
Towards practical incremental recomputation for scientists:

An implementation for the Python language

Philip J. Guo and Dawson Engler

Stanford University

Abstract

Computational scientists often prototype data analysis

scripts using high-level languages like Python. To speed

up execution times, they manually refactor their scripts

into stages (separate functions) and write extra code to

save intermediate results to disk in order to avoid re-

computing them in subsequent runs. To eliminate this

burden, we enhanced the Python interpreter to automat-

ically memoize (save) the results of long-running func-

tion executions to disk, manage dependencies between

code edits and saved results, and re-use memoized results

rather than re-executing those functions when guaranteed

safe to do so. There is a ∼20% run-time slowdown dur-

ing the initial run, but subsequent runs can speed up by

several orders of magnitude. Using our enhanced inter-

preter, scientists can write simple and maintainable code

that also runs fast after minor edits, without having to

learn any new programming languages or constructs.

1 Introduction

The massive increase in computing power over the past

few decades has enabled scientists across many disci-

plines to rely more on computational techniques in their

research. Many modern scientists in fields like computa-

tional biology, pharmacology, neuroscience, and astron-

omy are spending less time doing physical lab work and

more time writing computer programs to process, trans-

form, and extract insights from experimental data.

The style of code that these scientists write differs

greatly from code written by professional programmers:

“The primary tension in the life of the scientist-programmer is

to just get the science done. What we mean by this is the con-

flict between getting the coding done as quickly as possible so

that you can move onto finishing the science, versus spending

that extra week (or however long) making sure that your code

is neat, tidy, well-tested and generally a glorious triumph of

software engineering.”[2]

These scientists often write programs in what Brandt

et al. call an opportunistic manner, emphasizing speed

and ease of development over code robustness and run-

time performance [3]. Being able to quickly implement

and refine prototype code is vital to the research pro-

cess, since the specifications for research code (as com-

pared to production-quality code) are often ill-defined

and constantly-changing.

Thus, scientists often choose lightweight tools that

allow them to write code quickly, even if their code

does not run at optimal speed. For example, several

scientists we interviewed before starting this project1

regularly write single-threaded programs in high-level,

dynamically-typed languages such as Python, MATLAB,

or R to process experimental data stored as plain-text

files (up to several gigabytes in size). Their programs

would definitely run faster if they had written, say, multi-

threaded C++ code, hand-optimized hot inner loops, and

used a relational database configured with advanced in-

dexing features. However, since they are scientists and

not programmers by training, they have neither the pro-

gramming expertise nor the willingness to spend the time

to learn these more heavyweight tools and techniques.

Even the few Computer Science researchers we in-

terviewed (in sub-fields like machine learning and soft-

ware reliability) preferred to use high-level dynamic lan-

guages like Python for their research. Although they

have the know-how to write faster-running C++ code

(and will do so if absolutely necessary), they felt that the

convenience and ease of programming offered by lan-

guages like Python far outweighed the costs of slower

run-time performance.

Problem: Scientific data processing and analysis scripts

often execute for tens of minutes to several hours on a

single desktop computer, thus slowing down the scien-

tist’s iteration and debugging cycle.

1In mid-2009, prior to starting implementation work, the first author

conducted a series of informal, open-ended needfinding interviews with

computational scientists to learn about their data processing workflow.

Why existing solutions are inadequate: To cope with

this slowdown, scientists could write extra code to break

up their computation into multiple stages and save the

intermediate results of each stage to disk. This modular-

ization can speed up subsequent script run-times (since

not all stages need to be re-run after each code edit), but

it increases code size/complexity and creates dependen-

cies between source code and intermediate results.

In practice, scientists are often hesitant to spend time

refactoring their scripts to improve performance, partly

due to lack of programming expertise (they learn just

enough programming skills to write the simplest possi-

ble script that “just get[s] the science done”[2]) but also

because it can be hard to determine whether it’s worth-

while to devote the extra up-front programming time and

effort. A senior researcher we interviewed stated2:

“Many of my bug database mining scripts run

overnight, and I hate how they’re so slow. I some-

times think about saving intermediate results so that

my scripts can run faster. However, I run lots of ad-

hoc experiments when exploring my datasets, so I

never know ahead of time which results are worth

saving. I also don’t know how many times I’ll end

up executing some scripts, so I’m never motivated

enough to spend the extra effort on writing and

maintaining the caching code.” (Senior software en-

gineering researcher at Microsoft Research)

Another possible way to reduce iteration time is by

testing the script on a tiny subset of the original dataset,

to ferret out major bugs before running for hours on the

full dataset. This is sometimes feasible, but oftentimes

there isn’t a practical way to avoid running the script on

the full dataset, for some of the following reasons [4]:

1.) The data is too complex or split across multiple files,

so it is cumbersome to subset. 2.) One can only assess

correctness by inspecting the script’s output from run-

ning on the entire dataset; running on a subset could

never produce sensible output. 3.) Data parsing bugs of-

ten manifest on aberrant records that appear in the mid-

dle of a large dataset (since schemas are often missing or

not strictly obeyed), so extracting the first few records to

form a tiny test dataset won’t reveal those bugs.

Running multiple threads in parallel can also reduce

execution time, but it is significantly more difficult to

write and debug parallel programs, especially for sci-

entists who are not expert programmers. Even ex-

perts prefer to start off by writing single-threaded pro-

totype scripts and then only parallelize later when neces-

sary [16]. When discussing related work (Section 6), we

will contrast our proposed solution to parallel program-

ming and other related approaches.

