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ABSTRACT

Programmers across a wide range of disciplines (e.g., bio-
informatics, neuroscience, econometrics, finance, data min-
ing, information retrieval, machine learning) write scripts to
parse, transform, process, and extract insights from data.
To speed up iteration times, they split their analyses into
stages and write extra code to save the intermediate results
of each stage to files so that those results do not have to
be re-computed in every subsequent run. As they explore
and refine hypotheses, their scripts often create and process
lots of intermediate data files. They need to properly man-
age the myriad of dependencies between their code and data
files, or else their analyses will produce incorrect results.
To enable programmers to iterate quickly without needing
to manage intermediate data files, we added a set of dynamic
analyses to the programming language interpreter so that it
automatically memoizes (caches) the results of long-running
pure function calls to disk, manages dependencies between
code and on-disk data, and later re-uses memoized results,
rather than re-executing those functions, when guaranteed
safe to do so. We created an implementation for Python and
show how it enables programmers to iterate faster on their
data analysis scripts while writing less code and not having
to manage dependencies between their code and datasets.

Categories and Subject Descriptors:
D.3.4 [Processors]: Interpreters, Run-time environments
H.5.2 [User Interfaces]: Prototyping

General Terms: Languages, Human Factors

Keywords: Scientific workflows, dependency management

1. INTRODUCTION

Programmers across a wide range of disciplines (e.g., bio-
informatics, neuroscience, econometrics, finance, data min-
ing, information retrieval, machine learning) write scripts to
parse, transform, process, and extract insights from data.
By some estimates, the number of people who write these
data analysis scripts is on par with the number of profes-
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sional software engineers. A study of US labor statistics pre-
dicts that by 2012, 13 million American workers will do pro-
gramming beyond creating spreadsheet macros and database
queries (i.e, not simply end-user programming [18]), but
amongst those, only 3 million will be professional software
engineers [25]. It is reasonable to assume that a non-trivial
percentage of these 10 million programmers who are not
software engineers will write scripts to analyze data. Three
out of the ten most popular languages today [3] — Python,
Perl, and Ruby — are often used for data analysis.

Data analysis scripting differs from professional software
engineering in fundamental ways: First, the end products of
data analysis are insights about a topic [17], whereas the end
products of software engineering are (hopefully) robust, well-
tested, and maintainable pieces of software. Next, data anal-
ysis is often ad-hoc and exploratory in nature, where require-
ments are ill-defined and constantly changing [6]. Lastly,
data analysis scripts are written by people of all levels of
programming expertise, ranging from CS veterans to scien-
tists who learn barely enough about programming to write
basic scripts. Thus, the creators of data analysis scripts
often program using high-level interpreted languages (e.g.,
Python, Perl, Ruby) because they care more about flexi-
bility, iteration speed, and ease of development than code
robustness, maintainability, and run-time performance [5].

To illustrate a common problem that arises during data
analysis scripting, we describe the first author’s experiences
during a summer internship at Microsoft Research. His
project was to analyze software bug databases and employee
personnel datasets to quantify people-related factors that
affect whether bug reports are fixed (published in ICSE
2010 [11]). He wrote all scripts in one language (Python),
but his datasets were stored in diverse file formats (e.g.,
semi-structured plaintext, CSV, SQL database, serialized
objects), a typical setup for data analysis workflows [6].

He first wrote a few scripts to process the primary datasets
to create output charts and tables. However, since those
scripts took a long time to run (tens of minutes to sev-
eral hours), he split up his analysis into multiple stages and
wrote serialization code to output the intermediate results
of each stage to disk. Breaking up his scripts into stages,
implemented as functions or separate scripts, improved per-
formance and sped up iteration times: When he edited and
re-executed later stages, those stages could re-use interme-
diate results from disk rather than waste time re-executing
unchanged earlier stages. However, his hard disk was now
filled with dozens of scripts and intermediate data files.

Upon inspecting his output charts and tables, his super-



Figure 1: A data analysis workflow [11] comprised
of Python scripts (boxes) that process and generate
data files (circles). Gray circles are intermediate
data files, which IncPy can eliminate.

visor often asked him to adjust his scripts or to fork his
analyses to explore multiple alternative hypotheses (e.g.,
“Please explore the effects of employee location on bug fix
rates by re-running your analysis separately for each coun-
try.”). Thus, he parameterized his scripts to generate mul-
tiple output datasets based on command-line parameters,
which created even more data files.

Having to manually keep track of dozens of scripts and
data files led to frustrating bugs. For example, he would
update certain datasets but forget to re-run the scripts that
analyzed them, which meant that some other data files were
now incorrect. Or he would delete scripts but forget to delete
the data files they generated, leaving “orphan” data files that
might erroneously be processed by subsequent scripts. Or
he would forget which scripts and datasets generated which
charts, and whether those charts were up-to-date. Since
these bugs all manifested as incorrect outputs and not as
crashes, it was difficult to actually determine when a bug
occurred. To be safe, he would periodically re-run all of his
scripts, which eliminated the performance benefits of split-
ting up his workflow into multiple stages in the first place.

One possible solution would be to write all of his code
and dataset dependencies in a Makefile [7], so that invoking
make would only re-run the scripts whose dependent datasets
have changed. However, since he rapidly added, edited, and
deleted dozens of scripts and datasets as he explored new
hypotheses, it was too much of a hassle to also write and
update the dependencies in parallel in a Makefile. At the
end of his internship, he finally created a Makefile to doc-
ument his workflow, but some dependencies were so convo-
luted that the file likely contains errors. Figure 1 shows the
dependencies between his Python scripts (boxes) and data
files (circles), extracted from his end-of-internship Makefile.

In a 2010 workshop paper [10], we presented anecdotes
from colleagues who also experienced similar frustrations
throughout the data analysis scripting process. A literature
search revealed that even veteran computational scientists
acknowledged that having to organize code, data, and their
dependencies was an impediment to productivity [17, 21].

Problem: General-purpose programming languages pro-
vide no support for managing the myriad of dependencies
between code and datasets that arises throughout the data
analysis process. Veteran data analysts suggest using dis-
ciplined file naming conventions and Makefiles as the “best
practices” for coping with these dependencies [17, 21].

