-
ments require that the problem be known ahead of time [9]
and that it is accompanied by set of test cases [12]. Further,
these techniques require heavier analysis, such as symbolic
execution, which can work appropriately on a few student
assignments, but may not scale well when needing to do an
analysis of millions of code snippets.

To implement this design goal, we drew inspiration from
the work of Caliskan-Islam et al. on code stylometry [13].
They used submissions to a Google Code Jam as a dataset,
extracted stylometric features from the code, and attempted to
de-anonymize programmers based on these features. Machine
learning methods were run against the extracted feature sets
and found that the author of a piece of source code could be
correctly attributed at high accuracy (>90%). This result gave
us confidence that properties extracted from the AST of the
code could provide sufficient features without a more complex
representation of problem state.

Thus, the analysis component of HappyFace was based on
light-weight static analysis of the AST, using the same features
as Caliskan-Islam et al. [13]. For example, some attributes,
such as very long and complex lines of code, could contribute
to frustration of the learner. This makes it important to detect
this “Long Method” smell, as it decreases the ability of the
learner to understand the given code [14]. The structure of
most languages contain similar features like if statements,
loops, and functions. Further, stylometric features, such as
average line length, are language-agnostic. Because of this,
HappyFace can be implemented for almost any language.

B. Implementation

1) Affect Survey: HappyFace has an inline survey that can
be embedded into a system to collect frustration data from its
users. The current prototype of HappyFace was implemented
on PythonTutor.com [19], a learn-to-code website. (Note that
HappyFace can be embedded into any learn-to-code website
or IDE.) A user can use the HappyFace survey during their
workflow on the website. In an extension of the affect survey,
the user is also presented with a choice of tags they can select
to better describe their vote in the form of a frustration class.

https://github.com/wddlz/HappyFaceInfo

TABLE II: Selection categories for annotating learner affect

Category Description
Happy
Categories

“I fixed an error”, “My output is right”, “My code
works”, “I understand this code”, “Other [user input
required]”

Frustrated
Categories

“I get an error”, “My output is wrong”, “Some code
is not running”, “I don’t understand this code”, “My
variable has the wrong value”, “My loop doesn’t
iterate correctly”, “If statement does not work”,
“Other [user input required]”

2) Data Collection: HappyFace was embedded on Python
Tutor’s visualize page under the code editor and “Visualize
Execution” button (Fig 1). While users of the site were
programming on this page they could select a face that most
represents their current affect. Once a face was selected,
HappyFace collects the code the user has written along with
the affect rating and stores the vote in a database for analysis.
The survey is always visible and allows for multiple votes
over the user’s entire coding process. For the extended survey,
after a user selects an affect they are presented with several
categories to optionally annotate their affect with. This data
is compiled in a database and extracted to a JSON file for
analysis.

3) Data-set Extraction: The compiled data is then pro-
cessed in Python for analysis. Each user vote is run through
a filter that removes invalid votes. Votes that are missing
data (frustration score), votes that were cast but missing code
snippets, and spam votes (a multitude of votes cast by the
same person in a short period of time) are removed.

4) Code Analysis: From the resulting data-set we process
the feedback by creating an abstract syntax tree (AST) from
code snippets attached to a frustration score. If an AST
cannot be parsed from a snippet, the error produced by the
compilation of code is caught and added as a feature. The
frequencies of AST features, such as Set nodes, Str nodes,
and If nodes, are compiled with the frustration score of the
feedback. The AST is traversed and each node type counted as
a feature. After AST features are extracted, the code snippet
is parsed for stylometric and word frequency features. These
extracted features are listed in Table I and include feature
name, such as AST nodes, along with a description of the
feature. The majority of stylometric features we chose to
extract are derived from Caliskan-Islam’s code features [13].

5) Extended Feedback: For a follow-up study, we extended
HappyFace to allow for annotation of the frustration level
reported by the learner. We presented the learner with several
categories where the learner may feel their frustration can be
placed. These categories were created after manually inspect-
ing code reported by frustrated users and hypothesizing the
issue faced by each. Also included is an “Other” category
that elicits a free-form response from the user. These free-
form responses can be used to tune categories presented to
the learners once common categories become apparent. A list
of these categories, separated into “Happy” and “Frustrated”,
are listed in Table II.