2All such quotes are paraphrased from notes that the first author

took during needfinding interviews.

1.1 Our proposed solution: Interpreter

support for incremental recomputation

We want to enable scientists to iterate quickly on data

processing and analysis tasks while keeping their code

simple and maintainable. To do so, we modified a pro-

gramming language interpreter to automatically memo-

ize (cache) the results of long-running function execu-

tions to disk, manage dependencies between code edits

and saved results, and re-use memoized results rather

than re-executing functions when guaranteed safe to do

so. Our technique works as follows:

1. The scientist’s script runs without modification in

our custom interpreter, with a minor slowdown

(usually less than 20%) due to run-time monitoring

2. The interpreter memoizes (caches) results of long-

running function executions to a file

3. During subsequent runs of the same script (possi-

bly after some edits), the interpreter loads cached

results rather than re-computing when guaranteed

safe to do so, which speeds up running times

4. The interpreter automatically creates and manages

dependencies between executed code and cached

intermediate results

5. The interpreter deletes cached results when depen-

dent code or data changes, to ensure that results are

identical to those run on an unmodified interpreter

Though our technique is language-independent, we

chose to implement it as a modified Python interpreter

called IncPy (Incremental Python). In the past

decade, Python has been gaining support across many

fields of computational sciences because it is easy to

learn, supports interactive prototyping, and has mature li-

braries for scientific data processing (e.g., NumPy, SciPy,

Biopython). There is a growing research community

around the language: Since 2002, Caltech has hosted the

annual Python in Science (SciPy) academic conference.

1.2 Potential benefits

The potential benefits of our approach all derive from

the fact that we can speed up scientists’ iteration and

debugging cycles without requiring them to learn any

new languages, libraries, or programming techniques.

When compared with related work (Section 6), we feel

that our technique is quite practical since it can be easily

deployed to the large number of scientists already using

Python in their daily work: We can simply replace their

existing Python interpreter with our modified IncPy in-

terpreter, and all of their existing scripts should still pro-

duce the same results, albeit running significantly faster

after minor edits.

The ideal workflow that we would like to support is

for a scientist to be able to:

1. Write a ‘quick-and-dirty’ first version of the script

2. Execute the script using IncPy, and wait for, say,

an hour to get results

3. Manually interpret results and notice a bug

4. Edit the script slightly to fix that bug

5. Re-execute the script, and wait for a few seconds to

get new results

6. Enhance the script with some new functions

7. Re-execute the script, and wait for a few minutes to

get new results

Note that with an ordinary Python interpreter, subse-

quent re-executions of the script (Steps 5 and 7) will still

take an hour regardless of the size of the code edit. It

is possible (although tedious and sometimes difficult) to

manually refactor a script to support efficient recompu-

tation, but IncPy does so automatically.

Anecdotes from programmers [3] and findings from

psychology experiments [6] suggest that a short itera-

tion cycle not only results in more rapid completion of

tasks but also causes people to subconsciously shift to

using more effective problem-solving strategies. Since

the problem remains fresh in one’s (short-term) working

memory, one can remain intensely concentrated rather

than potentially getting distracted and context-switching

while waiting for each subsequent script run to complete.

Shortening execution times can also aid in the debug-

ging process, especially for novice programmers who

are not accustomed to using symbolic debuggers or sys-

tematically minimizing error-inducing inputs. For many

scientist-programmers, debugging consists of cycling be-

tween making code edits, re-running the entire script,

and waiting for each run to complete. A pharmacol-

ogy Ph.D. student we interviewed, who is just starting

to learn Python for his research, noted:

“I often have to re-run my scripts several times be-

fore I can get rid of the major bugs. The problem

is that I often don’t know there’s a bug until after

the script finishes, which can take several hours or

even overnight. Oftentimes I discover some simple

semantic error that I can fix with a tiny code edit

(like using + instead of -), but then I need to re-run

the entire script before I can see the new result. If

subsequent runs only took a few seconds, then that

could greatly help me in debugging.” (Pharmacol-

ogy Ph.D. student at UCLA)

A faster iteration cycle could also qualitatively change

how people work together on programming tasks. An-

other Ph.D. student we interviewed described how it

could facilitate real-time collaboration:

“Whenever I show my data mining results to my

advisor, he always suggests to tweak something or

other. Sometimes I can make the code tweaks in a

few seconds, but re-running the script might take 15

to 30 minutes, so my advisor is not going to wait

around for the results. I might not find him again

for another few hours or even until the next day, so

my iteration cycle is far longer than the script run-

time. If my scripts could re-run in seconds rather

than tens of minutes, then my advisor and I could

collaborate and explore alternatives in real-time.”

(Computer Science Ph.D. student at UC Davis)

In the rest of this paper, we will demonstrate our tech-

nique on an example (§2), describe its algorithms (§3),

our implementation for Python (§4), preliminary exper-

imental results (§5), comparison to related techniques

(§6), and conclude with plans for future work (§7).

2 Demonstration on example program

We first demonstrate the basics of our automatic memo-

ization and dependency-tracking technique on an exam-

ple program before describing its details in Section 3.

Figure 1 shows a Python program that takes a filename

as command-line input (argv[1]), processes it by call-

ing 3 functions, and prints a numerical result. Let’s say

that for a given input file input1.txt, this program

runs for 1 hour and prints 50. As the program is running,

the interpreter memoizes (caches) the values of all argu-

ments that each function is invoked with, and their corre-

sponding return values. The stageA function has only

one mapping: {"input1.txt"→ 50}. stageB and

stageC have numerous mappings, one for each unique

invoked argument value.

