
Mallard: Turn the Web into a Contextualized Prototyping
Environment for Machine Learning

Xiong Zhang
University of Rochester

Rochester, NY, USA
xzhang92@cs.rochester.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
Machine learning (ML) can be hard to master, but what first
trips up novices is something much more mundane: the in-
cidental complexities of installing and configuring software
development environments. Everyone has a web browser, so
can we let people experiment with ML within the context of
any webpage they visit? This paper’s contribution is the idea
that the web can serve as a contextualized prototyping envi-
ronment for ML by enabling analyses to occur within the con-
text of data on actual webpages rather than in isolated silos.
We realized this idea by building Mallard, a browser exten-
sion that scaffolds acquiring and parsing web data, prototyp-
ing with pretrained ML models, and augmenting webpages
with ML-driven results and interactions. To demonstrate the
versatility of Mallard, we performed a case study where we
used it to prototype nine ML-based browser apps, includ-
ing augmenting Amazon and Twitter websites with sentiment
analysis, augmenting restaurant menu websites with OCR-
based search, using real-time face tracking to control a Pac-
Man game, and style transfer on Google image search results.
These case studies show that Mallard is capable of supporting
a diverse range of hobbyist-level ML prototyping projects.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI);

Author Keywords
contextualized machine learning, ML prototyping

INTRODUCTION
Machine learning (ML) is now a highly sought-after skill in
areas such as technology, scientific research, healthcare, and
public policy [40, 53, 65]. There is widespread demand for
people who can acquire data in the wild, mold it to their
needs, and use it to make predictions about the world. Over
the past decade, software frameworks (e.g., TensorFlow [21],
Keras [6]), cloud computing services (e.g., AWS, Azure,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’19, October 20-23, 2019, New Orleans, LA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.
https://doi.org/10.1145/3332165.3347936

Google Cloud), and libraries of pretrained models (e.g., Mo-
bileNet [46], WaveNet [66], YOLO [60]) have given more
people access to ML. However, novices still face significant
barriers getting started with creating ML-based applications.

The math that underlies ML can be challenging to mas-
ter [33], but what first trips up novices is something much
more mundane: the incidental complexities of installing and
configuring their software development environment with the
requisite tools. Before even getting to write a single line of
code, they must wrestle with software package managers, li-
brary dependencies, OS version incompatibilities, command-
line environments, idiosyncratic data formats, or cloud com-
puting dashboards. Novices often report such software setup
struggles as barriers to getting started with ML [63, 64, 69].

Web-based interactive tutorials can lower such barriers by al-
lowing users to write code within their browser without in-
stalling dependencies. While convenient, their main limita-
tion is that they restrict users to whatever data and ML models
the creator of each tutorial provides. For instance, a tutorial
may embed a Python code editor connected to a server that
hosts data sets and pretrained models that its creator selected.
This is a good start, but what if learners could freely tinker
with ML on authentic data they are personally motivated by
rather than only following pre-made tutorials? Since the web
is a rich source of motivating data, what if people could exper-
iment with ML within the context of any webpage they visit?

To address this question, we developed Mallard, a browser
extension that turns the web into an ML prototyping environ-
ment. Mallard is inspired by physical prototyping environ-
ments such as breadboards [39, 68] for electronic circuits1:
Breadboards allow novices to quickly wire up, test, and play
with electronic components without the overhead of soldering
or fabrication. Likewise Mallard allows users to quickly ac-
quire data from webpages they visit and connect ML compo-
nents to them without the overhead of software infrastructure
setup. Just like how one would not expect to ship production-
grade electronics on a breadboard, we also do not expect Mal-
lard to be used for production-scale deployment of ML apps.

Figure 1 shows how Mallard enables users to prototype ML-
based applications entirely inside of the Chrome web browser
so that analyses occur directly within the context of webpages
that they are visiting. We call this a contextualized machine
learning workflow. Users typically follow a four-step process:

1Mallard = Machine learning lightweight breadboard

Figure 1: Mallard enables hobbyists to prototype machine learning ap-
plications directly within the context of existing webpages they visit.

1. Acquire data from existing webpages
2. Prototype in an interactive coding environment
3. Visualize debugging outputs in the console
4. Augment the host webpage with analysis outputs

Here is an example usage scenario: Alice is a teacher in a
classroom where students get low-cost Chromebook laptops.
Due to resource limitations, they cannot install ML tools on
the laptops and cannot afford access to cloud computing re-
sources. To teach her class about algorithmic bias [25], Alice
installs the Mallard browser extension and starts prototyping:

1. She visits her school’s private webpage, which contains all
students’ photos and profiles in an HTML table.

2. Mallard detects tabular data on that webpage and parses it
into a JavaScript table object containing text and images.

3. In the Mallard console, she imports the TensorFlow.js
JavaScript ML framework [64] and the face-api.js pre-
trained face detection model [54] by providing their URLs.

4. She writes JavaScript code in the console to run the face
detection model on the imported student photos. After tun-
ing the model, she tells Mallard to augment the webpage to
display the model’s predictions beneath everyone’s photo.

5. When she demos this to her class, her students notice that
many of their faces were not properly detected. Alice leads
a discussion on algorithmic bias due to the face-api model’s
training data not matching her students’ demographics.

6. Alice writes more JavaScript in the console to access her
laptop’s webcam and run the face detector on the captured
live video feed. She saves her exploratory code and dis-
tributes it to all of her students’ laptops.

7. Now every student can use their own webcams to play with
the face detector and see who is getting properly detected.

8. Her class decides to retrain this model using Alice’s web-
cam to take photos of their faces to use as new training
data. As they do so, they notice more photos on the school
webpage now being properly detected (even for students in
other classes). Along the way, Mallard shows ML diagnos-
tic visualizations to help them debug their model.

This scenario shows how Mallard serves as a browser-based
breadboard for connecting ML frameworks and pretrained
models to data on live webpages. If Alice did not have this
system, she would need to set up a full development environ-
ment on her machine or in the cloud, then help all of her stu-
dents do so. She would also need to figure out how to scrape
private website data using her school’s custom login creden-
tials and parse that data into a programmable form. Then she
must create a separate GUI to display the face detection algo-
rithm’s outputs alongside student profile photos. With Mal-
lard, everything happens within the original school webpage.

This paper’s main contribution is the idea that the web can
serve as a contextualized prototyping environment for ma-
chine learning by enabling analyses to occur directly within
the context of data on actual webpages rather than in isolated
standalone environments. We realized this idea by building
Mallard, a browser extension that scaffolds acquiring and
parsing web data, importing and writing code that operates
across multiple pages, and debugging using visualizations.

The web is a compelling prototyping environment due to
its ecosystem of millions of instantly-importable JavaScript
packages on npm, GitHub, and other websites [17]. In ad-
dition, GPU-accelerated JavaScript engines make it possible
to efficiently run ML models in the browser with frameworks
such as TensorFlow.js [64] and ml5.js [4]. The web also con-
tains huge amounts of motivating data [35, 72] ranging from
Wikipedia tables to government CSV files, along with bil-
lions of more images and videos to power ML apps. Just
like how breadboards make it easy for novices to tinker with
connecting electronics components together to build proto-
type circuits, Mallard aims toward a future where hobbyists,
students, and educators can tinker with ML models without
getting bogged down by software infrastructure complexities.