IV. ONLINE DEPLOYMENT STUDIES

We ran two online studies using HappyFace to gather learner
feedback and use this feedback to discover frustrating factors
in programming. We explored three research questions:

• RQ1: Are learners willing to provide feedback about their
current emotional state during a learning experience?

• RQ2: Can we identify features of code that are related
to frustration?

• RQ3: Can these features predict categories of problems
faced when programming?

A. Surveys

For this paper we ran two implementations of HappyFace to
gather frustration data from learners in two studies. The survey
used in our first study included the face vote (5-button Happy
to Frustrated face choices) and the extraction of the code
the participant is working on. After finding several features
that correlated with frustration we decided to run a follow-up
study to see if these code features can predict the categories
of the problems learners were facing. So, for the follow-up
study we extended HappyFace to included a second section
that allowed the participant to optionally select a problem
category (Table II) for the purpose of predicting user chosen
categories using the extracted features present in learner code.
For our two implementations of HappyFace we integrated our
survey with Python Tutor for 2.5 months for the first study
and 2 months for our follow-up study. Each survey collected
thousands of votes from learners using Python Tutor which
were then filtered down to extract usable data.

B. Participants

Any user of Python Tutor could self-report their frustration
level and, for the extended survey, annotate their frustration.
The Python Tutor user base was a compelling population
for discovering frustrating features of code since this user
base is likely to be: (1) learners who are new to a language
attempting to write small code samples and (2) learners using
the visualization features of Python Tutor to better understand
the code snippets they are working on. This is because
one major source of users on Python Tutor are hundreds
of thousands of learners taking introductory programming
courses on MOOCs from providers such as Coursera, edX,
and Udacity [2]. Since it is unlikely experts with full featured
IDEs and experience dealing with common frustrations of code
are using Python Tutor, we can attribute frustrations reported
through HappyFace to frustrations felt by learners due to
features of the code they are working with. Frustrations differ
between the coding frameworks being used as a fully featured
IDE may have features that eliminate common frustrations of
developers, as well as differing between the experience levels
of the users being frustrated. A less experienced programmer
will find certain features more frustrating than an experienced
developer who has discovered solutions to common frustrating
problems. Participants voluntarily responded to the HappyFace
survey without any prompts or monetary rewards.

C. Analysis

1) Data Cleaning: An initial 7,450 valid votes were re-
ceived for our first study. We then filtered out any reporting of
frustration that was done before the user had started writing
code, as we cannot extract code features without this data.
After this pruning, we had 1,013 votes with code in Python
2 and 797 votes with code in Python 3. The resultant data
contained 83 and 82 different AST node types, 1,025 and 805
word grams, and stylometric features as defined in Table I
for Python 2 and 3 respectively. Despite the syntactic rules of
both versions of Python being mostly similar, the design of
Python 3 changed some features already existing in Python
2 as well as added new features, creating incompatibilities
between the two versions. Because of these differences, we
needed to separate the analysis of Python 2 and 3 code.

2) System Refinement: After we ran our first study we ex-
tend HappyFace’s affect survey to take in an annotation by the
learner on why they are frustrated. Common reasons for frus-
tration. or non-frustration, are presented to the learner after a
face vote. These categories range from the (mis)understanding
of code to receiving or fixing of errors. Rather than correlate
frustrating features of code, the frustration annotations the
learner provides through the extended survey allows us to
predict the categories of frustration a learner will feel given
a particular set of code features. An initial 909 Python 2 and
1,304 Python 3 votes with code snippets were left after filtering
thousands of votes cast by learners for the second study.

V. DEPLOYMENT STUDY RESULTS

1) RQ1: Are learners willing to provide feedback about
their current emotional state during a learning experience?