The interpreter also builds a dependency graph as the

program executes (bottom of Figure 1), where each func-

tion’s memoized results can depend on both code and

data. Now, when the programmer edits chunks of code

or data and runs the program again, the interpreter can

consult the dependency graph to determine what func-

tions need to be re-run. For example, if the programmer

changed the contents of masterDatabase.db or the

value of MULTIPLIER, then the memoized results for

stageA and stageB might no longer be valid, so both

functions must be re-run. If the programmer changed the

code for stageC, then stageA and stageC must be

re-run (but not stageB, since it doesn’t call stageC).

Assume that the program executes for 1 hour on

input1.txt because it makes 5 calls to stageB and

1 call to stageC (each taking 10 minutes). If we

edit the end of stageA to return, say, the product of

transformedLst elements rather than the sum, then

re-executing the program is nearly instantaneous since

we can re-use all the memoized results from stageB

MULTIPLIER = 2 . 5 # g l o b a l v a r i a b l e

I n p u t : name o f f i l e c o n t a i n i n g SQL q u e r i e s

Outpu t : a s i n g l e computed n u m e r i c a l v a l u e

def s t ageA (f i l e n a m e) :

l s t = [] # i n i t i a l i z e empty l i s t

f o r l i n e in open (f i l e n a m e , ’ r ’) :

l s t . append (s t a g e B (l i n e))

t r a n s f o r m e d L s t = s t a g e C (l s t)

re turn sum (t r a n s f o r m e d L s t) # r e t u r n s a number

I n p u t : an SQL query s t r i n g

Outpu t : a s i n g l e computed n u m e r i c a l v a l u e

def s t a g e B (q u e r y S t r) :

db = s q l o p e n d b (’ m a s t e r D a t a b a s e . db ’)

q = db . que ry (q u e r y S t r)

r e s = . . . # run f o r 10 m i n u t e s p r o c e s s i n g q

re turn (r e s ∗ MULTIPLIER) # r e t u r n s a number

I n p u t : a l i s t o f n u m e r i c a l v a l u e s

Outpu t : a s i n g l e computed n u m e r i c a l v a l u e

def s t a g e C (d a t L s t) :

r e s = . . . # run f o r 10 m i n u t e s munging d a t L s t

re turn r e s # r e t u r n s a number

s p e c i f y i n p u t f i l e on command−l i n e :

p r i n t s t ageA (a rgv [1])

Figure 1: Example Python data processing program (top)

and dependencies generated during execution (bottom).

Circles represent code, squares represent file accesses,

and the pentagon represents a global variable access.

and stageC rather than re-computing them. If we no-

tice a bug in stageC and tweak its code to fix it, then re-

executing the program only takes 10 minutes rather than

a full hour (we must re-run stageA and stageC but

can re-use memoized results from all 5 calls to stageB).

3 Interpreter-based technique for efficient

incremental recomputation

3.1 MemoMap global data structure

The only global data structure we maintain is called

MemoMap. Each entry in MemoMap is a mapping from a

function to a FuncMemoInfo object (whose class is de-

fined in Figure 2). The interpreter loads MemoMap from

c l a s s FuncMemoInfo {
f u n c t i o n myFunc

Boolean d e f i n i t e l y I m p u r e

Map<<L i s t <argument> , r e t u r n V a l > memoizedVals

Map<f u n c t i o n , code> codeDeps

Map<v a r i a b l e , va lue> g loba lVarDeps

Map< f i l e , f i l e c o n t e n t s > f i l e D e p s

FuncMemoInfo (f u n c t i o n f u n c) { / / c o n s t r u c t o r

myFunc = f u n c

c lea rAndMarkPure ()

}
void c lea rAndMarkPure () {

d e f i n i t e l y I m p u r e = F a l s e

memoizedVals = new Map< . . . >

codeDeps = new Map< . . . >

g loba lVarDeps = new Map< . . . >

f i l e D e p s = new Map< . . . >

/ / i n i t i a l i z e s e l f −dependency :

codeDeps [myFunc] = myFunc . code

}
void markImpure () {

d e f i n i t e l y I m p u r e = True

memoizedVals . c l e a r ()

g loba lVarDeps . c l e a r ()

f i l e D e p s . c l e a r ()

/ / do n o t c l e a r codeDeps , s t i l l need i t

}
}

Figure 2: The FuncMemoInfo class, which keeps track

of memoized values and dependencies for a function

disk at the beginning of execution (or creates an empty

mapping if it doesn’t yet exist), and saves it to disk at the

end of execution. A FuncMemoInfo object keeps track

of memoized values and dependencies for one function.

We chose to memoize at the function level since it is a

natural abstraction boundary for computations; in Sec-

tion 7 (future work) we discuss some plans for memoiza-

tion at a finer granularity.

The memoizedVals field in FuncMemoInfo

stores memoized values, in the form of a mapping

from a list of argument values to a return value (e.g.,

for the code in Figure 1, an entry for stageA might

be { "input1.txt" → 50 }). Whenever a func-

tion is called, if its arguments are already contained in

memoizedVals, then the interpreter can directly return

the memoized return value rather than executing its code.