To demonstrate the versatility of Mallard, we performed an
informal case study where we used it to prototype nine ML-
based applications spanning a variety of domains and interac-
tion types: 1) augmenting Amazon and Twitter websites with
text sentiment analysis, 2) augmenting restaurant menu web-
sites with OCR-based search, 3) classifying birds on stock
photo websites, 4) augmenting Wikipedia tables with ani-
mal species labels, 5) retraining a neural network for binary
classification, 6) training a face recognizer from web images,
7) live coding on an ML tutorial webpage, 8) using real-time
face tracking to control a Pac-Man game, 9) style transfer on
Google image search results. Most took a few dozen lines of
JavaScript code to create custom UIs and to hook into exist-
ing ML frameworks and models. These case studies show that
Mallard is capable of supporting a range of breadboard-style
ML projects that might appeal to educators or hobbyists.

The contributions of this paper are:

• The idea that the web can serve as a contextualized proto-
typing environment for machine learning by unifying code
and data within a domain-specific browser developer tool.

• Mallard, a system that instantiates this idea with scaffold-
ing to help users acquire data, work with pretrained ML
models, and augment host webpages with ML outputs.

RELATED WORK
Mallard continues the long lineage of work on lowering bar-
riers to machine learning (ML) but is unique in its use of the
web as a contextualized prototyping environment for ML.

Domain-specific ML tools such as Crayons [41] and Eye-
patch [51] provide direct manipulation interfaces to help users
prototype specific types of ML applications: image classifiers
and computer vision from video streams, respectively. More
general-purpose ML tools such as Weka [44] enable users to
import tabular data and train a wide range of models using
a GUI. These systems strive to lower barriers for novices by
not requiring them to write any code to train and test basic
models. In contrast, Mallard is a full JavaScript-based coding
environment, which has a higher barrier to entry but enables
more sophisticated and custom ML apps to be built. Mal-
lard also uses webpages directly as both the input data and an
output canvas, whereas these tools require users to acquire,
clean, and import data into a standalone environment and then
manage outputs separately. Finally, Mallard is mainly for pro-
totyping with pretrained ML models along with light retrain-
ing on new data, so it does not have scaffolding for advanced
label and data management to train new models from scratch.

ML-focused programming environments often provide
scaffolding such as interactive visualizations to help users
debug their pipelines. For instance, Gestalt [57] shows vi-
sualizations of data as it moves through the ML pipeline;
users write custom code to visualize individual data points,
and Gestalt uses that code to create aggregate visualizations.
Computational notebooks such as Jupyter [10], Colabora-
tory [5], Observable [9], and Iodide [37] allow programmers
to interleave code with debugging visualizations as they are
developing ML apps. Visual analytics tools such as Ten-
sorBoard [13], What-If Tool [20], Manifold [71], Prospec-
tor [49], and ModelTracker [24] can augment programming
environments with ML-specific visualizations.

Mallard similarly allows users to interleave visualizations
with code and comes with a set of simple ones for profil-
ing and debugging ML model performance. However, Mal-
lard differs in a fundamental way from all of these existing
systems since it uses webpages directly as data substrates,
which removes the friction of needing to import data into a
standalone coding environment. Note that even web-based
computational notebooks (e.g., Jupyter) and web IDEs (e.g.,
repl.it [12], Cloud9 [3]) are still standalone coding environ-
ments; programmers must import data into them either via
cloud APIs or by downloading and managing data files.

ML libraries and frameworks can lower development bar-
riers by encapsulating common code for wrangling input data
and training and testing ML models. General-purpose li-
braries such as scikit-learn [58] for Python and MLlib [52]
for the Apache Spark ecosystem contain a wide array of
ML-related algorithms. More specialized frameworks such
as TensorFlow [21], Caffe [48], Theano [23], PyTorch [56],
and Keras [6] enable users to construct neural nets for deep
learning applications. In recent years, JavaScript-based ML
frameworks such as TensorFlow.js [64], Keras.js [36], and
ml5.js [4] have grown more popular as JavaScript engines

in web browsers have become faster and taken better advan-
tage of increasingly powerful GPUs. Potential benefits of
running ML in the browser include easier distribution to end
users, lower latency for interactive ML apps, and better pri-
vacy since personal data does not need to be sent off the user’s
device [38]. Mallard complements this growing trend of
JavaScript-based ML frameworks by augmenting them with
a browser-native programming environment.

Using webpages as data substrates is appealing due to the
large amounts of structured and semi-structured data on the
web. For instance, a web crawl that Google made in 2008
found over 154 million HTML tables containing relational
data [32], an amount which has likely grown exponentially
over the past decade. Browser-based tools can thus scrape, re-
format, and visualize data directly on existing webpages. For
instance, Sifter [47] augments structured data on webpages
with filtering and sorting controls. Mashup tools such as Mar-
mite [70] and Vegemite [50] enable users to extract tabular
web data into a spreadsheet to be combined with other data
sources. Vispedia [34] lets users augment tables, lists, and
infoboxes on Wikipedia pages with custom data visualiza-
tions. These systems do not require users to write code, which
makes them easier to use but limits their scope. Mallard con-
tinues this tradition by exposing a full JavaScript-based pro-
gramming environment with affordances for prototyping ML.

Mallard is also inspired by end-user programming tools for
the browser such as Chickenfoot [27] and Greasemonkey [59]
that allow users to alter behaviors of opened webpages by
writing JavaScript code in a browser sidebar editor. While in
theory these could be used for prototyping ML applications,
they lack important ML-centric scaffolding for workflow op-
erations such as acquiring data, visualizing debugging out-
puts, and augmenting host webpages.

The closest related system to Mallard is our own DS.js [72],
which parses tabular data on existing webpages and allows
users to write JavaScript data science code to operate on that
structured data using a specialized API. Mallard was heavily
inspired by the high-level goal of DS.js to turn webpages into
programmable substrates. However, DS.js is limited to only
parsing tabular data on a single webpage and having users
manipulate and visualize largely-numerical data within those
static tables. Mallard extends the contextualized web proto-
typing ideas of DS.js by: 1) providing hooks to augment web-
pages with both enhanced styling and interactivity, which is
important for ML demo apps, whereas DS.js just used web-
pages as static tabular data sources, 2) adding scaffolding for
multimedia data (e.g., images, videos), which also leads to
richer ML demos, 3) supporting mashups of data from mul-
tiple webpages, whereas DS.js was a single-page tool. We
view Mallard as a generalization of DS.js’s nascent ideas to
open up lower-barrier prototyping possibilities for ML.