QOur solution: To enable programmers to iterate quickly
without the burden of managing code and file dependencies,
we added dynamic analyses to the programming language
interpreter to perform automatic memoization and depen-
dency management. Our technique works as follows:

1. The programmer’s script runs in a custom interpreter.

2. The interpreter automatically memoizes [19] (caches)
the inputs, outputs, and dependencies of certain func-
tion calls to disk, only doing so when it is safe (pure
and deterministic call) and worthwhile (faster to re-use
cached results than to re-run) to do the memoization.

3. During subsequent runs of the same script (possibly
after the programmer edits it), the interpreter skips all
memoized calls and re-uses cached results if the code
and data that those results depend on are unchanged.

4. The interpreter automatically deletes on-disk cache en-
tries when their code or data dependencies are altered.

We implemented our technique as a custom open-source
Python interpreter called INCPY (Incremental Python) [1].
However, our technique is not Python-specific; it can be
implemented for similar languages like Perl, Ruby, or R.

Benefits: INCPY improves the experience of writing data
analysis scripts in three main ways:

e Less code: Programmers can write data analysis stages
as pure functions that return ordinary program values
and connect stages together using value assignments
within their scripts. INCPY automatically memoizes
function inputs/outputs to a persistent on-disk cache,
so programmers do not need to write serialization and
deserialization code. Less code means fewer sites for
bugs. Although programmers get the most memoiza-
tion benefits when they write code in a modular and
functional style, INCPY does not enforce any particular
style. Programmers can use the full Python language
and perform impure actions when convenient.

e Automated data management: INCPY manages
the dependencies between code and datasets so that
the proper data can be updated when the code they
depend on changes, thus preventing stale data bugs.
INCPY tracks datasets that already exist on disk (e.g.,
CSV files and SQL databases) as well as those that
it creates by memoizing function calls. For example,
the first author could have eliminated all of the gray
circles (intermediate data files) in Figure 1 if he had
used INCPY. Each analysis stage (box in Figure 1)
could directly operate on the return values from up-
stream stages, and INCPY would automatically create
and manage the intermediate datasets (cache entries).

e Faster iteration times: INCPY allows programmers
to iterate and explore ideas faster because when they
edit and re-run scripts, memoized results from un-
changed stages can be loaded from the on-disk cache
rather than re-computed. Programmers get these per-
formance benefits without having to write any annota-
tions, caching code, or manage intermediate datasets.

Because INCPY works with ordinary Python scripts, it is
well-suited for programmers who want to focus on analyzing
their data without needing to invest the effort to learn new
language features, domain-specific languages, or other tools.



MULTIPLIER = 2.5 # global wvariable

# Input: mname of file containing SQL queries
def stageA (filename):
Ist = [] # initialize empty list
for line in open(filename, ’r’):
Ist .append (stageB (line))
transformedLst = stageC(lst)
return sum(transformedLst) # returns a number

# Input: an SQL query string
def stageB(queryStr):
db = open_database(’masterDatabase.db’)
q = db.query(queryStr)
res = # run for 1 minute processing q
return (res * MULTIPLIER) # returns a number

# Input: a list of numerical values
def stageC(lst):
res = # run for 1 minute processing lst

return res # returns a list of numbers

print stageA (”queries.txt”) # top—level call

stageB
stageA results
results

stageB()

masterDatabase.db

stageC
results

stageA()

Queries D>

Figure 2: Example Python data analysis script (top)
and dependencies generated during execution (bot-
tom). Boxes are code, circles are file reads, and the
pentagon is a global variable read.

stageC()

2. EXAMPLE

We use an example Python script to illustrate the basic
features of INCPY. Figure 2 shows a script that processes
a queries.txt file using three functions. Assume that the
script takes 1 hour to process a 59-line queries.txt file,
where each line contains an SQL query. stageA makes 59
calls to stageB (one call for each line in queries.txt) fol-
lowed by 1 call to stageC, where each of those calls lasts for
1 minute. The rest of stageA terminates instantaneously.

When we run this script for the first time, INCPY tracks
the names and values of the global variables and files that
each function reads and the code that each function calls.
It dynamically generates the dependency graph shown on
the bottom half of Figure 2, which contains three types of
dependencies: For example, the function stageA has a code
dependency on stageB; stageB has a global variable depen-
dency on MULTIPLIER; stageB also has a file read dependency
on the masterDatabase.db file. As each function call fin-
ishes, INCPY memoizes the arguments, return values, and
dependencies of each call to a persistent on-disk cache.

Now when we edit some code or data and run the same
script again, INCPY can consult the memoized dependencies
to determine the minimum number of functions that need
to be re-executed. When INCPY is about to execute a func-
tion whose dependencies have not changed since the previous
execution, it will skip the call and directly return the mem-
oized return value to its caller. Here are some ways in which
a subsequent run can be faster than the initial 1-hour run:

e If we edit the end of stageA to return, say, the product
of transformedLst elements rather than the sum, then
re-executing is nearly instantaneous since INCPY can
re-use all the memoized results for stageB and stageC.

o If we fix a bug in stageC, then re-executing only takes
1 minute: We must re-run stageA and stageC but can
re-use memoized results from all 59 calls to stageB.

e If we modify a line in queries.txt, then re-executing
takes 2 minutes since stageB only needs to re-run on
the SQL query string specified by the modified line,
and stageC must also re-run since its input is different.

e If we append a new line to queries.txt, then re-
executing takes 2 minutes since stageB only needs to
run on the new line, and stageC must also re-run.

For comparison, if we ran this script in the regular Python
interpreter, then every subsequent run would take 1 hour, re-
gardless of how little we edited the code or the queries.txt
file. If we wanted to have our script run faster after mi-
nor edits, we would need to write our own serialization
and deserialization code to save and load intermediate data
files, respectively. Then we would need to remember to re-
generate particular data files after their dependent functions
are edited, or else risk getting incorrect results. INCPY auto-
matically performs all of this caching and dependency man-
agement so that we can iterate quickly without needing to
write extra code or to manually manage dependencies.

3. DESIGN AND IMPLEMENTATION

INCPY consists of dynamic analyses that perform depen-
dency tracking and function memoization (§3.1), persistent
cache management (§3.2), function profiling and impurity
detection (§3.3), and object reachability detection (§3.4).