There are three fields that store dependencies:

• codeDeps (code dependencies): A mapping from

a function called by this function to the current con-

tents of its code (e.g., source code or bytecode)

• globalVarDeps (global variable dependencies):

A mapping from a global variable read by this func-

tion to its current value

• fileDeps (file dependencies): A mapping from a

file read by this function to its current contents

If any of these dependencies are broken, then

memoizedVals (and all other fields) are cleared, be-

cause it might no longer be safe to re-use memoized

values. For example, if a function f reads from a file

data.txt, then its memoizedVals should be cleared

if data.txt changes, since f might now compute a

different result even when given the same input.

Only pure functions are eligible for memoization. Fol-

lowing the definition of Salcianu and Rinard, we con-

sider a function pure if it never mutates an object that

existed prior to its invocation [14]. As soon as a function

mutates its argument or a global variable, it is marked

impure and all data in its FuncMemoInfo are deleted.

In addition, we always mark non-deterministic functions

like random() and time() as impure.

Our technique dynamically detects purity during ex-

ecution, so it avoids the usual obstacles that hinder

static (compile-time) purity detection, like conserva-

tive full-program pointer analysis and reasoning about

dynamically-typed and reflective language features [14].

Our purity analysis is perfectly precise modulo broken

dependencies: As long as a pure function’s dependen-

cies are not broken, then subsequent executions will run

identically and remain pure. When a dependency breaks,

all data in FuncMemoInfo are deleted, so its original

purity state no longer matters.

3.2 Program value accesses

Algorithm 1 shows what the interpreter does every time

a value is accessed during execution.

Algorithm 1 Program value accesses

On a READ of any program value val:

if val reachable from a global variable GVar then

tf ←MemoMap[function at the top of stack]

tf.globalVarDeps[GVar]← deepcopy(GVar.value)

end if

On a WRITE or DELETE of any value val:

if val reachable from any global variable then

for all functions func on stack do

MemoMap[func].markImpure()

end for

else

top← function at the top of stack

if val reachable from any argument of top then

MemoMap[top].markImpure()

end if

end if

Whenever a function reads a value that is reachable

from a global variable, that function gains a data depen-

dency on the entire global variable. Note that we make

a deep copy of the variable’s current value before stor-

ing it in globalVarDeps, in order to protect against

later mutations to it. Also, we store a dependency on

the entire global variable and not simply on the accessed

value, in order to allow for a simpler implementation.

For example, if a function accesses a deeply-nested value

x.foo.bar[3].baz where x is a global, it’s much

easier to store and to later look-up the value of the en-

tire x data structure rather than having to make complex

traversals within field and array dereferences.

Whenever the program mutates a globally-reachable

value, all functions on the stack must be marked as im-

pure (i.e., ineligible for memoization), since they were

executing while a global side-effect occurred. Otherwise,

if an argument of the currently-executing function is mu-

tated, then only that function should be marked impure

(its callers might still be pure).

3.3 File accesses

Algorithm 2 File accesses

On a READ of an open file f :

tf ←MemoMap[function at the top of stack]

tf.fileDeps[f]← f.contents

On a WRITE of an open file f :

for all functions func on stack do

MemoMap[func].markImpure()

end for

Algorithm 2 shows that the interpreter handles reads

and writes of files in the same way that it handles global

variable accesses. Files are an abstraction for any ex-

ternal resource that a program accesses. For instance,

an implementation could model database or network ac-

cesses via this file model to maintain dependencies on,

say, database table rows or web service data streams.

3.4 Function entrance and exit

Whenever the program is about to execute a function,

the interpreter tries to avoid executing that function alto-

gether and instead return a memoized value to its caller

(Algorithm 3). Before doing so, the interpreter must

check whether this function is impure or whether any of

its own dependencies or dependencies of functions that

it has transitively called have been broken (i.e., their cur-

rent values differ from their previously-saved values). If

so, then the function executes normally. Otherwise, if the

current argument values are saved in memoizedVals,

then the interpreter returns the matching memoized re-

turn value to the caller rather than re-computing it.

Algorithm 3 Function entrance

When program execution enters a function func:

if func not in MemoMap then

MemoMap[func] = new FuncMemoInfo(func)

end if

// your caller has a dependency on your code:

c←MemoMap[function right below func on stack]

c.codeDeps[func]← func.code

f ←MemoMap[func]

if f.definitelyImpure then

return and continue normal execution of func

end if

// check code dependencies (transitively):

for all {depFunc , depSavedCode} in f.codeDeps do

if depFunc.code 6= depSavedCode then

f.clearAndMarkPure()

return and continue normal execution of func

end if

traverse inside depFunc, check all its dependencies,

and recursively traverse inside its code dependen-

cies and check them, until fixpoint reached

end for

// check global variable dependencies:

for all {depVar , depSavedVal} in f.globalVarDeps do

if depVar.value 6= depSavedVal then

f.clearAndMarkPure()

return and continue normal execution of func

end if

end for

// check file dependencies:

for all {depFile , depSavedContents} in f.fileDeps do

if depFile.contents 6= depSavedContents then

f.clearAndMarkPure()

return and continue normal execution of func

end if

end for

if func.argumentValues in f.memoizedVals then

mRetval← f.memoizedVals[func.argumentValues]

return mRetval to caller and don’t execute func

else

return and continue normal execution of func

end if

Whenever the program is about to finish executing a

function, the interpreter memoizes copies of its argument

and return values in memoizedVals if necessary (Al-

gorithm 4). Memoization is not done if the function is al-

ready impure, did not execute for long enough (see next

paragraph), or returns an externally-accessible mutable

value (which could lead to subtle semantic mismatches

Algorithm 4 Function exit

When program execution exits a function func:

f ←MemoMap[func]

if f.definitelyImpure then

return and exit out of func

end if

if func took less than 1 second to execute then

return and exit out of func

end if

for all mutable values v within func.returnValue do

if v reachable from any global variable or from any

current argument of func then

return and exit out of func

end if

end for

// memoize copies of arguments and return value:

argCopy← deepcopy(func.argumentValues)

retvalCopy← deepcopy(func.returnValue)

f.memoizedVals[argCopy] = retvalCopy

return and exit out of func

due to deep copying of the memoized return value).