MALLARD SYSTEM DESIGN AND IMPLEMENTATION
Mallard is a developer tools extension for the Chrome web
browser. The user activates it by opening the developer tools
panel. We recommend positioning this panel as a sidebar with
the currently-opened webpage (called the “host webpage”)

Figure 2: Example Mallard workflow from Case Study 9 of our evaluation: 1) acquiring image data via drag-and-drop, 2) writing code to apply a style
transfer [42] ML model to that image, 3) seeing visual previews in the console, 4) applying that model to modify all images on the host webpage.

on the left and Mallard on the right (Figure 1). The Mal-
lard panel contains an enhanced JavaScript console. How-
ever, unlike the built-in console, which runs code within the
scope of the current webpage, code that the user writes in
Mallard runs in the Chrome extension’s sandboxed environ-
ment, which is separated from any individual webpage. This
is critical both for providing isolation and for enabling Mal-
lard to access data across multiple webpages so that users can
create multi-page interactive apps (see Case Studies for ex-
amples). Mallard contains 5184 lines of JavaScript code built
upon the React framework [11] and the jsconsole [62] project.

Here is how Mallard supports users in prototyping ML apps
using the four-step workflow introduced in Figure 1. We will
use Figure 2 as a running example to illustrate each step.

Step 1: Acquire Data from Existing Webpages
Mallard provides interactive scaffolding to let users acquire
data from webpages they visit so that they can prototype
ML explorations within the context of data that is personally
meaningful to them. This scaffolding eliminates the burdens
of writing data parsing code, managing data files separately
on disk, and wrestling with login/authentication APIs (impor-
tant for accessing private data such as student profiles within
a school webpage). In short, if the user can reach a webpage,
they can start prototyping ML within it.

When the user sees data of interest on a webpage, they can
either right click on it and select “Import Data” or drag-and-
drop it into the Mallard console. Mallard parses that data and
exposes its resulting object as a JavaScript variable. Figure 3
shows how it recognizes common data types used in ML:

• Multimedia data such as images, videos, and audio clips
contained within the pervasive HTML , <video>
and <audio> tags. Multimedia data is useful for a wide
variety of ML apps such as image classification, face
recognition, and speech recognition. ML frameworks usu-
ally have their own API calls that convert standard im-
age, video, and audio DOM elements into framework-
specific objects. For instance, TensorFlow.js [64] has a
fromPixels() method that converts an image into a 2D
tensor that can be fed into neural networks. Mallard can di-
rectly connect to those APIs with one line of code, but for
frameworks without APIs to parse multimedia DOM ele-
ments, the user can write a custom handler to convert them
into framework-specific objects. In Step 1 of Figure 2, we

Figure 3: Mallard allows users to drag-and-drop common types of data
found on webpages into an interactive console in the browser developer
tools pane. It automatically parses that data into JavaScript objects so
that users can write code to process them.

drag a celebrity photo from Google Image Search into the
Mallard console, which turns it into an object that
can be further converted to a TensorFlow object.

• Structured tabular data such as HTML tables and
.csv/.tsv data files that appear as links on the current page.
Mallard parses each into a JavaScript data frame object that
resembles a relational database table. If the user clicks on
an HTML table cell, Mallard detects the nearest-enclosing
<table> tag; this heuristic was inspired by DS.js [72] and
works well for flat tables that contain relational-style data,
which is common on the web [32]. However, our parser
does not support nested tables. The HTML parser strips off
all styling information from text and uses the appropriate
multimedia parser (see above) to turn , <video>
and <audio> tags into JavaScript objects.

• Unstructured plain text, which the user can highlight and
import into the console as a standard JavaScript string.

• JavaScript objects within the current webpage. In
some cases, webpages contain hidden state stored in-
side of JavaScript objects. The user can run a spe-
cial :acquire ${variable name} command in the
Mallard console to import that variable’s current value.
This step is necessary since Chrome extensions run in a
separate environment from the host webpage’s JavaScript.

For more complex parsing, the user can write custom
JavaScript code to walk the host webpage’s DOM and ex-
tract the desired elements. (One could also imagine pairing
Mallard with PBD-based web scraping tools [35].)

After Mallard acquires a piece of data using one of the meth-
ods described above, it prints a message to the console to in-
dicate the variable name that it automatically assigned to the
resulting JavaScript object. Each data type appears in its own
array, as shown in Figure 3. For instance, imported images
get assigned variable names of _img_[0], _img_[1],
img[2], etc. The user can now write JavaScript code in
the Mallard console or code editor to operate on these objects.

Finally, Mallard exposes the browser’s built-in webcam and
microphone inputs to the user, which are useful for prototyp-
ing video- and audio-based ML apps, respectively. Running
the special console.webcam() and console.mic()
scaffolding functions will pop up inline video/audio record-
ing controls in the console without the user needing to write
boilerplate setup code.

Step 2: Prototype in an Interactive Coding Environment
Mallard turns the browser into a lightweight IDE by provid-
ing a JavaScript code editor and enhanced console capable of
displaying arbitrary HTML outputs (Figure 4). It unifies both
the user’s code and data in one place (the browser extension),
which eliminates the need to install and configure a separate
programming environment. A typical workflow involves pro-
totyping in the console and copying selected snippets into the
code editor for posterity. Mallard’s console natively supports
multi-line code inputs with syntax highlighting, which makes
it easier to prototype entire functions at once. For example, in
Step 2 of Figure 2, we wrote JavaScript in the console to im-
port the ml5.js framework, use its API to load an image style
transfer [42] model, and apply it to the imported image.

Loading external modules: To give users access to the en-
tire ecosystem of JavaScript libraries available on npm, the
canonical package management system currently with over
836,000 libraries [17], we implemented a :load console
command. By calling it with the name of an npm module,
Mallard will load and import that module from npm using the
unpkg [18] service. Also, calling :load with a JavaScript
file’s URL from anywhere on the web will load its code di-
rectly. Popular JavaScript libraries for data cleaning, machine
learning, and data visualization can be imported this way.

Saving and restoring state: The user can save the current
state of their session to a JSON file, which can then be loaded
by other users who have the Mallard Chrome extension in-
stalled. This saved state includes the URLs of all currently-
opened pages and the contents of the Mallard code editor and
console history associated with each URL. (Note that due to
how Chrome developer tools works, there is a separate in-
stance of the Mallard code editor and console for each page.)
Now when another user loads this JSON state file, it will di-
rect their browser to open all the stored URLs and load the
saved code in the Mallard editor and console history for each
URL. If a page requires the user to log in, they can enter that
information directly in their browser. This way, one user can

Figure 4: As the user follows a tutorial webpage for TensorFlow.js,
a JavaScript ML framework [15], they can play with its sample code
within the Mallard console (red box) and see ML debugging visualiza-
tions such as a) training accuracy curves and b) confusion matrix.

prototype an ML application that accesses personal data (e.g.,
within one’s Instagram or Twitter account) and other users
can run it on their own private data in their own browsers.