Our first research question is to investigate learners’ will-
ingness to inform a system on their current level of frustration
while they are in the process of coding. Our goal was to make
a survey that could quickly be taken without much interruption
to the learner’s work flow. If we failed in this goal, learners
would be unlikely to give us feedback on their frustration
level, so a usable and streamlined survey was presented to
learners for their feedback. Further, creating a survey that
elicits feedback from the learner removes and necessity for
more complex ways to gather frustration (physical reactions,
typing characteristics, etc).

During the time period when we ran our first study (Apr 2 –
Jun 14, 2016), Python Tutor received 101,044 unique visitors
who executed Python 2 or 3 code. Of these visitors, 2,385
voted on the HappyFace affect survey and gave us frustration
values and code snippets. This represents a 2.36% participation
rate for Python learners on Python Tutor. Our affect survey
is meant to be unobtrusive below the coding interface and
was completely optional for Python Tutor users to participate,
with no reward offered. Despite the affect survey giving users
no extrinsic motivation to report their frustration, we received
enough data from participants for our analysis of frustrating
code features. This showed that learners were willing to give
us feedback on their current emotional state despite being deep
into the coding process and potentially being frustrated.

1 2 3 4 5

200

400

600

800
793

227
165 161

466

frustration level (1 lowest, 5 highest)

#
of

vo
te

s

Fig. 3: Frustration level distribution

2.36% of Python users on Python Tutor provided frus-
tration values and code snippets for analysis. This gave
us several thousand code snippets to analyze for features
related to frustration.

2) RQ2: Can we identify features of code that are related
to frustration?

One of our interests is in the correlation between features of
programming languages, in this case Python, with frustration
felt by learners. With learner frustration feedback along with
features of the code snippets provided through our feedback
mechanism we searched for supported features through ran-
domized logistic regression feature selection.

Features were run through randomized logistic regression
for discovery of supported features. For Python 2 we found
that use of Sets, Globals, Strs, Pow, Slices, and occurrences
of SyntaxErrors were selected from the 83 extracted AST
features. For Python 3 we found that use of Boolean compara-
tors (is not, !, and !=), import statements, with statements, If
statements, Load expressions, and occurrences of SyntaxEr-
rors were selected from the 82 extracted AST features. The
strongest correlating feature with frustration was SyntaxErrors.
For stylometric features, the average length of the lines of code
as well as the usage of Python keywords were found to be
supported, with average length having the strongest correlation
with frustration. While many wordgrams were selected, the
strongest correlations were already detected through AST and
stylometric features. The use of for, if, and other Python key-
words correlated stronger than any other selected wordgram.

One example of a frustrating feature is the use of global
variables. Python has idiosyncratic semantic rules for global
variables [20]: If a variable is assigned a value inside of a
function, it is considered a local variable unless the variable
is declared as global. If the global variable is only referenced
inside a function, this declaration is not needed. Not knowing
that globals sometimes need to be explicitly declared in
Python can cause frustration in learners when it violates their
expectation. While the goal of this rule may have been to
remove clutter caused by multiple global declarations, it also
inserted a frustrating obstacle for learners.

TABLE III: Odds Ratios for Frustrating Code Features

Python 2
Feature Odds Ratio
SyntaxError 2.28
Str 1.01
Pow 0.59
Slice 1.10
Global 1.60
averageLength 1.02
uniqueKeywords 1.04

Python 3
Feature Odds Ratio
SyntaxError 2.17
For 1.11
If 1.05
Import 1.75
IsNot 1.78
Not 1.52
NotEq 1.10
averageLength 1.03
uniqueKeywords 1.09
False 1.47
IndexError 2.49
isinstance 2.55

Using randomized logistic regression we found several
frustration-inducing features that fell into the following
categories: errors, niche language features, and features
that increase complexity of the code.