We think it’s practical to use a heuristic of only mem-

oizing function executions that last for more than 1 sec-

ond. The vast majority of functions run for less than 1

second, so it’s not worth the extra work of memoizing

their results when they could be instantly re-computed.

The interpreter should only spend effort memoizing

functions that run for a non-negligible amount of time.

4 Python interpreter implementation

We implemented our technique as a custom Python inter-

preter called IncPy, which we created by adding∼3000

lines of C code to the official Python 2.6 interpreter.

IncPy passes the entire Python regression test suite (ex-

cept for a test of multithreading, which it doesn’t sup-

port). It works as both an interactive shell and for run-

ning script files, memoizing and tracking dependencies

in all imported Python modules. We now describe some

implementation decisions, with a focus on optimizations:

Data structures: Since our code is part of the Python in-

terpreter, we have full access to the implementations of

Python’s built-in data structures. Thus, it was easy and

efficient to use Python list objects to maintain lists of ar-

gument values and Python dictionary objects to maintain

mappings for FuncMemoInfo fields.

On-disk persistence: We use the cPickle module in

the Python standard library to serialize Python objects

to disk, in order to allow memoized values and depen-

dencies to persist across executions. (Some Python data

types are not serializable, so we cannot memoize func-

tions that access such data.)

We store each FuncMemoInfo entry in a separate

file, load it from disk the first time it is needed, record

whether it has been modified throughout execution, and

only save it back to disk at the end of execution if it has

been modified (lazy write-back). Serializing at this level

of granularity seems sufficient for our initial implemen-

tation; in the future, we might use an object database

or persistent in-memory cache (e.g., memcached) if we

need finer control over performance.

File dependencies: Rather than saving and comparing

file contents (or md5sums), we simply save and compare

their last modification times, which is far more efficient.

This is akin to how Makefile dependencies work.

Code dependencies: We save and compare Python byte-

code rather than source code. We do so because making

source edits that change spacing, comments, and other

minor cosmetic tweaks do not alter a function’s behav-

ior, so should not break any dependencies on it.

Lazy reachability detection: Several of our algorithms

require the interpreter to determine whether a value is

reachable from a global variable. In Python, all accesses

to globally-reachable values must originate from a read

of some global variable, followed by zero or more reads

of its attributes (e.g., object fields, list members). On a

read of a global variable, the address of its current value

is added to the globally-reachable set; on the read of

an attribute like obj.attr, if the address of the cur-

rent value of obj is in the globally-reachable set, then

the address of the value of attr is also added to that

set. Therefore, given an arbitrary value, a simple ad-

dress lookup in that set tells us whether it’s globally-

reachable (we also maintain some extra data to determine

from which global variables each value is reachable).

Copy-on-write optimization: Recall that we need to

make a deep copy of the values of global variables, func-

tion arguments, and return values before saving them in

FuncMemoInfo, since we want to capture a snapshot at

a certain point in execution. However, performing a deep

copy can be slow, especially for large collections (e.g., a

list of 100,000 dictionaries, each containing a few map-

pings of strings to integers). We noticed that these large

objects were rarely modified later in execution, so the

deep copy wasn’t even necessary.

Thus, we implemented copy-on-write, which defers

the deep copy until the moment an object is mutated. To

evaluate y=deepcopy(x), we first set y=x and map

the address of y to a ‘watch set’ containing the address

of x. Then we traverse inside of x and add the addresses

of all enclosed mutable objects to the watch set for y

(often much faster than copying since most collections

contain only immutable objects, which don’t need to be

tracked). Whenever a value is mutated, if its address is

in the watch set for y, then we deep copy x, assign it to

y, update references to it, and delete its watch set.

5 Preliminary experimental results

We performed an informal preliminary evaluation by us-

ing IncPy to run Python scripts that we wrote in 2007–

2008 for a research project to analyze revision control

history and static analysis bug reports for the Linux ker-

nel [7]. We started developing IncPy about a year after

writing these scripts, partly motivated by our experiences

of waiting for them to run for minutes after minor edits

and having to manually write extra caching code. For

this evaluation, we examined 3 sets of scripts that show

ways in which IncPy could have sped-up our workflow.

Soon we plan to do a more comprehensive evaluation by

running other researchers’ scripts through IncPy.

Since the current version of IncPy only does

function-level memoization, we manually tweaked some

of our target scripts by hoisting loop bodies into nested

functions and having each loop iteration be a function

call. This transformation is purely mechanical and easy

to automate; we plan to add memoization of loop bodies

in the near future (see Section 7).