By default Mallard saves only the user’s code and not the
live in-memory state of JavaScript objects. However, there
may be times when a user wants to save a computed object
for others to access. This may occur when they have trained
an ML model on their own personal data on a given web-
site and want to share only that model with others but not
to expose their raw personal data. To do so, they can run a
special :tojson ${variable name} command on the
Mallard console to serialize that model’s object into JSON
to save as part of their session’s state. Many data structures
within ML frameworks have JSON serialization methods, and
users can write custom methods for those that do not.

Step 3: Visualize Debugging Outputs in Console
The Mallard console can display arbitrary HTML as the re-
sult of running code from either the console or editor. This
capability is useful for showing multimedia outputs or data
visualizations during the process of interactively debugging
ML pipelines. For example, in Step 3 of Figure 2, we can see
a live preview of the image in the console after it has been
processed by the style transfer ML model.

When the user runs a snippet of code whose return value is a
multimedia type that Mallard recognizes, it will render inline
in the console. If the user wants a more persistent visual out-
put, they can run an :output command to create an HTML
output block in the console and repeatedly write into it. This
is useful for creating a data animation that incrementally up-
dates as an algorithm gets refined, such as seeing a linear re-
gression line gradually get closer to fitting the training data.

ML-specific debugging visualizations: Although users are
free to create arbitrary data visualizations using JavaScript
libraries such as D3 [29] and Vega [19], Mallard comes with
a set of visualizations commonly used in ML prototyping:

• Histogram of training set classes shows the distribution
of training data seen so far, divided by class (e.g., cats,

dogs, and bears for an animal classifier). This lets users
see which classes they need to collect more samples for.
• Barplots of predicted classes along with their prediction

confidence levels, for multiclass classification (e.g., this
test image is 85% likely to be a cat, 10% dog, 5% bear).
• Confusion matrix shows a 2D matrix of classes with the

number of data points that were predicted in each class,
along with its ground truth actual class (e.g., how many
cats were mispredicted as dogs).
• ROC curves (Receiver Operating Characteristic) show

true positive vs. false positive rates for various threshold
value settings in binary classification tasks [45].
• Accuracy curves and loss curves plot model performance

versus number of iterations, often used when training mod-
els such as neural networks. The shapes of these curves can
indicate possible underfitting or overfitting [31].
• Image and video overlays enable custom renderings of

bounding boxes and labels atop images and videos, used to
show outputs of image/video recognition models. Figure 5
shows a screenshot from one of our case studies where we
ran OCR to recognize text in restaurant menu images. We
used the overlay scaffolding to render orange highlights
when the user searches for text that appears in the images.

These visualizations can be accessed via function calls. Fig-
ure 4 shows ML debugging visualizations from one of our
case studies: as the user follows a tutorial to train a JavaScript
neural network for handwriting recognition [15], Mallard is
open on the right. As they tune the model, they can see the
accuracy curve and confusion matrix in Mallard’s console.

To implement each visualization, we wrote around a dozen
lines of code to hook it up to the ML frameworks used in
our case studies (see Table 1 for details). This is necessary
because each framework exposes its model training and in-
ference data structures using its own APIs. Supporting other
frameworks would likely require a similar amount of code,
but note that that those hooks need to be written only once by
an experienced user and then distributed as part of Mallard.

Finally, since the console can display HTML output blocks,
the user can write JavaScript code to implement widgets that
control ML algorithm hyperparameters or thresholds. For in-
stance, the user can create standard HTML5 input controls
such as a range slider to tune a hyperparameter and then see
how those adjustments affect algorithm performance.

Figure 6 shows an example widget from one of our case stud-
ies. The user has run a sentiment analysis [14] on their Twit-
ter feed and created a slider to adjust a threshold. When they
slide to a threshold value, all tweets with sentiment values be-
low that value will be hidden. This enables users to customize
their Twitter feed to hide the most negative-sounding tweets.

Step 4: Augment Host Webpage with Analysis Outputs
Mallard is unique in not only using webpages as data sources
(Step 1) but also in using them as substrates to display the
outputs of ML analyses in their original contexts. In contrast,
when running a desktop or cloud ML workflow, the user sees
only textual outputs on a command-line terminal or as output

Figure 5: Creating a custom search widget (red box) in Mallard’s con-
sole to perform OCR on an image in the host webpage, then using image
overlay scaffolding to highlight the recognized text (Case Study 2).

data files that they need to manually sift through, which are
both disconnected from the context of their input data.

When first acquiring each piece of data from the host web-
page in Step 1, Mallard keeps track of the path to its DOM
element. This way, the user can later augment that element
with the outputs of their ML analyses. Here are details for
each supported data type from Step 1:

• Multimedia data such as images, videos, and audio
clips: Mallard can add an HTML caption below the origi-
nal data’s DOM element on the webpage to show relevant
analysis results or replace it entirely with a new piece of
data. For instance, it can replace an image on a webpage
with a transformed version after applying a style transfer
model (see Step 4 of Figure 2). Mallard can also use the
image/video overlay scaffolding (see Figure 5) to augment
images and videos on the host webpage.

• Structured tabular data in HTML tables: Mallard keeps
a mapping between each piece of data in the parsed
JavaScript data frame object and its original DOM element
in the webpage’s HTML table. This lets the user write code
to, say, transform all data in a particular column and write
their updated values back into the HTML table. Or they can
insert an additional column in the HTML table to show ad-
ditional analysis results alongside the original data points.

• Unstructured plain text: Mallard keeps track of what text
was selected on the page to turn into a given JavaScript
object. This provenance lets the user later transform that
selected text by, say, altering its CSS with color or format
updates. For instance, altering text color can indicate posi-
tive or negative tone in text sentiment analysis.

• JavaScript objects: Mallard enables users to ac-
quire the value of a JavaScript object from any host
webpage using the :acquire command. Like-
wise it also allows them to push those values into
webpages that are opened in other tabs using a

Figure 6: Creating a numerical slider and using it to hide tweets that fall
below the selected threshold in a text sentiment analysis (Case Study 1).

:push ${variable name} ${tab ID} command
that specifies both the variable name and the numerical ID
of the other tab. This feature lets users prototype apps
that span multiple webpages by forming a conduit (through
the in-memory global storage within Chrome’s developer
tools) to pass JSON data between pages that may be hosted
on different domains, without cross-domain restrictions.

Step 4 of Figure 2 shows an example of augmenting the
Google Image Search HTML table with the results of run-
ning the style transfer ML model on each individual image.
Also, Figure 7 shows a zoomed-in view from one of our case
studies where we used Mallard to augment an HTML table on
the host webpage with ML outputs. We first trained a cat vs.
dog binary classifier and then applied it to all images on a pet
adoption webpage, which augmented each pet’s HTML table
cell with its predicted class (cat or dog). This way, users can
see model outputs within the context of the host webpage.