We created INCPY by adding ~4000 lines of C code to
the official Python 2.6.3 interpreter. INCPY is fully compat-
ible with existing Python scripts and 3rd-party extension
modules already installed on the user’s machine.

3.1 Memoizing Function Calls

INCPY’s main job is to automatically memoize certain
function calls to a persistent on-disk cache when the target
program is about to exit the call. Each cache entry repre-
sents one memoized call and contains the fields in Table 1.

INCPY updates the fields of Table 1 in each function’s
stack frame as it is executing. It does so by interposing
on the interpreter’s handlers for the corresponding program
events. For example, we inserted code in the interpreter’s
handler for file I/O to add a file read/write dependency to
all functions on the stack whenever the target program per-
forms a file read/write. Thus, if a function foo calls bar,
and some code in bar reads from a file data.txt, then both
foo and bar now have a file read dependency on data.txt.
Similarly, INCPY adds a global variable dependency to all
functions on the stack whenever the program reads a value
that is reachable from a global variable (see §3.4 for details).

Although interposing on every file access, value access,
and function call might seem slow, performance is reasonable
since the bookkeeping code we inserted is small compared
to what the Python interpreter already executes for these
program events. For example, the interpreter executes a few
hundred lines of C code to initiate a Python function call, so
the few extra lines we inserted to fetch its argument values



Full name Function’s name and enclosing
filename (for methods, also add

the enclosing class’s full name)

Arguments Argument values for this call

Return value Return value for this call

Terminal output Contents of text printed to
stdout and stderr buffers

during this call

Global var. dependencies Names and values of all global
variables, variables in enclosing
lexical scopes, and static class
fields read during this call

Names and last modified times
of files read during this call

File read dependencies

Names and last modified times
of files written during this call

File write dependencies

Code dependencies
function and of all functions
that it transitively called

Full names and bytecodes of this

Table 1: Contents of a persistent on-disk cache en-
try, which represents one memoized function call.

and update code dependencies has a minimal performance
impact. We evaluate performance in Section 4.1.

When the target program finishes executing a function
call, if INCPY determines that the call should be memoized
(see §3.3 for criteria), it uses the Python standard library
cPickle module to serialize the fields in Table 1 to a binary
file. For arguments, global variables, and function return
values, INCPY serializes the entire object that each value
refers to, which includes all objects transitively reachable
from it. Since INCPY saves these objects to disk at this time,
it does not matter if they are mutated later during execution.
All cached arguments and global variables have the same
values as they did when the function call began; otherwise,
the call would be impure and not memoized (§3.3.1).

INCPY stores each serialized cache entry on disk as a sep-
arate file, named by an MD5 hash of the serialized argument
values (collisions handled by chaining like in a hash table).
Each file is written atomically by first writing to a temp.
file and then doing an atomic rename, which allows multiple
processes to share a common cache. All cache entries for a
function are grouped together into a sub-directory, named
by an MD5 hash of the function’s full name (see Table 1).

INCPY does not limit the size of the on-disk cache; it will
keep writing new entries to the filesystem as long as there is
sufficient space. INCPY automatically deletes cache entries
when their dependencies are altered (§3.2). Also, since each
cache entry is a separate file, a user (or script) can manually
delete individual entries by simply deleting their files.

3.2 Skipping Function Calls

When the target program calls a function:

1. Cache look-up: INCPY first looks for an on-disk
cache entry that matches its full name and the values
of its current arguments and global variable depen-
dencies, checking for equality using Python’s built-in
object equality mechanism. If there is no matching
cache entry, then INCPY simply executes the function.

2. Checking dependencies and invalidating cache:
If there is a match, then INCPY checks the file and
code dependencies in the matching cache entry. If a
dependent file has been updated or deleted, then the
cache entry is deleted. If the bytecode for that func-
tion or any function that it called has been changed
or deleted, then all cache entries for that function are
deleted. When these dependencies are altered, we can-
not safely re-use cached results, since they might be
incorrect. For example, if a function foo calls bar and
returns 42, then if someone modifies the code of bar
and re-executes foo, it might no longer return 42.

3. Skipping the call: If there is a matching cache entry
and all dependencies are unchanged, then INCPY will
skip the function call, print out the cached stdout and
stderr contents, and return the cached return value
to the function’s caller. This precisely emulates the
original call, except that it can be much faster.

One practical benefit of INCPY atomically saving each
cache entry to a file as soon as the function exits, rather than
doing so at the end of execution, is that if the interpreter
crashes in the middle of a long-running script, those cache
entries are already on disk. The programmer can fix the bug
and re-execute, and INCPY will skip all memoized calls up to
the site of the bug fix. For example, some of our users have
encountered annoying bugs where their scripts successfully
processed data for several hours but then crashed at the very
end on a trivial bug in the output printing code. INCPY was
able to memoize intermediate results throughout execution,
so when they fixed those printing bugs and re-executed, their
scripts ran much faster, since INCPY could skip unchanged
function calls and load their results from the cache.

3.3 Which Calls Should Be Memoized?

INCPY automatically determines which function calls to
memoize without requiring any programmer annotations.
However, a programmer can force INCPY to always or never
memoize particular functions by inserting annotations.

3.3.1 Which Calls Are Safe To Memoize?

It is only safe to memoize function calls that are pure
and deterministic, since only for those calls will the program
execute identically if they are later skipped and replaced
with their cached return values.

Pure calls: Following the definition of Salcianu and Rinard,
we consider a function call pure if it never mutates a value
that existed prior to its invocation [24]. In Python (and sim-
ilar languages), all objects reachable from global variables®
and a function’s arguments might exist prior to its invoca-
tion. Thus, when a program mutates a globally-reachable
object, INCPY marks all functions on the stack as impure.
For example, if a function foo calls bar, and some code in
bar mutates a global variable, then INCPY will mark both
foo and bar as impure, since both functions were on the
stack when an impure action occurred. When a program
mutates an object reachable from a function’s arguments,
INCPY marks that function as impure (see §3.4 for details).

INCPY does not mark a function as impure if it writes text
to the terminal; instead, it separately captures stdout and
stderr outputs in the cache (see Table 1) and prints those
cached strings to the terminal when the function is skipped.