Experiment 1: We first examined a 200-line Python

script that calculates, for all Linux source code files

modified in each developer’s i
th committed patch, how

many other developers subsequently modified that file

and when did they make those edits. Each loop iteration

extracts data from an sqlite database and performs the

requisite calculations for a particular i (via a helper func-

tion call), then prints out aggregate information like the

number of developers and mean time between patches.

When running for 40 iterations (the script’s default

setting), the regular Python interpreter took 147 sec-

onds3, while IncPy took 160 seconds (a 9% slow-

down). When we re-ran the script in IncPy (without

making any code edits), it only took 8 seconds, an 18X

speed-up over the regular Python interpreter. After mak-

ing edits like changing the aggregate information printed

at each iteration (e.g., using median instead of mean) or

tweaking ways to combine extracted fields to form de-

rived fields, the script still only took 8 seconds to re-run.

These edits, while small, are indicative of the sort that a

scientist typically makes while tweaking his/her scripts:

Each iteration of a data processing script often consists

of a long-running extraction portion (that rarely changes)

followed by short-running post-processing code. Being

3Running on a 3GHz Mac Pro with 4GB RAM and Mac OS X 10.4

able to re-run and see new results in 8 seconds rather

than waiting for several minutes allows the programmer

to keep the task in working memory [6] while iterating

and debugging.

However, a more intrusive edit like changing the long-

running SQL query and data extraction code would re-

quire the entire script to re-run. Memoizing at a finer

granularity (e.g., per code statement) could prevent the

entire script from re-running, but it would incur a greater

run-time overhead during the initial run. We plan to ex-

plore this trade-off between tracing precision and run-

time overhead in future work.

Experiment 2: Next we examined a longer-running

Python script that calculates the probability that a Linux

source code file will be modified in a given time period,

conditioned upon whether it was modified in the past.

It performs a sliding window calculation by setting an

initial period length (e.g., 1 week), a subsequent period

length (e.g., 1 year), and the number of days to slide af-

ter each iteration (e.g., 1 day). Each iteration of the main

loop takes a starting date, queries the database for files

modified in the 1 week prior to that date and in the 1 year

following that date, then computes probabilities.

When we ran the sliding window over the first year

of our 7-year dataset (365 iterations, since each iteration

slides by 1 day), the regular Python interpreter took 34

minutes and 33 seconds, while IncPy ran for only 38

seconds longer (a 2% slowdown). For this run, IncPy

only memoized 83 kB of data, so it had minimal ob-

ject serialization overhead; IncPy’s slowdown is usu-

ally proportional to the amount of memoized data, not to

the total code size or running time of the script.

When we re-ran the script in IncPy, it only took

0.2 seconds (a 10,000X speed-up over the regular inter-

preter). We can make edits to adjust how the probabilities

are calculated within each iteration, and instantly re-run

to see new results. Also, we can adjust the iteration slide

amount to a larger value (e.g., 1 week) and instantly re-

run to produce a subset of our output data; this operation

is useful for rendering graphs with different parameters.

Currently, scientists must save the output data to a .csv

(text) file and then write another script to parse that .csv

file and render graphs. By having IncPy automatically

memoize that data, there is no need to create and main-

tain dependencies for intermediate .csv files; the data

analysis and graphing code can be together in one script,

and IncPy ensures that when graphing code is tweaked,

the analysis code does not need to re-run.

After processing only the first year of our dataset, we

made the script process the first 2 years. IncPy re-used

the results for the first year and took 36 minutes to pro-

cess the second year. The regular Python interpreter had

to start from scratch, so it took twice as long (71 min-

utes). This scenario simulates how IncPy allows scripts

to re-start processing after a bug fix. Data processing

bugs often manifest on aberrant records that appear in the

middle of a large dataset [4] (say, at the end of the first

year in this example); if the bug fix is sufficiently small,

then it might be possible to re-start at the buggy record

rather than re-computing all the prior (correct) records.

Experiment 3: We examined a directory of scripts that

compute statistics about the concentration of bug reports

per Linux source file. We initially wrote these scripts to

extract data from several tables in one sqlite database.

However, they ran too slowly since they were doing com-

plex joins, so we derived 4 intermediate datasets from

that database and refactored the scripts to extract data

from those datasets, which were stored on disk as persis-

tent Python pickle objects (filenames abbreviated):

• A.pickle: 371 kB, took 2 seconds to create

• B.pickle: 3.6 MB, 21 sec to create

• C.pickle: 26 MB, 43 sec to create

• D.pickle: 16 MB, 69 sec, depends on C.pickle

By manually creating and maintaining these interme-

diate datasets, we sped up run-times at the expense of

making our code more complex and harder to maintain:

We had to write a script to create each dataset, add extra

code to load and save intermediate data, and remember

to manually re-run those scripts to re-create the proper

datasets whenever their dependent data changed. We up-

dated our master database several times to do clean-ups

(e.g., canonicalizing alternate forms of a person’s name)

and had to re-create the 4 derived datasets each time,

making sure to re-create C.pickle before D.pickle

(since the latter is derived from the former).

If we had used IncPywhen writing these scripts back

in 2008, then we could have simply put all the code to-

gether in one script and let IncPy create the derived

datasets and maintain dependencies for us. That way,

whenever we changed the master database, all 4 datasets

would be re-created, and whenever we tweaked the code

for creating one of the datasets, only it would be re-

created. We combined all 4 dataset-creation scripts into

one, removed the manual serialization code, and ran it

through IncPy. It produced the same-sized pickle

files, but ran for a minute longer (∼44% slower).