DISCUSSION: SYSTEM SCOPE AND LIMITATIONS
Mallard turns the web browser into a contextualized proto-
typing environment (“breadboard”) for machine learning and
related apps. Its technical contribution is a set of in-browser
scaffolding to assist programmers throughout their workflow,
summarized in Table 1. Beyond ML applications, Mallard
can also be used to create browser extensions for general data
science, personal data analytics, or web mashups. But doing
so effectively would likely involve different forms of scaf-
folding, such as what Fusion provides for web mashups [73].

Just like prototype circuits constructed on breadboards, ML-
based apps created with Mallard are not meant to scale or be
deployed publicly. Although web browsers are now capable
of handling more data and computation than their predeces-
sors, they still cannot compete with dedicated servers in terms
of running production-scale ML pipelines. Regarding secu-
rity and privacy, Chrome extensions have extensive permis-
sions to access private user data, so users should not install
and run Mallard prototypes from untrusted sources.

Figure 7: Testing a cat vs. dog image classifier and augmenting a pet
table on a host webpage with the predicted class labels (Case Study 5).

Mallard is best suited to assist users in applying pretrained
ML models on web data or to do some retraining (transfer
learning [55]) by adding small to moderate amounts of their
own data. Again due to scaling issues, it is impractical to
use Mallard to train new models from scratch on large data
sets or perform fundamental ML research such as creating
new neural network architectures. However, we envision that
as ML frameworks and pretrained model collections grow in
maturity, there will be far more users of existing ML compo-
nents (the target audience for Mallard) rather than developers
of novel ML technologies.

Since each ML framework has its own APIs and data struc-
tures, certain parts of the scaffolding in Table 1 must be writ-
ten as hooks into the APIs of each framework, marked with ?
in Table 1. As a proof of concept for our case studies, we im-
plemented hooks for TensorFlow.js, one of the most popular
ML frameworks [64]. (We also used ml5.js and face-api.js in
our case studies, but those are built atop TensorFlow.js so they
can reuse our same hooks.) Each hook took around a dozen
lines of code and needs to be written only once by an expert;
they can then be packaged and reused by many novices.

Mallard does not require users to install software or set up
servers to host their data. But since Mallard relies on live
webpages to host the data for ML prototypes, if those pages’
contents change in the future, then analysis results could also
change. Sometimes that is desirable, such as when one wants
to re-run analyses on the latest fresh data on a webpage. But
if a user really wants to snapshot the current moment’s data,
they can use the :tojson ${variable name} console
command to serialize it as part of the session JSON state.

Mallard’s scaffolding (Table 1) can lower barriers to ML pro-
totyping in the browser by eliminating infrastructure setup
and excessive boilerplate code. However, that scaffolding
does not provide any more expressive power beyond writing
regular JavaScript code in a Chrome extension.

Finally, Mallard eases some technical barriers to applying
ML, but it does not help novices better understand either
the mathematical or the ethical nuances surrounding complex
ML models. One specific danger of more ML models and
frameworks being available as opaque black-box components

Step 1: Acquire Data
Multimedia import parse images, videos, and audio clips
Table import parse HTML tables and .csv/.tsv file links
:acquire command import JavaScript object state into Mallard
webcam(), mic() record from webcam or microphone

Step 2: Prototype
:load command remotely load npm or JS modules from web
:tojson command serialize object state to JSON

Step 3: Visualize
:output command create visualization or interactive widget
Image/video overlay augment with HTML canvas overlay
Training set histogram ML debugging (?10 lines of hook code)
Prediction barplots ML debugging (?5 lines)
Confusion matrix ML debugging (?37 lines)
ROC curves ML debugging (?16 lines)
Accuracy/loss curves ML debugging (?11 lines)

Step 4: Augment Host Webpage
Multimedia
augmentation

add image captions, replace image, image
overlays

Table augmentation replace table cells, add rows or columns
Text augmentation color and style highlighted text
:push command push JavaScript object to another browser tab

Table 1: Summary of the scaffolding that Mallard provides to help users
prototype ML in the browser without writing as much boilerplate code.
? means we had to write ML-framework-specific hooks for this part.

is that programmers may misuse them in ways that perpet-
uate algorithmic biases [22, 25, 26, 28, 43]. For instance,
facial recognition has the potential to amplify discrimination
and other unethical uses of surveillance [61, 67]. Thus, we
recommend for tools such as Mallard to be used alongside
learning resources that demonstrate responsible uses of ML.

CASE STUDY OF PROTOTYPING ML WITH MALLARD
What is the range of ML applications that can be feasibly
prototyped with Mallard? How much coding effort do they
require? What are the limits of Mallard’s capabilities? As
a first step toward answering these questions, we performed
an informal case study by using Mallard to prototype nine
ML applications spanning domains such as sentiment analy-
sis, image recognition, and gaming. We came up with proto-
type ideas by browsing online ML tutorials to get a sense of
what instructors, students, and hobbyists try when exploring
popular frameworks. We first summarize our nine prototypes:

1. Augmenting Amazon and Twitter with Sentiment Analysis
We augmented the Amazon and Twitter websites with a sen-
timent analysis NLP model, which analyzes text to assess
whether its tone is positive or negative. We did so by loading
TensorFlow.js in the Mallard console, downloading Google’s
pretrained sentiment analysis CNN (convolutional neural net-
work) from a URL [14], and iteratively tuning its settings
on blocks of text extracted from those webpages. For Ama-
zon, we browsed to customer reviews on a product page and
dragged blocks of text into Mallard’s console to test and tune
the model. For Twitter, we went to our home page of tweets
and dragged in the text of individual tweets into the console.

Once we were satisfied with our model’s settings, we wrote
custom JavaScript code to inject into each host page. For
Amazon, our code parses all of the text in the reviews sec-
tion, runs sentiment analysis on each review, and highlights

each review with a shade of green or red depending on how
positive or negative it appears, respectively (Figure 8-1). Fig-
ure 6 shows our Twitter augmentation, where we made a
slider widget that the user can slide to choose a threshold
value. Our code then hides all tweets in their feed whose sen-
timent scores are below that threshold. This way, users can
browse Twitter without seeing overly negative content. This
case study shows how people can use Mallard to import a pre-
trained ML model, test it on text from existing webpages, and
then create custom interactions to augment those pages.

2. Augmenting Restaurant Menus with OCR-Based Search
Many local restaurant webpages post their menus as scanned
images, which makes it infeasible for viewers to perform text
searches on their contents (Figure 8-2). To enable search-
based interactions, we loaded the Tesseract.js [16] OCR (op-
tical character recognition) model in the Mallard console and
used it to extract text from those menu images. We iteratively
tested and tuned the model in the console with some test im-
ages, and once satisfied, created a search box widget. When
the user types a string in that box, our code searches for that
text and retrieves the bounding boxes of where they appear
in the original menu image. It then uses the image overlay
scaffolding to render an orange highlight over those parts of
the image to visually show the search results.