As part of our analysis we extracted the odds ratios of our
selected features. The odds ratio “is a measure of association
between an exposure and an outcome” [21]. That is, the
occurrence of a specific feature will affect the odds of a certain
outcome. In the case of HappyFace, the existence of certain
AST and stylometric features will increase, decrease, or have
no effect on the odds that the learner will be frustrated. If
the odds ratio of an independent variable is greater than 1.00,
an increase of a unit of the variable will increase the odds
that the learner is frustrated. Inversely, when the odds ratio
of an independent variable is less than 1.00, an increase in
that variable decreases the odds of frustration. The larger the
distance from 1.00 (meaning neutral with no effect on odds)
the larger effect on the odds of frustration. For example, if
the odds ratio of SyntaxError is 2.00, the odds that a learner
will be frustrated when a SyntaxError exists in their code
is doubled (2.00/1.00). Table III lists the odds ratio of each
selected feature for Python 2 and 3 we extracted for the first
study. For Python 2, the feature that most increased the odds
of frustration was SyntaxError with an odds ratio of 2.28. For
Python 3, SyntaxError also had a relatively high odds ratio of
2.17. The highest odds ratio for Python 3 was the use of the
isinstance function at 2.55.

An odds ratio analysis supported our findings in RQ2
by confirming that the occurrence of certain features,
such as errors, boolean operators, and import statements,
increased the odds that the learner is frustrated.

3) RQ3: Can these features predict categories of problems
faced when programming?

Using negotiated agreement [22] on a sample of the first
survey’s answers to derive hypotheses that could explain why

a code snippet was or was not frustrating, we extended our
survey component to include annotations for the learner to
select as a reason for their current emotional state. In a second
experimental survey, we then used these labels to validate
our hypotheses. We also included another field so learners
could write their own annotations to help us find frustrating
experiences we might have not hypothesized. The extension
only added a second, but optional, button click to select an
annotation, which would not disrupt the learners’ willingness
to provide feedback.

Since the main purpose of the extended survey was to
discover if we could predict the category of the feature causing
frustration, the votes of interests are the optional annotations
the learners could provide after casting a face vote. For votes
with Python 2 code we received 215 annotation votes (23.65%
of total votes). For votes with Python 3 code we received 303
annotation votes (23.24% of total votes). The most common
reason for being frustrated was “I get an error” with 32
occurrences for Python 2 votes and 47 for Python 3 votes.
Other commonly chosen reasons were “My output is wrong”
and “I don’t understand this code”, both showing that
misunderstanding code is a cause for frustration in learners.
The most common reason for being happy was “I understand
this code” with 38 occurrences for Python 2 and 64 for Python
3. Other commonly chosen reasons for not being frustrated
are “My code works” and “I fixed an error”. This was an
expected result as the reasons that learners are not frustrated
are antithetical to the reasons that learners are frustrated. We
also allowed the learner to input their own reason in a free-
form text box by selecting the “Other” reason.

Using logistic regression (LR) to predict the learner-selected
category based on features extracted from the user’s code
snippets, we were able to obtain a precision, recall, and
f1-scores for predicting categories of frustration selected by
learners. LR is a flexible and easy to use method to categorize
data [23] that allows us to predict what category of frustration
a learner’s code likely falls into. Further, we tested other
methods of predicting our categories but LR outperformed
them all for our dataset, so we selected LR for category
prediction. For Python 2 we were able to predict the choice of
“I don’t understand this code” with a precision of 0.80, recall
of 0.33, and f1-score of 0.47 with a support of 12 out of 41
annotations. “I get an error” was predicted with precision of
0.39, recall of 0.85, and f1-score of 0.54 with support of 13 of
41. For Python 3 we were able to predict the choice of “I don’t
understand this code” with a precision, recall, and f1-score of
0.30 with a support of 10 out of 46 annotations. Selection of
“I get an error” was predicted with precision of 0.52, recall of
0.76, and f1-score of 0.62 with support of 17 of 46. The other
frustration categories could not be predicted as there was not
enough support to do so.

Using logistic regression, we were able to predict when
a learner annotated their frustration with “I don’t under-
stand this code” with 80% precision.

VI. LIMITATIONS

While the ideas underlying HappyFace generalize to any
programming language, our current prototype is only for
Python. To increase the breadth of our analysis, we would need
to parse each language’s code into ASTs. Doing so can give
us insight on the differences in frustrating features between
languages. For example, the metric of numbers of semicolons
may affect Java learners much more than Python learners as
semicolons are required in Java to terminate lines. Another
example is indentation in Python, which affects control flow,
so it may correlate with frustration in Python but not in Java.