6 Related work

Our technique relates to provenance in that it uses a

programming language interpreter to collect a limited

form of provenance for data resulting from function exe-

cutions. The provenance we collect for each piece of data

includes how long it took to compute and from which

function executions, global variables, and input files did

it derive. We use this provenance to facilitate efficient

incremental recomputation of imperative programs.

Several related systems collect provenance via run-

time execution tracing. Muniswamy-Reddy et al. de-

signed a storage system that tracks coarse-grained prove-

nance about individual files, which could be the inter-

mediate results of command-line script invocations [10].

Zhang et al. designed a system to collect very fine-

grained provenance at the byte level by tracing the ex-

ecution of x86-Linux binary executables (usually from

C or C++ programs) [17]. Neither system aims to use

provenance to facilitate efficient incremental recomputa-

tion; instead, they focus more on using it to understand,

debug, validate, and reproduce experimental results.

Scientific workflow systems like Kepler [9], Tav-

erna [11], and VisTrails [15] provide graphical integrated

development environments for designing and executing

scientific computations. Scientists create workflows by

using a GUI to visually connect together blocks of pre-

made functionality in a data-flow graph.

These systems collect provenance to facilitate debug-

ging, validation, reproduction, and — similar to IncPy

— efficient incremental recomputation of results. It is

fairly easy for them to do incremental recomputation

since dependencies must be explicitly drawn in the data-

flow graph and the composed computational blocks are

mostly pure; in contrast, IncPy must infer dependen-

cies and function purity from arbitrary Python programs.

IncPy differs from scientific workflow systems in

that it is a lightweight solution to facilitate prototyping in

a popular, easy-to-learn, and general-purpose program-

ming language. In contrast, while workflow systems

have more specialized and sophisticated features, the de-

signers of VisTrails admit: “While significant progress has

been made in unifying computations under the workflow um-

brella, workflow systems are notoriously hard to use. They re-

quire a steep learning curve: users need to learn programming

languages, programming environments, specialized libraries,

and best practices for constructing workflows.” [15]

Self-adjusting computation enables efficient recom-

putation in response to changes in input data. The

technique focuses solely on fine-grained changes to in-

put data (e.g., linked list elements), whereas IncPy

tracks code, data, and external environment changes at

a coarser level. Hammer, Acar, et al. have implemented

self-adjusting computation for statically-typed languages

(ML and C) [8]. These systems have potential for mas-

sive speed-ups but require programmers to write algo-

rithms using new language constructs and forbids the use

of existing constructs like returning values from func-

tions (must instead use destination-passing style [8]).

We feel IncPy is easier for non-expert programmers

to adopt since it targets a dynamically-typed language

widely-used for scripting and does not require the learn-

ing of any new constructs or programming styles.

Just-in-time compilers for dynamic languages (e.g.,

Psyco [13] for Python, Rubinius for Ruby, TraceMon-

key for JavaScript) can speed up script execution times

without requiring the programmer to learn any new con-

structs, which is similar in spirit to the goals of IncPy.

However, JIT compilers focus on micro-optimizations of

CPU-bound code like hot inner loops, whereas IncPy

deals more end-to-end, using memoization to avoid long-

running computations regardless of their source. For ex-

ample, no JIT compiler optimizations could speed up I/O

or network-bound scripts, which is what often consumes

lots of time in scientific data processing applications.

Features from IncPy could easily be integrated into a

JIT compiler, to get the benefits of both approaches.

Parallel execution of code can vastly speed up scientific

data processing scripts, at the cost of increased difficulty

in programming and debugging such scripts. In recent

years, the emergence of libraries like Parallel Python [1],

frameworks like MapReduce [5], and new high-level lan-

guages like Pig [12] have made it easier to write paral-

lel code. However, we (and many of the researchers we

interviewed) believe that the learning curve for writing

parallel code is still high, especially for scientists with-

out much programming experience. It is much easier for

most people to think about algorithms sequentially, and

even experts prefer to write single-threaded prototypes

and then only parallelize later when necessary [16].

Also, the goals of IncPy are complementary to those

of parallel computation: Eliminating redundant compu-

tations can still be useful for speeding up parallel code

running on a cluster. For instance, a bioinformatics grad-

uate student we interviewed lamented how a postdoc

in his research group was constantly using up all the

compute-power on the group’s 124-CPU cluster. This

postdoc’s data-parallel Perl script consisted of several

processing stages that took dozens of hours to run on

each cluster node (on a slice of the input genomic data).

He would often make tweaks to the second stage and re-

run the entire script, thus needlessly re-computing all the

results of the first stage. After a few weeks of grumbling,

the graduate student finally inspected the postdoc’s code

and saw that he could refactor it to memoize intermedi-

ate results of the first stage, thus dramatically reducing

run-time and freeing up the cluster for labmates. The

postdoc, who was not an adept programmer, perhaps did

not have the expertise or willingness to refactor his code;

he was simply willing to wait overnight for results (to the

chagrin of his labmates). With an interpreter like IncPy

installed on their cluster machines, there would be no

need to perform this sort of manual code refactoring.

7 Ongoing and future work

From chatting with researchers interested in using

IncPy, we have heard the following feature requests:

• Intraprocedural analysis: Currently, we only

memoize at the function level, but many scripts

contain memoization opportunities within individ-

ual functions (or are simply written as one mono-

lithic top-level main function). For instance, a

long-running loop that populates a list with values

can be automatically refactored to its own function,

so that its results can be memoized and re-used.