3. Classifying Birds on Stock Photo Websites
Stock photo websites offer large collections of professional
photos, but they often lack meaningful labels. For instance,
searching for birds on a photo site such as pexels.com will
return many unlabeled photos. To add labels for bird species
as image captions, we loaded up the ml5.js framework and
MobileNet pretrained model [46] in Mallard. We dragged a
few test bird images into the console to tune the code needed
to classify them based on the corpus of thousands of animal
species names stored in that model. Then we used Mallard’s
webpage augmentation scaffolding to augment the original
image with a barplot showing the top predicted species names
and their relative confidence scores (Figure 8-3).

4. Augmenting Wikipedia Tables with Animal Species Labels
In a similar vein, Figure 8-4 shows how we used Mallard
to augment a Wikipedia HTML table with animal species
prediction results from a MobileNet model. We browsed
to the “List of domesticated animals” Wikipedia page [7],
which contains a table of animal images and descriptions.
We dragged that table into Mallard, which parses it into a
JavaScript data frame object with a column containing image
objects. We ran the same MobileNet image classifier to get
species names for all the animal images and used Mallard’s
table output scaffolding to augment the original HTML table
with a new column showing its prediction results. This demo
shows how Mallard can be applied to structured data such as
tables to parse, analyze, and augment them with ML results
within the context of the original page.

5. Retraining a Neural Network for Binary Classification
So far our case studies have only involved applying and tun-
ing pretrained ML models, which is a reasonable starting
point for hobbyists. A more advanced use case is perform-
ing transfer learning [55], which means retraining a neural

pexels.com

1. Amazon sentiment analysis 2. Restaurant menu OCR and search 3. Stock photo classification 4. Augmenting Wikipedia with ML

5. Retraining neural net on images 6. Training superhero recognizer 7. ML tutorials with live coding 8. Pac-Man with face tracking

Figure 8: Screenshots from our case studies where we used Mallard to augment webpages with ML model outputs and interactive controls. Case Study
9 (image style transfer) is shown in Figure 2.

network model by adding small to moderate amounts of ad-
ditional data. Retraining takes significantly less data and time
than training a new model from scratch since it can reuse most
existing layers of a pretrained neural net such as MobileNet.
For this case study we used retraining to build a custom bi-
nary classifier that differentiates between cats and dogs. To
do so, we performed Google image searches for “cats” and
“dogs” respectively, and dragged in 10 images of each into
Mallard. We fed those images and labels into the MobileNet
model and rendered the training loss curves using Mallard’s
ML debugging visualizations. By monitoring this curve as we
added additional training data, we can see when the loss con-
verges to a reasonable minimum. To test the model, we went
to a pet adoption website [1] and augmented each image on
there with the model’s prediction labels (see Figure 7).

6. Training a Superhero Face Recognizer
As another example of retraining, using the base model from
face-api.js [54] we trained a custom face recognizer to find
Marvel Avengers superheroes. To do so, we first browsed
to various webpages containing images of those superheroes,
dragged them into Mallard, and added them to our labeled
training set. After training completed, we built a selector UI
in the Mallard console where the user can choose the name of
an Avengers superhero and have the face recognizer try to find
that superhero on a chosen image on the current webpage. For
instance, they could choose a movie poster such as one for
Avengers: Endgame [2], which contains the faces of over a
dozen superheroes (Figure 8-6). If the model finds a match, it
will highlight the bounding box of the superhero’s face in that
movie poster. This case study shows how Mallard lets users
collect and aggregate training data from multiple webpages.

7. Augmenting ML Tutorial Webpage with Live Coding
ML tutorial webpages often contain sample code and data
alongside their instructions. For instance, the TensorFlow.js
home page has a step-by-step tutorial on how to train a

numerical digit recognizer using the MNIST handwriting
database [15]. To follow such a tutorial, normally the user
would need to set up their own software development envi-
ronment and load data sets into there. With Mallard, though,
they can instead follow along with sample code directly on
the tutorial webpage itself. To do so, we load TensorFlow.js
and the MNIST data set from URLs and copy the tutorial’s
sample code into the Mallard console to do model training.
Again we can monitor the loss curves in the console to see
training performance. This case study shows how Mallard
can turn static tutorial webpages into live coding playgrounds
where learners can tinker with sample JavaScript code.

8. Playing Pac-Man Game using Real-Time Face Tracking
For a more interactive demonstration of Mallard’s capabili-
ties, we used it to build a face-based gaming controller for
a Pac-Man game we found on the web. The idea is that by
tracking the user’s face in real time through a live webcam
feed in the browser, that will enable them to control Pac-
Man’s movements by moving their head up, down, left, and
right. To implement this custom controller, we loaded face-
api.js and created a webcam block in Mallard’s console using
console.webcam(). We wrote code to continually ex-
tract still image frames from the webcam video feed and pass
it into face-api.js to perform face detection. Then we took the
position differences in the bounding boxes returned by face-
api on consecutive frames and injected that signal into an ex-
isting Pac-Man web game to control Pac-Man. One could
also imagine hooking Mallard to microphone inputs and us-
ing speech recognition models to provide a voice interface to
Pac-Man. This case study shows how Mallard can be used to
prototype real-time interactions built upon ML models.

9. Performing Style Transfer on Google Images Results
Finally, for a more artistic demo, we hooked up a neural net-
work for image style transfer [42] to the Google image search
results webpage. Style transfer is an ML technique where the

Case Study Interaction Type Training? Augment Webpage? Lines of code
1. Sentiment Analysis use slider to filter or style text based on sentiment No Yes † 67A, 77T
2. Restaurant OCR search for text and highlight with overlay in OCR’ed images No Yes 17
3. Image Classification none No Yes 10
4. Wikipedia Tables none No Yes 15
5. Train Cat/Dog Classifier none Yes Yes 16
6. Train Face Recognizer select name and highlight recognized faces on image Yes Yes 15
7. Augment ML Tutorial live coding and debugging while following tutorials Yes No 318?
8. Pac-Man Face Controller control a game using face movements No No 45
9. Image Style Transfer select artistic style to apply to images No Yes 20

Table 2: Summary of case studies showing interaction types, whether an ML model was trained on new data, whether host webpage was augmented,
and lines of code to implement each. (†67 lines for Amazon, 77 lines for Twitter. ?most lines copy-pasted from sample code on the tutorial webpage.)

artistic style from one image, such as a van Gogh painting, is
transferred to other images. We began prototyping by drag-
ging one test image into the Mallard console to tune style
transfer settings from the pretrained model that comes pack-
aged with ml5.js [4]. After we were satisfied with how the
output image looked by previewing it in the console, we built
a simple selection UI where the user can choose between
three pretrained styles from the Scream, Rain Princess, and
La Muse paintings. When the user selects a style, our code
applies that style to all images on the Google image search
results page. This case study is shown in Figure 2.