HappyFace receives data only by learners clicking a button
to “vote,” but frustration is a continuous experience. Frus-
tration may change as the learner is programming, rising
and falling throughout the session. For example, a syntax
error may cause little frustration when the learner has just
started programming, but their frustration level may increase
the longer they have been coding. Since HappyFace collects
feedback only at the discrete time of the vote, it cannot
characterize affect throughout the entire learning experience.
To handle this limitation, it may be beneficial to periodically
ping the learner to report their current emotion (i.e., experience
sampling) so we can see changes over time.

Finally, learners experience frustration differently. For in-
stance, an impatient learner may find even “simple” obstacles
more frustrating than their peers do. Also, some votes may
represent frustration with external factors; i.e., someone may
already be frustrated even before coding. Perhaps a learner was
having a bad day so encountering a usually-benign obstacle
caused them to report they were frustrated. For example, in
the follow-up study one learner selected the “Other” annotation
and wrote “I have a midterm today” as the reason they were
frustrated, which had nothing to do with their code.

VII. DISCUSSION

We discuss implications of our findings from designing and
deploying HappyFace and then highlight challenges for future
research on detecting learner frustration at scale.

A. Implications of HappyFace Design and Deployment

1) Interventions: We believe HappyFace can be used to
inform intervention systems, both automatic and manual. In
a large-scale learning framework like a MOOC, a frustrated
student can report their frustration. HappyFace can then predict
the category of frustration felt by a learner working on
the particular code snippet. Interventions to this category of
frustration can then be automatically presented to the learner.

For example, when HappyFace predicts that the frustration
of the learner is from improper indentation, HappyFace can
offer to perform “automatic repair” on the learner’s code in
order to fix the frustrating code. In the case of our learner Ada
from the motivational example (Section II), HappyFace can
inform intervention systems on when she is facing a frustrating
SyntaxError. The intervention system can then highlight a
suggested fix; for Ada’s SyntaxError the system can highlight
missing parentheses in her print statement. HappyFace can

also help in a traditional setting where automatic tools are
not available to help the learner. In courses that have human
assistants, HappyFace can inform them when a learner is
facing frustrations along with the likely features causing frus-
tration. Assistants more suited to helping learners understand
code may prioritize helping frustrated learners whose code
is difficult to understand. Finally, HappyFace can provide a
framework which teachers and platform developers can use
to provide interventions that ease learner frustrations. For
example, during our second study a few learners stated that
they were receiving an indentation error as the reason for their
frustration. This feedback could motivate learning platforms to
add features such as add auto-indentation or style warnings to
assist a learner in properly indenting their Python code.

2) Language Design: Our findings support the need for
better feature design in programming languages. Our analysis
reinforced the common knowledge that SyntaxErrors are a
frustrating obstacle that learners face, and potentially unnec-
essary in languages targeting novice programmers. Further,
code complexity can be monitored and even prevented by
the language when a learner’s code starts to get too complex,
frustrating learners when they do not understand their code.
Lastly, certain features and the rules to use them may cause
frustration in their implementation, such as global variable
usage in Python mentioned in RQ2. HappyFace can discover
these frustrating experiences in a programming language so
that better designs can be created to remove barriers to pro-
gramming education and aid learners in their understanding.

3) Feedback Mechanisms: HappyFace shows it is possible
to gather meaningful data for discovering insights, such as
what features in Python cause learner frustration, by leveraging
the actions of the learner while only requiring them to self-
report their affect. However, we may want to investigate other
ways to collect or encourage feedback. Carter et al. has
investigated the automated detection of when a programmer
is having difficulty or is “stuck” [24]. Researchers found that
it was not efficient to allow programmers to manually change
their status to stuck, as developers delay asking for help
when they need it. Instead detecting difficulty by monitoring
developers can inform helpful interventions earlier. While
predicting affect is an important aspect in getting learners help,
we are also interested in detecting why learners need help.