Yincludes variables in enclosing scopes and static class fields



Unlike static analysis [24], INCPY dynamically detects im-
purity of individual execution paths. This is sufficient for
determining whether a particular call is safe to memoize;
a subsequent call of a pure deterministic function with the
same inputs will execute down the same path, so it is safe
to skip the call and re-use memoized results. If a function
is pure on some paths but impure on others, then calls that
execute the pure paths can still be memoized.

Deterministic calls: We consider a function call deter-
ministic if it does not access resources like a random num-
ber generator or the system clock. It is difficult to auto-
matically detect all sources of non-determinism, so we have
annotated a small number of standard library functions as
non-deterministic (e.g., those related to randomness, time,
or stdin). INCPY marks all functions on the stack as impure
when the target program calls one of these functions.

In theory, memory allocation is a source of non-determinism
if a program makes control flow decisions based on the ad-
dresses of dynamically-allocated objects. For the sake of
practicality, INCPY does not treat memory allocation as non-
deterministic, since if it did, then almost all functions would
be impure. In our experience, it is rare for programs written
in memory-safe languages like Python to branch based on
memory addresses, since pointers are not directly exposed.
For example, none of the scripts in our benchmark suite (see
§4.1.1) branch execution based on memory addresses.

Self-contained file writes: Writing to a file might seem
like an impure action, since it mutates the filesystem. While
that is technically true, we make an exception for a kind of
idempotent file write that we call a self-contained write. A
function performs a self-contained write if it was on the stack
when the file was opened in pure-write (not append) mode,
written to, and then closed. We observed that data analy-
sis scripts often perform self-contained writes: An analysis
function usually processes input data, opens an output file,
writes data to it, and then closes it. For example, although
only one set of scripts in our benchmark suite performed
file writes, all of its 17 writes were self-contained (see Sec-
tion 4.2.3 for a case study of that benchmark).

For example, if a function foo does a self-contained write
to data.txt (open — write — close), then each call to foo
creates a new and complete copy of data.txt. Thus, INCPY
still considers foo to be pure and records data.txt as a file
write dependency. As long as foo and all its dependencies
remain unchanged, then there is no need to re-run foo since
it will always re-generate the same contents for data.txt.

If a function writes to a file in a non-self-contained way
(e.g., by opening in append mode or not closing it), then
INCPY marks the call as impure and does not memoize it.
OOP support: For object-oriented programs, INCPY mem-
oizes pure deterministic method calls just like ordinary func-
tion calls: The receiver (this object) is memoized as the first
argument, and static class fields are memoized as global vari-
ables. Since INCPY tracks methods and objects at run time,
it correctly handles inheritance and polymorphism.

3.3.2  Which Calls Are Worthwhile To Memoize?

It is only worthwhile to memoize a function call if loading
and deserializing the cached results from disk is faster than
re-executing the function. A simple heuristic that works well
in practice is to have INCPY track how long each function
call takes and only memoize calls that run for more than 1
second. The vast majority of calls (especially in library code)

run for far less than 1 second, so it is faster to re-execute
them rather than to save and load their results from disk.
There are pathological cases where this heuristic fails. For
example, if a function runs for 10 seconds but returns a 1
GB data structure, then it might take more than 10 seconds
to load and deserialize the 1 GB data structure from the on-
disk cache. Our experiments show that it takes 20 seconds to
load and deserialize a 1 GB Python list from disk (§4.1.2). If
INCPY memoized the results of that function, then skipping
future calls would actually be slower than re-executing (20
seconds vs. 10 seconds). We use a second heuristic to handle
these pathological cases: INCPY tracks the time it takes to
serialize and save a cache entry to disk, and if that is longer
than the function’s original running time, then it issues a
warning to the programmer and does not memoize future
calls to that function (unless its code changes). Our exper-
iments in Section 4.1.2 indicate that it always takes more
time to save a cache entry than to load it, so the cache save
time is a conservative approximation for cache load time.

3.4 Dynamic Reachability Detection

When a program is about to read from or write to an arbi-
trary Python object in memory, how does INCPY determine
whether that object is reachable from a global variable or a
function’s argument? INCPY needs this information to de-
termine when to add a global variable dependency (Table 1)
and when to mark function calls as impure (§3.3.1).

The Python interpreter represents every run-time value in
memory as an object, so INCPY augments every object with
two fields: the name of a global variable that reaches this
object (globalName), and the starting “time” of the outer-
most function call on the stack whose arguments reach this
object (funcStart). INCPY measures “time” by the number
of function calls that the interpreter has executed thus far.
These fields are null for objects that are not reachable from
a global or a function argument.

When the program loads a global variable, INCPY sets
the globalName field of its value to the variable’s name.
When the program calls a function, INCPY sets the func-
Start field of all its argument values to the current “time”
(number of executed function calls), only for values whose
funcStart has not already been set by another function
currently on the stack. When the program executes an ob-
ject field access (e.g., my_obj.field) or element access (e.g.,
my_list[5]), INCPY copies the globalName and funcStart
fields from the parent to the child object. For example, if a
program executes a read of foo.bar [5] where foo is a global
variable, then the objects referred to by foo, foo.bar, and
foo.bar [5] would all have the name “foo” in their global-
Name fields. When the program is about to read from or write
to an object, INCPY can do a fast lookup of its globalName
and funcStart fields to determine whether it is reachable
from a global variable or a function argument, respectively.

The funcStart field enables INCPY to efficiently deter-
mine which functions to mark as impure when an argument
is mutated (see §3.3.1). For example, if a function foo ac-
cepts an argument x and passes it into bar, then x is an
argument of both foo and bar. Assume that the call to foo
started at time 5 and bar started at time 6. The funcStart
field of x is 5, since that is the start time of foo, the out-
ermost function call where x is an argument. If code within
bar mutates any component of x, then INCPY sees that its
funcStart field, 5, is less than or equal to the start time of
both foo and bar, so it marks both functions as impure.



def stagel ():

infile = open(’input.dat’, ’'r’)
... # parse and process infile
outfile = open(’stagel.out’, ’'w’)

outfile.write(
outfile.close ()

) # write output to file

def stage2():

infile = open(’stagel.out’, ’'r’)
... # parse and process infile
outfile = open(’stage2.out’, ’w’)

outfile.write(
outfile.close ()

) # write output to file

# top—level script code:
stagel ()
stage2 ()

@ stagel() stage2()

Figure 3: Example Python script that implements
a file-based workflow, and accompanying dataflow
graph where boxes are code and circles are data files.