Reflecting on Our Prototyping Experiences
Table 2 summarizes our case studies, which demonstrate that
Mallard can be used to prototype ML apps that span a diverse
range of application domains and interaction types. Most
took around a dozen lines of JavaScript code to implement.
Our code involved a mix of web front-end programming (e.g.,
creating HTML widgets and writing callbacks to make them
interactive), API calls to Mallard’s scaffolding functions (e.g.,
to augment elements on the host webpage), and API calls to
ML framework code. In our experience, the most challenging
part was working with the low-level APIs of ML frameworks
such as TensorFlow.js. Note that making these frameworks
easier to use is outside the scope of Mallard, whose goal is
to provide contextual scaffolding for users to tinker with such
frameworks within the browser. In sum, Mallard cannot make
ML inherently “easier” but can help novices get started by re-
moving extraneous software infrastructure barriers.

Note that all these case studies would have been feasible to
implement without Mallard but would have required much
more friction in setting up IDEs and web servers and then
learning various data scraping and authentication APIs (e.g.,
for Twitter). Mallard reduces this friction by allowing users to
start from a context where code infrastructure and data are al-
ready set up in their browser on webpages that they are famil-
iar with. Its scaffolding code and enhanced JavaScript con-
sole also make it more convenient to acquire data, take user
inputs, visualize ML models, and augment the host webpage.

Despite the convenience of in-browser prototyping, here are
some frictions we encountered: When loading content such as
images or videos, some websites block remote fetches from
JavaScript front-end code. In our case studies we did not en-
counter these problems much, and we could choose different
sites that did not have such restrictions. If this becomes an
issue in the future, we will consider a proxy server approach

similar to Fusion’s [73] where the backend does the resource
fetching. There were also inconsistencies in how the code for
ML frameworks and pretrained models were hosted. Hope-
fully as better community standards form around package for-
mats in the future, that will make it easier for programmers to
mix and match components much like how package managers
such as npm [8] already make it easier to manage JavaScript
libraries. Finally, browser extensions run in a sandbox that
communicates with host pages only via cumbersome text-
based message passing. We would have liked finer-grained
settings that both protect the host page’s privacy while also
sharing state across multiple pages and developer tools.

In these case studies we tried to emulate the scope of
breadboard-style ML projects that might appeal to educators
or hobbyists. But we have not yet performed a field deploy-
ment or formal usability study to get Mallard into the hands of
real users. Thus, we cannot make claims about the system’s
learnability, discoverability, or overall usability. Looking for-
ward, ideally we should deploy Mallard alongside properly
designed instructional materials to provide both the technical
and social contexts surrounding the given ML techniques.

CONCLUSION
Throughout the past decade, rapid advances in open-source
machine learning frameworks and publicly-available libraries
of pretrained models have made ML more accessible to pro-
grammers who are not ML specialists. In parallel, the rapid
maturing of the web as a ubiquitous platform for running code
and hosting data has made it well-positioned to become a
compelling substrate for ML applications. This paper aims
to coalesce these two complementary trends with Mallard, a
browser extension that enables hobbyists to prototype ML di-
rectly within the context of existing webpages. More broadly,
the web has long been integral to software prototyping; pro-
grammers often use it to opportunistically forage for techni-
cal information, code examples, and tutorials [30]. However,
they must constantly context-switch between web browsers
(where resources are foraged) and development tools (where
software gets built). Mallard points toward a future where
hobbyists can opportunistically prototype entirely within the
browser, unifying all of their code, data, and environment.

ACKNOWLEDGMENTS
Thanks to Kathleen Tuite and Priyan Vaithilingam for feed-
back and to a Google Faculty Research Award for funding.

REFERENCES
[1] 2019. Adopt the Perfect Pet.

https://www.adoptapet.com/. (2019). Accessed:
2019-04-02.

[2] 2019. Avengers: Endgame.
https://www.marvel.com/movies/avengers-endgame.
(2019). Accessed: 2019-04-02.

[3] 2019. AWS Cloud9: A cloud IDE for writing, running,
and debugging code.
https://aws.amazon.com/cloud9/. (2019). Accessed:
2019-04-02.

[4] 2019. Friendly Machine Learning for the Web.
https://ml5js.org/. (2019). Accessed: 2019-04-02.

[5] 2019. Google Colaboratory.
https://colab.research.google.com/. (2019).
Accessed: 2019-04-02.

[6] 2019. Keras: The Python Deep Learning library.
https://keras.io/. (2019). Accessed: 2019-04-02.

[7] 2019. List of domesticated animals.
https://en.wikipedia.org/wiki/
List of domesticated animals. (2019). Accessed:
2019-04-02.

[8] 2019a. NPM. https://npmjs.com/. (2019). Accessed:
2019-04-02.

[9] 2019. Observable. https://observablehq.com/.
(2019). Accessed: 2019-04-02.

[10] 2019. Project Jupyter. http://jupyter.org/. (2019).
Accessed: 2019-04-02.

[11] 2019. React - A JavaScript library for building user
interfaces. https://reactjs.org/. (2019). Accessed:
2019-04-02.

[12] 2019. Repl.it - The world’s leading online coding
platform. https://repl.it/. (2019). Accessed:
2019-04-02.

[13] 2019. TensorBoard: Visualizing Learning.
https://www.tensorflow.org/guide/
summaries and tensorboard. (2019). Accessed:
2019-04-02.

[14] 2019. TensorFlow.js Example: Sentiment Analysis.
https://github.com/tensorflow/tfjs-examples/
tree/master/sentiment. (2019). Accessed:
2019-04-02.

[15] 2019. TensorFlow.js — Handwritten digit recognition
with CNNs.
https://codelabs.developers.google.com/codelabs/
tfjs-training-classfication/. (2019). Accessed:
2019-04-02.

[16] 2019. Tesseract.js - Pure Javascript Multilingual OCR.
http://tesseract.projectnaptha.com/. (2019).
Accessed: 2019-04-02.

[17] 2019b. This year in JavaScript: 2018 in review and
npm’s predictions for 2019.
https://blog.npmjs.org/post/180868064080/this-
year-in-javascript-2018-in-review-and-npms.
(2019). Accessed: 2019-04-02.

[18] 2019. UNPKG. https://unpkg.com/. (2019).
Accessed: 2019-04-02.

[19] 2019. Vega - A Visualization Grammar.
https://vega.github.io/vega/. (2019). Accessed:
2019-04-02.

[20] 2019. What-If Tool.
https://pair-code.github.io/what-if-tool/.
(2019). Accessed: 2019-04-02.