4) Prediction of Categories: We were able to predict when
a learner did not understand the code because AST feature
extraction gives us metrics on how complex the code is, which
can create a difficulty in understanding the code for learners.
However, while ASTs can be useful for some categories, some
AST features cannot give us insight on expected behaviors or
values and require more analysis.

Another accuracy-disruptive attribute of the categories is
that they can overlap in meaning. Code with an error might
also be confusing to the learner, meaning both annotations
could possibly be chosen. Once HappyFace discovers these
frustration categories caused by confusing code and errors, in-
tervention systems can be informed by HappyFace to produce
and present interventions.

Finally, our current extracted features may not be good
predictors for the categories, so we must further investigate
features that can be extracted from learners’ code that could
be used to improve category prediction. Despite these current
weaknesses, the ability to predict that a learner does not un-
derstand the code relates to our finding that complex features
cause frustration in learners.

B. Challenges for Future Research

1) Expansion: While Python Tutor is a good initial plat-
form for our prototype, we would like to expand HappyFace’s
reach into IDEs so that it can collect data on larger-scale
programming sessions. The HTML-based survey component
of HappyFace allows it to be integrated into any web-based
IDE, and we can also port it as a plug-in to desktop IDEs
such as Eclipse and Visual Studio. Doing so will let us collect
longitudinal data for students working on multiple coding
problems over the span of, say, an entire academic term.

2) Extraction of Informative Features: Some of the sty-
lometric and AST features we extracted from learner code
correlated with frustration felt by the learner, but it is possible
we did not discover and collect features that more strongly
correlated with frustration. Further investigation into what
frustrates a learner can help discover new features that would
be beneficial to extract. One method, implemented in our
extended follow-up survey, is to elicit causes of frustration
from the learner through free-form text fields. After learners
report other causes of frustration, we can extract features we
believe correlate with that cause to analyze the strength of
correlation the new features have with frustration.

3) Scaling Up Participation: Increasing learner participa-
tion in surveys will provide more data on frustrating ex-
periences. There are several possible ways to improve the
survey design, including exploring the use of prompts to the
learner, or even trying automated detection of frustration. It
is possible that knowing automated help could be given by
the system could increase participation by learners. We did
not want to prompt the learner through a pop-up notification
so as to limit the interruption the survey would cause the
learner, potentially becoming a frustrating feature itself! In
classroom and MOOC settings, learners can be prompted by
the instructor to take HappyFace surveys. Despite challenges
to increasing participation, the scale of the environments
HappyFace can be integrated into, such as millions of learners
on MOOCs or Python Tutor, means that even low participation
rates can still have thousands of participants providing data.

VIII. RELATED WORK

1) Programmer Frustration: Ford et al. investigated causes
of frustration for software developers via a survey [1]. The
reported causes of frustration were then grouped into several
categories ranging from frustrations caused by the skill of the
developer, the complexity of the code, and the features of
the programming tools in use. Rather than manual surveys to
elicit frustrating features in programming, HappyFace analyzes
code with learner-reported frustration to discover frustrating

features automatically. Further, HappyFace can predict the
problem categories a user is facing based on the feature of the
code, removing the necessity of manual categorization of user
frustrations previously done and lessening the effort required
to discover frustrations felt by programmers.

2) Automated Analysis and Feedback: OverCode is a sys-
tem that uses static analysis of code to cluster solutions written
by learners [25]. Glassman et al. found that OverCode gave
teachers a high-level overview that allowed them to discern
students’ understanding and misconceptions about the code
they are working on. OverCode accomplished this by refor-
matting and “cleaning” (standardizing) raw code, then creating
stacks of resulting code that became functionally identical.
Teachers or teaching assistants can then observe these stacks
for misconceptions and holes in learners’ knowledge. The
Apex system can automatically provide students explanations
for their runtime errors by presenting the learners with the root
cause and an explanation for why the cause produces an error
[12]. Similarly, Singh et al. presented a method for providing
feedback automatically for learner errors by using an error
model to present corrections to a learner’s code [26]. Both
of these methods can be helpful interventions to aid learner
understanding of the errors encountered running code.