Implementation: We initially implemented reachability
detection by directly adding two extra fields to the Python
object datatype: globalName and funcStart. This worked
fine in development, but when we started getting users, they
complained that INCPY did not work with 3rd-party Python
extension modules already installed on their machines. Ex-
tension modules consist of compiled C/C++ code that rely
on the Python object datatype to be of a certain size. Since
INCPY augmented that datatype with two extra fields, ex-
tension module code no longer worked. To use INCPY with
their extensions, users would need to re-compile extension
code with the INCPY headers, which can be difficult due to
compile-time dependencies.

Thus, to make INCPY work with users’ already-installed
extensions, we re-implemented using a shadow memory ap-
proach [20]. We left the Python object datatype unchanged
and instead maintain globalName and funcStart fields for
each object in a sparse table. To do a table look-up, INCPY
breaks up an object’s memory address into 16-bit chunks
and uses them to index into a multi-level table similar to an
OS page table. We use a two-level table for 32-bit architec-
tures and a four-level table for 64-bit. For example, to look
up an object at address Oxdeadbeef, INCPY first looks up
index Oxdead in the first-level table. If that entry exists, it
is a pointer to a second-level table, so INCPY looks up index
Oxbeef in that second-level table. If that entry exists, then
it holds the globalName and funcStart fields for our target
object. This mapping works because Python objects never
change memory locations. When an object is deallocated,
INCPY clears its corresponding table entry. INCPY conserves
memory by lazily allocating tables. However, memory usage
is still greater than if we had inlined the fields within Python
objects, but that is the trade-off we made to achieve binary
compatibility with already-installed extension modules.

3.5 Supporting File-Based Workflows

Figure 3 shows a script that implements a two-stage data
analysis workflow. The programmer wrote extra code to save
the results of stagel to an intermediate data file stagel . out,
so that when stage?2 is edited, the code for stagel does not
have to re-run. However, if the programmer changes the

def stagel ():
infile = open(’input.dat’, ’'r’)
out = # parse and process infile
return out

def stage2(dat):
out = # process dat argument
return out

# top—level script code:
stagel_out stagel ()
stage2_out stage2 (stagel_out)

stagel() H stage2() ‘

Figure 4: The Python script of Figure 3 refactored
to take advantage of IncPy’s automatic memoiza-
tion. Data flows directly between the two stages
without an intermediate data file.

code for stagel, then it must be re-run to generate a new
stagel.out, or else the input to stage2 will be incorrect.

By using INCPY, the programmer can simplify that script
into the one shown in Figure 4. There is no more need to
write code to save and load data files, or to manually manage
their dependencies. The on-disk cache entries that INCPY
creates after it memoizes stagel and stage2 are the substi-
tutes for the stagel.out and stage2.out files, respectively.

Despite the benefits of a pure-Python workflow (Figure 4),
some of our users still choose to create intermediate data files
(Figure 3) for performance reasons. INCPY serializes entire
Python data structures, which is convenient but can be slow,
especially for data larger than a few gigabytes. Scripts often
run faster when accessing data files in a format ranging from
a specialized binary format to a database.

INCPY supports these file-based workflows by recording
file read and write dependencies. After it executes the script
in Figure 3, stagel will have a read dependency on in-
put.dat and a write dependency on stagel.out; stage2 will
have a read dependency on stagel.out and a write depen-
dency on stage2.out. INCPY can use this dependency graph
to skip calls and issue warnings. For example, if only stage2
is edited, INCPY can skip the call to stagel. If stagel.out
is updated but stagel did not change, then INCPY will issue
a warning that some external entity modified stagel.out,
which could indicate a mistake. In contrast, the regular
Python interpreter has none of these features.

3.6 Limitations

INCPY’s main limitation is that it cannot track impu-
rity, dependencies, or non-determinism in non-Python code
such as C/C++ extension modules or external executables.
Similarly, INCPY does not handle non-determinism or re-
mote dependencies arising from network accesses. Users can
make annotations to manually specify impurity and depen-
dencies in external code. Fortunately, most C functions in
the Python standard library are pure and self-contained, but
we have annotated a few dozen as impure (e.g., list append
method) and non-deterministic (e.g., time, randomness).

Another limitation is that INCPY is not designed to track
fine-grained changes in code or data. If even one line in a
function or dataset changes, then INCPY deletes cache en-
tries that depend on that code or data, respectively. How-
ever, implementing finer-grained dependency tracking would
increase INCPY’s baseline run-time slowdown.



3.7 Discussion

The technique underlying INCPY can be implemented in
a straightforward manner for other interpreted languages
commonly used for data analysis scripting, such as Perl,
Ruby, R, or MATLAB. An implementation for these lan-
guages could interpose on the interpreter’s handlers for func-
tion calls, run-time value accesses, and file I/O in the ex-
act same way as INCPY does. Implementing for a com-
piled language (e.g., Java, C++) is less straightforward but
still feasible: One could create a source-to-source translator
or static bytecode rewriter that augments the target pro-
gram with the appropriate interposition callbacks prior to
execution. However, performance now becomes a concern.
INCPY’s run-time overhead is reasonable (mean of 16% on
our benchmarks) because interpreters are already slow com-
pared to executing compiled code. Static purity and escape
analyses [24], and other compile-time optimizations, might
be needed to achieve reasonable overheads on compiled code.

One could further generalize the ideas in this paper by im-
plementing an INCPY-like tool that works across programs
written in multiple languages. Some data analysis workflows
consist of separate programs that coordinate with one an-
other using intermediate data files [17, 21]. A tool could use
system call tracing (e.g., ptrace on Linux) to dynamically
discover dependencies between executed programs and the
data files that they read/write in order to eliminate unnec-
essary program executions.

Our technique can also be useful in domains beyond data
analysis. For instance, it could be used to speed up regres-
sion testing by ensuring that after the programmer makes a
code edit, only the regression tests affected by that edit are
re-run. This might make it feasible for tests to run continu-
ously during development, which has been shown to reduce
wasted time and allow bugs to be caught faster [23]. Con-
tinuous testing is most effective for short-running unit tests
tightly coupled with individual modules (e.g., one test per
class). However, many projects only contain system-wide re-
gression tests, each covering code in multiple modules. Man-
ually determining which tests need to re-run after a code edit
is difficult, and waiting for several minutes for all tests to re-
run precludes interactive feedback. Instead, an INCPY-like
tool could use function-level dependency tracking and mem-
oization to automatically incrementalize regression testing.