• Database-aware caching: Several researchers we

interviewed stored their datasets in a relational

database, used Python scripts to make simple SQL

queries and then performed sophisticated data trans-

formations using Python code. They found it easier

and more natural to express their algorithms in an

imperative manner rather than in SQL. If IncPy

were augmented to intercept Python’s database API

calls, then it could track finer-grained data depen-

dencies between database entries and Python code.

• Network-aware caching: Several CS researchers

who extract large amounts of data from the Inter-

net for their research told us that they found it an-

noying to have to re-run their extractor scripts after

fixing bugs or making tweaks. If IncPy were aug-

mented to intercept Python’s networking API calls,

then it could transparently cache data retrieved from

the Internet on the researcher’s machine, maintain

the proper dependencies, and speed up subsequent

runs by eliminating unnecessary network activity.

• Lightweight annotations: Some colleagues sug-

gest allowing the programmer to annotate their

scripts to gain more control over memoization (e.g.,

explicitly marking a block of code as a unit to mem-

oize rather than only relying on the interpreter to in-

fer what to memoize). We currently don’t have an-

notations since we don’t want to require scientists to

learn any new constructs in order to use IncPy, but

we will add simple annotations if there is demand.

• Simple provenance browsing: Some researchers

would like ways to interactively browse (or even

manually edit) the saved intermediate results of

their scripts. IncPy already records a limited form

of provenance, so allowing a user to directly view

the data and its provenance could help them manu-

ally verify the correctness of intermediate results,

debug more effectively, and predict how long it

might take to re-execute portions of their workflow.

Acknowledgments: We thank Joel Brandt and Robert

Ikeda for editorial help, all of our interview subjects, and

the NSF fellowship for funding Philip’s graduate studies.

References

[1] Parallel Python http://www.parallelpython.com/.

[2] Programming for Scientists (blog) http://www.

programming4scientists.com/.

[3] BRANDT, J., GUO, P. J., LEWENSTEIN, J., DONTCHEVA, M.,

AND KLEMMER, S. R. Opportunistic programming: Writing

code to prototype, ideate, and discover. IEEE Software 26, 5

(2009), 18–24.

[4] BRONSON, N. personal email communication, discussing hin-

drances to data subsetting, 2009.

[5] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data

processing on large clusters. In Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation

(2004), USENIX Association, pp. 10–10.

[6] GRAY, W., AND BOEHM-DAVIS, D. Milliseconds matter: An

introduction to microstrategies and to their use in describing and

predicting interactive behavior. Journal of Experimental Psychol-

ogy: Applied 6, 4 (2000), 322–335.

[7] GUO, P. J., AND ENGLER, D. Linux kernel developer re-

sponses to static analysis bug reports. In Proceedings of the

USENIX Annual Technical Conference (2009), USENIX Asso-

ciation, pp. 285–292.

[8] HAMMER, M. A., ACAR, U. A., AND CHEN, Y. CEAL: a C-

based language for self-adjusting computation. In Proceedings of

the 2009 ACM SIGPLAN conference on Programming language

design and implementation (2009), ACM, pp. 25–37.

[9] LUDÄSCHER, B., ALTINTAS, I., BERKLEY, C., HIGGINS, D.,

JAEGER, E., JONES, M., LEE, E. A., TAO, J., AND ZHAO,

Y. Scientific workflow management and the Kepler system: Re-

search articles. Concurr. Comput. : Pract. Exper. 18, 10 (2006),

1039–1065.

[10] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,

AND SELTZER, M. Provenance-aware storage systems. In Pro-

ceedings of the USENIX Annual Technical Conference (2006),

USENIX Association, pp. 4–4.

[11] OINN, T., GREENWOOD, M., ADDIS, M., ALPDEMIR, M. N.,

FERRIS, J., GLOVER, K., GOBLE, C., GODERIS, A., HULL,

D., MARVIN, D., LI, P., LORD, P., POCOCK, M. R., SENGER,

M., STEVENS, R., WIPAT, A., AND WROE, C. Taverna: lessons

in creating a workflow environment for the life sciences: Re-

search articles. Concurr. Comput. : Pract. Exper. 18, 10 (2006),

1067–1100.

[12] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND

TOMKINS, A. Pig latin: a not-so-foreign language for data pro-

cessing. In Proceedings of the ACM SIGMOD international con-

ference on Management of data (2008), ACM, pp. 1099–1110.

[13] RIGO, A. Representation-based just-in-time specialization and

the Psyco prototype for Python. In Proceedings of the ACM

SIGPLAN symposium on Partial evaluation and semantics-based

program manipulation (2004), ACM, pp. 15–26.

[14] SALCIANU, A., AND RINARD, M. C. Purity and side effect

analysis for Java programs. In VMCAI (2005), pp. 199–215.

[15] SCHEIDEGGER, C. E., VO, H. T., KOOP, D., FREIRE, J., AND

SILVA, C. T. Querying and re-using workflows with VisTrails.

In Proceedings of the ACM SIGMOD international conference on

Management of data (2008), ACM, pp. 1251–1254.

[16] SEO, J. personal email communication, discussing sequential vs.

parallel scripts, 2009.

[17] ZHANG, M., ZHANG, X., ZHANG, X., AND PRABHAKAR, S.

Tracing lineage beyond relational operators. In VLDB ’07: Pro-

ceedings of the 33rd international conference on Very large data

bases (2007), VLDB Endowment, pp. 1116–1127.