While these systems provide useful feedback for students,
they all require that the programming assignment is known
and that a test suite is provided. HappyFace instead analyzes
all code, no matter the problem being solved, to discover frus-
trating features in programming assignments and languages.

3) Crowd-Powered Code Annotations: Codepourri uses a
volunteer crowd of learners to create code tutorials and anno-
tate each step of the tutorials [27]. The best annotations for
use in a tutorial were chosen through a vote by the learners.
These tutorials were judged by experts to be near the quality
of their own expert-created tutorials. The importance of this
finding to directly inspiring the design of HappyFace is that a
crowd of learners can provide a similar quality of observation
that experts can and can even provide insights that experts
missed. In a similar vein, HappyFace uses a crowd of learners
to discover and predict causes of frustration in programming.

IX. CONCLUSION

Frustrating obstacles during programming caused by lack
of instructor support, course difficulty, and even lack of
requisite skills can cause learners to drop out prematurely. We
presented HappyFace, a lightweight feedback mechanism and
automated analysis/prediction engine that can discover these
learner frustrations at scale. HappyFace allows an efficient
method of data collection from thousands of online users by
collecting learner affect and code with a one-button click. We
believe that HappyFace’s automated analysis and prediction
can be used to inform intervention systems built into learning
frameworks to provide learners with solutions to frustrations.
When these systems lack a specific intervention for a frus-
tration, HappyFace can discover common frustrating features
that intervention systems can be extended to solve, which will
help scale up feedback in large CS courses and MOOCs.

REFERENCES

[1] D. Ford and C. Parnin, “Exploring the causes of frustration for software
developers,” IEEE ICSE 8th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), 2015.

[2] P. J. Guo, “Online Python Tutor: Embeddable web-based program
visualization for CS education,” in Proceedings of the 44th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE
’13. New York, NY, USA: ACM, 2013, pp. 579–584. [Online].
Available: http://doi.acm.org/10.1145/2445196.2445368

[3] D. F. O. Onah, J. Sinclair, and R. Boyatt, “Dropout rates of massive open
online courses : behavioural patterns,” EDULEARN14 Proceedings pp.
5825-5834, July 2014.

[4] G. Conole, “MOOCs as disruptive technologies: Strategies
for enhancing the learner experience and quality of moocs,
http://www.um.es/ead/red/39/conole.pdf,” 2013.

[5] K. Jordan, “MOOC Completion Rates: The Data,
http://www.katyjordan.com/moocproject.html.”

[6] R. S. J. d. Baker, S. K. D’Mello, M. T. Rodrigo, and A. C. Graesser,
“Better to be frustrated than bored: The incidence, persistence,
and impact of learners’ cognitive-affective states during interactions
with three different computer-based learning environments,” Int. J.
Hum.-Comput. Stud., vol. 68, no. 4, pp. 223–241, Apr. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.ijhcs.2009.12.003

[7] A. Repenning, A. Basawapatna, D. Assaf, C. Maiello, and N. Escherle,
“Retention of flow: Evaluating a computer science education week
activity,” in Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, ser. SIGCSE ’16. New York,
NY, USA: ACM, 2016, pp. 633–638. [Online]. Available: http:
//doi.acm.org/10.1145/2839509.2844597

[8] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What
would other programmers do? suggesting solutions to error messages,”
CHI 2010, April 2010.

[9] A. K. Vail, J. B. Wiggins, J. F. Grafsgaard, K. E. Boyer, E. N. Wiebe,
and J. C. Lester, “The affective impact of tutor questions: Predicting
frustration and engagement,” Proceedings of the 9th International Con-
ference on Educational Data Mining, 2016.

[10] scikit-learn, “Randomized logistic regression, http://scikit-
learn.org/stable/modules/generated/sklearn.linear model.
RandomizedLogisticRegression.html.”

[11] D. Bieri, R. Reeve, G. Champion, and J. B. Ziegler, “The faces pain scale
for the self-assessment of the severity of pain experienced by children:
Development, initial validation, and preliminary investigation for ratio
scale properties,” Pain, p. 139150, June 1990.