4. EVALUATION

Our evaluation addresses two main questions: What are
the performance impacts of dynamic dependency tracking
and automatic memoization (Section 4.1)? How can INCPY
speed up iteration times on real data analysis tasks without
requiring programmers to write caching code (Section 4.2)7

We ran all experiments on a Mac Pro with four 3GHz
CPUs and 4 GB of RAM, with Python 2.6.3 and INCPY
both compiled as 32-bit binaries for Mac OS X 10.6 using
default optimization flags. For faster performance, INCPY
did not track dependencies within Python standard library
code, because we assume users do not ever change that code.

4.1 Performance Evaluation

Running a script with INCPY when the cache is empty will
be slower than running with the regular Python interpreter
(by ~16% on our benchmarks) for two reasons: First, INCPY
needs to dynamically track dependencies, global reachabil-

Script # lines Running time Peak RAM (MB)

name of code Python INcPy Python INncPY
mmouse 230 0:51 1:00 50 101
tags-3 1200 2:29 3:09 371 374
tags-1 1200 3:00 3:17 440 444
linux 200 4:58 5:10 8.6 15
tags-2 1200 6:07 7:57 486 488
vr-log 700 24:42 28:30 323 694
sys-log 200 33:13 37:56 67 73
biology 250  8:11:27 8:54:46 1884 1966

Table 2: Running times and peak memory usage
of data analysis scripts executed with Python and
IncPy, averaged over 5 runs (variances negligible).
Figure 5 shows run-time slowdown percentages.
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Figure 5: Percent slowdowns relative to regular

Python when running data analysis scripts with
IncPy. The mean slowdown is 16%.

ity, and function impurity to determine when it is safe and
worthwhile to memoize. Second, INCPY must save and later
load memoized data from the on-disk cache.

4.1.1 Overall Slowdown

To quantify INCPY’s overall slowdown on typical data
analysis scripts, we compared running times and memory
usage when executing six scripts with regular Python and
INCPY. We obtained the following scripts from researchers
who had written them to analyze data for research published
in peer-reviewed papers (or currently under submission):

e linux — A script we wrote in 2007-2008 to mine data
about the Linux kernel project’s revision control his-
tory for an empirical software engineering paper [9].
We present a case study of this script in Section 4.2.1.

e tags — A set of information retrieval scripts for a pa-
per contrasting crowdsourced tags with expert anno-
tations for keywords describing books [15]. It consists
of three stages, named tags-1, tags-2, and tags-3, re-
spectively. We present a case study in Section 4.2.2.

e vr-log — A set of scripts that process event logs from
a virtual world for a distributed systems paper [16].
We present a case study in Section 4.2.3.

e sys-log — A script that processes a 2.5 GB supercom-
puter error log for an anomaly detection paper [22].

e mmouse — A script that post-processes and graphs
synchronized mouse input events for an HCI paper [13].
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e biology — A bioinformatics script that uses a hidden
Markov model to analyze human genome data.

Table 2 and Figure 5 show INCPY’s run-time and mem-
ory overheads. Figure 5 shows a mean slowdown of 16%
relative to regular Python, most of which is due to INCPY
dynamically tracking dependencies, global reachability, and
impurity. INCPY only memoizes the few long-running func-
tion calls corresponding to the data analysis stages in each
script (§3.3.2), and memoization only takes a few seconds
(84.1.2). Total script running times range from 1 minute to
8 hours (Table 2). Memory overheads range from negligible
to 2X, mainly due to maintaining object metadata (§3.4).

We could not find data analysis scripts larger than ~1000
lines of code, so to demonstrate INCPY’s scalability, we used
it to run the test suite of the Django project. Django is a
popular framework for building web applications and is one
of the largest Python projects, with 59,111 lines of Python
code [2]. To estimate worst-case behavior, we measured
INCPY’s run-time slowdown on the Django test suite. All
151 tests passed when running with INCPY. The mean
running time for an individual test case was 1.1 seconds
(median was 0.57 sec). The mean slowdown relative to
regular Python was 88% (maximum slowdown was 118%).
These short runs elicit INCPY’s worst-case behavior because
INCPY has a longer start-up time than the regular Python
interpreter (it must set up data structures for dependency
tracking). In reality, it would be impractical to use INCPY
on short-running applications like Django, since its start-up
time nullifies any potential speed-ups. However, for its in-
tended use on long-running data analysis scripts, INCPY has
a reasonable slowdown of ~16%.

4.1.2  Automatic Memoization Running Times

To measure cache save and load times in isolation, we
created a microbenchmark consisting of one Python function
that allocates a list of N random integers and returns that
list to its caller. We annotated that function to force INCPY
to memoize it; otherwise it would not be memoized since
it is both non-deterministic and short-running. We ran the
function once and measured the time it takes for INCPY to
save its memoized results to disk. Then we ran it again and
measured the time it takes for INCPY to load the matching
cache entry from disk and skip the original function call.

Figure 6 shows cache save and load times for lists ranging
from 1 to 100 million elements. Running times are instanta-
neous for lists of less than 100,000 elements and then scale
up linearly. At the upper extreme, a list of 100 million inte-

gers is 1 gigabyte in size and takes 20 seconds to load from
the cache. Cache load times are end-to-end, taking into ac-
count the time to start up INCPY, find a matching on-disk
cache entry, load it from disk, deserialize it into a Python
object, and finally skip the original function call.

In sum, memoization is worthwhile as long as cache load
time is faster than re-execution time (see §3.3.2), so Figure 6
shows that INCPY can almost always speed up functions that
originally take longer than ~20 seconds to run.

4.2 Case Studies on Data Analysis Scripts

To demonstrate how INCPY can provide the benefits of
less code, automated data management, and faster iteration
times when writing data analysis scripts, we present brief
case studies of three scripts from Table 2: linux (§4.2.1),
tags (§4.2.2), and vr-log (§4.2.3). INCPY provides similar
benefits for the other three scripts used in our experiments.

4.2.1 Speeding Up Exploration of Code Variants

To show how INCPY enables faster iteration when explor-
ing alternative hypotheses in a data analysis task, we studied
a Python script we wrote in 2007-2008 to mine Linux data
for a paper [9]. Our script computes the chances that an ar-
bitrary file in the Linux kernel gets modified in a given week,
by querying an SQLite database containing data from the
Linux project’s revision control history. It retrieves the sets
of files present in the Linux code base (“alive”) and modified
during a given week, using the get_all_alive_files(week)
and get_all_modified_files(week) functions, respectively,
and computes probabilities based on those sets. Both func-
tions perform an SQL query followed by post-processing in
Python (this mix of declarative SQL and imperative code
is common in data analysis scripts). Each call takes 1 to 4
seconds, depending on the queried week.

Our script computes probabilities for 100 weeks and ag-
gregates the results. It runs for 4 minutes, 58 seconds (4:58)
with regular Python and 5:10 with INCPY (4% slower). INCPY
memoizes all 100 calls to those two functions and records a
file dependency on the SQLite database file.

To see how we edited this script throughout its develop-
ment process, we checked out and inspected all historical
versions from its revision control repository. The first ver-
sion only did the original computation, but as we delved
deeper into our research questions, we augmented subse-
quent versions to do related computations. The final version
of our script (dated Feb. 2008) contains code for all 6 vari-
ants; a command-line flag controls which gets run. Here are
the variants and their running times with regular Python:

1. Original computation: Chances that a Linux source
code file gets modified in a given week (4:58)

2. Chances that a Linux file gets modified, conditioned on
the modification type (e.g., bug fix, refactoring) (5:25)

3. Chances that a Linux file gets modified, conditioned
on the time of day (e.g., morning vs. evening) (5:25)

4. Chances that a Linux file gets modified by the person
who has modified it the most in the past (5:15)

5. Chances that a Linux file gets modified by someone
above 90" percentile for num. edits to any file (5:25)

6. Chances that a Linux file gets modified by a person
with a .com email address (5:25)
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Figure 7: Datasets (circles) and Python func-
tions (boxes) from Paul’s information retrieval
scripts [15]. In each “Intermediate” circle, the 1st
row is run time and memory usage for generating
that data with Python, and the 2nd row for IncPy.

After taking 5:10 to make an initial run of the original
computation with INCPY, running any variant only takes 30
seconds, a 10X speed-up over regular Python. This speed-
up occurs because each variant calls the same 2 functions:

alive_set = get_all_alive_files (week)
mod_set = get_all_modified_files (week)
# <do fast—running computations on these sets>

The computations that differ between variants take much
less time to run than the 2 functions that they share in
common; INCPY memoizes those calls, so it can provide a
10X speed-up regardless of which variant runs. This id-
iom of slow-running (but rarely-changing) code followed by
fast-running (but frequently-changing) code exemplifies how
data analysts explore variations when prototyping scripts.
INCPY automatically caches the results of the slow-running
functions, so that subsequent runs of any variants of the
fast-running parts can be much faster.

4.2.2 Removing Existing Ad-Hoc Caching Code

To show how we can remove manually-written caching
code and maintain comparable performance, we studied in-
formation retrieval scripts written by our colleague Paul [15].
Figure 7 shows his workflow, consisting of 4 Python func-
tions (boxes) that process data from 7 input datasets (empty
circles). His functions are arranged in 2 script variants:

# Script variant 1:

x = parse_lcsh_skos ()

yl = parse_ltwkid (’datasetl’)
print lbrp_stats_variant_1(x, yl)

# Script variant 2:

x = parse_lcsh_skos ()

y2 = parse_ltwkid (’dataset2’)
print lbrp_stats_variant_2(x, y2)

Paul frequently edited the final function in each script:
lbrp_stats_variant_1 and lbrp_stats_variant_2. Since
he rarely edited parse_lcsh_skos and parse_ltwkid, he
grew tired of waiting for them to re-run on each execution
and simply produce the same results, so he wrote extra code
to save their intermediate results to disk and skip subsequent
calls. Doing so cluttered up his script with code to serialize
and deserialize results but sped up his iteration times.

We refactored Paul’s script to remove his caching code
and ran it with INCPY, which performed the same caching

qmp.py qmp.py qmp.py

trace.13json trace.14json trace.15 json

qmp.py ‘ qmp.py ‘ ‘ qmp.py ‘

merge_traces.py
merged.dat
render_histograms.py

data visualizations

Figure 8: Python scripts (boxes) and data files (cir-
cles) from Ewen’s event log analysis workflow [16].
Gray circles are intermediate data files, which are
eliminated by the refactoring shown in Figure 9.

trace13json) (trace.14json) (trace.15 son

render histograms()

data visualizations

Figure 9: Refactored version of Ewen’s event log
analysis workflow [16], containing only functions
(boxes) and input data files (circles)

automatically. The numbers in the “Intermediate” circles in
Figure 7 compare performance of running the original func-
tions to generate that data with Python versus the refac-
tored versions with INCPY (they correspond to the tags-1,
tags-2, and tags-3 rows in Table 2). Both versions took less
than a second to load cached results on a subsequent run.
Besides eliminating the need to write boilerplate caching
code, INCPY also automatically tracks dependencies between
Paul’s code and his 7 input datasets (empty circles in Fig-
ure 7). This can prevent errors like manually updating a
dataset and forgetting to re-run the dependent functions.

4.2.3 From File-Based to Pure-Python Workflows

To show how INCPY can benefit existing file-based work-
flows (§3.5) and provide an easy transition to a pure-Python
workflow, we studied Python code written by our colleague
Ewen to process event logs from a virtual world system [16].
Figure 8 shows his 3 Python scripts as boxes: The qmp.py
script takes two filenames as command-line arguments, reads
data from the first, processes it, and writes output to the
second. The merge_traces.py script first invokes qmp.py
16 times (once for each input trace.X.json file), then ag-
gregates all resulting paths.X.txt files into a merged.dat
file. Finally, render_histograms.py creates histograms and
other data visualizations from the contents of merged.dat.