[12] D. Kim, Y. Kwon, P. Liu, I. L. Kim, D. M. Perry, X. Zhang, , and
G. Rodriguez-Rivera, “Apex: automatic programming assignment error
explanation,” Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2016), 2016.

[13] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” SEC’15 Proceedings of the 24th USENIX Conference on
Security Symposium, 2015.

[14] F. Hermans and E. Aivaloglou, “Do code smells hamper novice pro-
gramming? a controlled experiment on scratch programs,” in IEEE 24th
International Conference on Program Comprehension (ICPC). IEEE,
2016.

[15] Python Software Foundation, “Python 2 AST library,
https://docs.python.org/2/library/ast.html.”

[16] ——, “Python 3 AST library, https://docs.python.org/3/library/ast.html.”
[17] ——, “Python 2 Builtin library, https://docs.python.org/2/library/

builtin .html.”
[18] ——, “Python 3 builtin library, https://docs.python.org/3/library/builtins.

html.”
[19] P. Guo, “Python Tutor, http://pythontutor.com/.”
[20] Python Software Foundation, “Programming faq,

https://docs.python.org/3/faq/programming.html#what-are-the-rules-
for-local-and-global-variables-in-python.”

[21] M. Szumilas, “Explaining odds ratios,” J Can Acad Child Adolesc
Psychiatry, pp. 227–229, 2010.

[22] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen,
“Coding in-depth semistructured interviews problems of unitization
and intercoder reliability and agreement,” in Sociological Methods

Research. SAGE, 2013, pp. 294–320. [Online]. Available: http:
//journals.sagepub.com/doi/10.1177/0049124113500475

[23] M. Pohar, M. Blas, and S. Turk, “Comparison of logistic regression and
linear discriminant analysis: a simulation study,” Metodoloski zvezki,
vol. 1, no. 1, p. 143, 2004.

[24] J. Carter and P. Dewan, “Design, implementation, and evaluation of
an approach for determining when programmers are having difficulty,”
GROUP ’10 Proceedings of the 16th ACM international conference on
Supporting group work, 2010.

[25] E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and R. C.
Miller, “Overcode: Visualizing variation in student solutions to
programming problems at scale,” ACM Trans. Comput.-Hum. Interact.,
vol. 22, no. 2, pp. 7:1–7:35, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2699751

[26] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2013), 2013.

[27] M. Gordon and P. J. Guo, “Codepourri: Creating visual coding tutorials
using a volunteer crowd of learners,” in Proceedings of the IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC),
ser. VL/HCC ’15, Oct 2015, pp. 13–21.

http://doi.acm.org/10.1145/2445196.2445368
http://dx.doi.org/10.1016/j.ijhcs.2009.12.003
http://doi.acm.org/10.1145/2839509.2844597
http://doi.acm.org/10.1145/2839509.2844597
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RandomizedLogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RandomizedLogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RandomizedLogisticRegression.html
https://docs.python.org/2/library/__builtin__.html
https://docs.python.org/2/library/__builtin__.html
https://docs.python.org/3/library/builtins.html
https://docs.python.org/3/library/builtins.html
http://journals.sagepub.com/doi/10.1177/0049124113500475
http://journals.sagepub.com/doi/10.1177/0049124113500475
http://doi.acm.org/10.1145/2699751

	Introduction
	Motivating Example
	The HappyFace System
	Design Goals
	Implementation
	Affect Survey
	Data Collection
	Data-set Extraction
	Code Analysis
	Extended Feedback

	Online Deployment Studies
	Surveys
	Participants
	Analysis
	Data Cleaning
	System Refinement

	Deployment Study Results
	RQ1
	RQ2
	RQ3

	Limitations
	Discussion
	Implications of HappyFace Design and Deployment
	Interventions
	Language Design
	Feedback Mechanisms
	Prediction of Categories

	Challenges for Future Research
	Expansion
	Extraction of Informative Features
	Scaling Up Participation

	Related Work
	Programmer Frustration
	Automated Analysis and Feedback
	Crowd-Powered Code Annotations

	Conclusion
	References