INCPY can benefit Ewen’s current scripts by dynamically
recording all code and file read /write dependencies to create
the dependency graph of Figure 8. INCPY is 15% slower than
regular Python on the initial empty-cache run (28:30 vs.
24:42). But INCPY’s caching allows some subsequent runs to



be faster, because only script invocations whose dependent
code or data have changed need to be re-run:

e If no input trace.X.json files change (or some are
deleted), then none need to be re-processed by qmp.py

o If new trace.X.json files are added, then only those
files need to be processed by qmp.py

e If an individual trace.X. json file changes, then only
that file needs to be re-processed by qmp.py

Even though INCPY provides these speed-ups, Ewen’s code
is still cluttered with boilerplate to save and load intermedi-
ate files. For example, each line in paths.X.txt is a record
with 6 fields (4 floats, 1 integer, 1 string) separated by a
mix of colons and spaces, for human-readability. qmp.py
contains code to serialize Python data structures into this
ad-hoc textual format, and merge_traces.py contains code
to deserialize each line back into Python data.

It took us less than an hour to refactor Ewen’s code into
the workflow of Figure 9, where each script is now a function
that passes Python data into the next function via its re-
turn value without explicitly creating any intermediate data
files. INCPY still provides the same speed-up benefits as it
did for Ewen’s original scripts, but now the code is much
simpler, only expressing the intended computation without
boilerplate serialization/deserialization code. For an initial
empty-cache run, INCPY is 23% slower than regular Python
(29:36 vs. 24:02). A subsequent run takes 0.6 seconds if no
dependencies change.

This is a smaller version of the workflow described in
the introduction (Figure 1). We could have refactored that
workflow in the same way, but we no longer have access to its
code or datasets since that work was done within Microsoft.

5. RELATED WORK

To the best of our knowledge, INCPY is the first attempt to
integrate automatic memoization and persistent dependency
management into a general-purpose programming language.
The design of INCPY was inspired by and extends two classic
ideas in software development: memoization and make.

Memoization is an optimization first introduced in a 1968
Nature paper [19]: It involves manually rewriting a func-
tion to save its inputs and outputs to a cache, so that sub-
sequent calls with previously-seen inputs can be skipped.
INCPY extends memoization by making it fully automatic
and persistent, which involves detecting when it is safe and
worthwhile to memoize, and invalidating on-disk cache en-
tries when their dependencies are altered.

make is a ubiquitous UNIX tool that allows users to declar-
atively specify dependencies between commands and files,
so that the minimum set of commands need to be re-run
when dependent files are altered [7]. make has spawned
dozens of descendent tools that all operate on the same basic
premise. In particular, SCons (www.scons.org) and Ruffus
(www.ruffus.org.uk) are modern variants of make imple-
mented in Python. INCPY extends the ideas embodied by
make by automatically extracting these dependencies using
dynamic program analysis.

The Vesta software configuration management system [14]
provides a pure functional domain-specific language for writ-
ing software build scripts. Its interpreter performs auto-
matic memoization and dependency tracking in a similar
way as INCPY, but since it is a pure functional language, it

does not need to do impurity detection. Also, since it is a
domain-specific build scripting language, it has never been
used for general data analysis, to the best of our knowledge.

Scientific workflow systems such as VisTrails [26] are
graphical development environments for designing and ex-
ecuting scientific computations. Scientists create workflows
by using a GUI to visually connect together blocks of pre-
made data processing functionality into a data-flow graph.
In these domain-specific visual languages, each block is a
pure function whose results are automatically memoized and
persist across executions. Due to their specialized nature,
these systems are not nearly as popular for data analy-
sis as general-purpose languages like Python or Perl. The
creators of VisTrails admit, “While significant progress has
been made in unifying computations under the workflow um-
brella, workflow systems are notoriously hard to use. They
require a steep learning curve: users need to learn program-
ming languages, programming environments, specialized li-
braries, and best practices for constructing workflows [26].”

Self-adjusting computation is a related technique that
enables algorithms to run faster in response to small changes
in input data, only re-computing outputs for portions that
have changed [4, 12]. Self-adjusting computation tracks fine-
grained dependencies between executed basic blocks and the
objects that they mutate, which can provide large speed-ups
but requires programmers to annotate exactly which objects
to track. Its creator mentions, “Although self-adjusting com-
putation can be applied without having to change existing
code by tracking all data and all dependences between code
and data, this is prohibitively expensive in practice.” [4].
Even with annotations, there is at least a 500% slowdown on
the initial (empty cache) run [12]. In contrast, INCPY tracks
dependencies at a coarser level between function calls and
entire data structures and files, but it works automatically
without user annotations and with small (~16%) slowdowns.

Just-in-time compilers for dynamic languages (e.g.,
Unladen Swallow for Python, Rubinius for Ruby, TraceMon-
key [8] for JavaScript) can speed up script execution times
without requiring programmers to make any annotations,
which is similar in spirit to INCPY’s goals. However, JIT
compilers focus on micro-optimizations of CPU-bound code
like hot inner loops, whereas INCPY uses memoization to
avoid long-running computations regardless of their source.
For example, no JIT compiler optimizations could speed up
I/0O or network-bound scripts, which is what often consumes
time in data analysis scripts. INCPY could be coupled with
a JIT compiler to get the benefits of both techniques.

We introduced an early version of INCPY in a 2010 work-
shop paper [10], whose contents differ from this paper in
significant ways: First, that paper focused on defining the
problem space and establishing motivation using anecdotes
from interviews with scientists. Also, it presented a pre-
liminary version of INCPY (without a full evaluation) that
did not support file write dependencies, file-based workflows,
print buffering, fine-grained cache invalidation, or adaptive
time limits. These new features enable more opportunities
for memoization in real-world data analysis settings.

6. CONCLUSION

We have presented a novel and practical technique that
uses a set of dynamic analyses to integrate automatic memo-



ization and persistent dependency management into a general-
purpose programming language. We implemented our tech-
nique as an open-source Python interpreter named INCPY [1].
INCPY works transparently on regular Python scripts with
a modest (~16%) run-time slowdown, which improves both
usability and reliability: INCPY is easy to use, especially by
novice programmers, since it does not require programmers
to insert any annotations or to learn new language features
or domain-specific languages. Also, INCPY improves relia-
bility by eliminating human errors in determining what is
safe to cache, writing the caching code, and managing code
and dataset dependencies. In sum, INCPY allows program-
mers across a wide range of disciplines to iterate faster on
their data analysis scripts while writing less code.
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