[21] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A
System for Large-scale Machine Learning. In
Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation
(OSDI’16). USENIX Association, Berkeley, CA, USA,
265–283. http://dl.acm.org/citation.cfm?id=
3026877.3026899

[22] Eugene Agichtein, Eric Brill, Susan Dumais, and
Robert Ragno. 2006. Learning User Interaction Models
for Predicting Web Search Result Preferences. In
Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’06). ACM, New York,
NY, USA, 3–10. DOI:
http://dx.doi.org/10.1145/1148170.1148175

[23] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermüller, Dzmitry Bahdanau, Nicolas
Ballas, Frédéric Bastien, Justin Bayer, Anatoly
Belikov, Alexander Belopolsky, Yoshua Bengio,
Arnaud Bergeron, James Bergstra, Valentin Bisson,
Josh Bleecher Snyder, Nicolas Bouchard, Nicolas
Boulanger-Lewandowski, Xavier Bouthillier,
Alexandre de Brébisson, Olivier Breuleux, Pierre Luc
Carrier, Kyunghyun Cho, Jan Chorowski, Paul F.
Christiano, Tim Cooijmans, Marc-Alexandre Côté,
Myriam Côté, Aaron C. Courville, Yann N. Dauphin,
Olivier Delalleau, Julien Demouth, Guillaume
Desjardins, Sander Dieleman, Laurent Dinh, Melanie
Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou,
Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu
Germain, Xavier Glorot, Ian J. Goodfellow, Matthew
Graham, Çaglar Gülçehre, Philippe Hamel, Iban
Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina
Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail
Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin,
Eric Larsen, César Laurent, Sean Lee, Simon
Lefrançois, Simon Lemieux, Nicholas Léonard,
Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah
Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier

https://www.adoptapet.com/
https://www.marvel.com/movies/avengers-endgame
https://aws.amazon.com/cloud9/
https://ml5js.org/
https://colab.research.google.com/
https://keras.io/
https://en.wikipedia.org/wiki/List_of_domesticated_animals
https://en.wikipedia.org/wiki/List_of_domesticated_animals
https://npmjs.com/
https://observablehq.com/
http://jupyter.org/
https://reactjs.org/
https://repl.it/
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://github.com/tensorflow/tfjs-examples/tree/master/sentiment
https://github.com/tensorflow/tfjs-examples/tree/master/sentiment
https://codelabs.developers.google.com/codelabs/tfjs-training-classfication/
https://codelabs.developers.google.com/codelabs/tfjs-training-classfication/
http://tesseract.projectnaptha.com/
https://blog.npmjs.org/post/180868064080/this-year-in-javascript-2018-in-review-and-npms
https://blog.npmjs.org/post/180868064080/this-year-in-javascript-2018-in-review-and-npms
https://unpkg.com/
https://vega.github.io/vega/
https://pair-code.github.io/what-if-tool/
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dx.doi.org/10.1145/1148170.1148175

Mastropietro, Robert McGibbon, Roland Memisevic,
Bart van Merriënboer, Vincent Michalski, Mehdi
Mirza, Alberto Orlandi, Christopher Joseph Pal,
Razvan Pascanu, Mohammad Pezeshki, Colin Raffel,
Daniel Renshaw, Matthew Rocklin, Adriana Romero,
Markus Roth, Peter Sadowski, John Salvatier, François
Savard, Jan Schlüter, John Schulman, Gabriel
Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk,
Samira Shabanian, Étienne Simon, Sigurd
Spieckermann, S. Ramana Subramanyam, Jakub
Sygnowski, Jérémie Tanguay, Gijs van Tulder,
Joseph P. Turian, Sebastian Urban, Pascal Vincent,
Francesco Visin, Harm de Vries, David Warde-Farley,
Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun
Xue, Li Yao, Saizheng Zhang, and Ying Zhang. 2016.
Theano: A Python framework for fast computation of
mathematical expressions. CoRR abs/1605.02688
(2016). http://arxiv.org/abs/1605.02688

[24] Saleema Amershi, Max Chickering, Steven M.
Drucker, Bongshin Lee, Patrice Simard, and Jina Suh.
2015. ModelTracker: Redesigning Performance
Analysis Tools for Machine Learning. In Proceedings
of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI ’15). ACM, New
York, NY, USA, 337–346. DOI:
http://dx.doi.org/10.1145/2702123.2702509

[25] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren
Kirchner. 2016. Machine bias: There’s software used
across the country to predict future criminals.
ProPublica 23 (2016).

[26] Richard Berk and Jordan Hyatt. 2015. Machine
Learning Forecasts of Risk to Inform Sentencing
Decisions. Federal Sentencing Reporter 27, 4 (2015),
222–228. DOI:
http://dx.doi.org/10.1525/fsr.2015.27.4.222

[27] Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C. Miller. 2005. Automation and
Customization of Rendered Web Pages. In Proceedings
of the 18th Annual ACM Symposium on User Interface
Software and Technology (UIST ’05). ACM, New York,
NY, USA, 163–172. DOI:
http://dx.doi.org/10.1145/1095034.1095062

[28] Indranil Bose and Radha K. Mahapatra. 2001. Business
data mining – a machine learning perspective.
Information & Management 39, 3 (2001), 211 – 225.
DOI:http://dx.doi.org/https:
//doi.org/10.1016/S0378-7206(01)00091-X

[29] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3 Data-Driven Documents. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (Dec.
2011), 2301–2309. DOI:
http://dx.doi.org/10.1109/TVCG.2011.185

[30] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two Studies
of Opportunistic Programming: Interleaving Web
Foraging, Learning, and Writing Code. In Proceedings

of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’09). ACM, New York, NY,
USA, 1589–1598. DOI:
http://dx.doi.org/10.1145/1518701.1518944

[31] Jason Brownlee. 2019. A Gentle Introduction to
Learning Curves for Diagnosing Machine Learning
Model Performance.
https://machinelearningmastery.com/learning-
curves-for-diagnosing-machine-learning-model-
performance/. (2019). Accessed: 2019-04-02.

[32] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang,
Eugene Wu, and Yang Zhang. 2008. WebTables:
Exploring the Power of Tables on the Web. Proc. VLDB
Endow. 1, 1 (Aug. 2008), 538–549. DOI:
http://dx.doi.org/10.14778/1453856.1453916

[33] Carrie J. Cai and Philip J. Guo. 2019. Software
Developers Learning Machine Learning: Motivations,
Hurdles, and Desires. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (VL/HCC ’19).

[34] Bryan Chan, Leslie Wu, Justin Talbot, Mike
Cammarano, and Pat Hanrahan. 2008. Vispedia:
Interactive Visual Exploration of Wikipedia Data via
Search-Based Integration. IEEE Transactions on
Visualization and Computer Graphics 14, 6 (Nov.
2008), 1213–1220. DOI:
http://dx.doi.org/10.1109/TVCG.2008.178

[35] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik.
2018. Rousillon: Scraping Distributed Hierarchical
Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology
(UIST ’18). ACM, New York, NY, USA, 963–975.
DOI:http://dx.doi.org/10.1145/3242587.3242661

[36] Leon Chen. 2019. Keras.js.
https://transcranial.github.io/keras-js/. (2019).
Accessed: 2019-04-02.

[37] Brendan Colloran. 2019. Iodide: an experimental tool
for scientific communication and exploration on the
web. https://hacks.mozilla.org/2019/03/iodide-
an-experimental-tool-for-scientific-
communicatiodide-for-scientific-communication-
exploration-on-the-web/. (2019). Accessed:
2019-04-02.

[38] Victor Dibia. 2019. Machine Learning In The Browser.
https://blog.fastforwardlabs.com/2019/02/28/
machine-learning-in-the-browser.html. (2019).
Accessed: 2019-04-02.

[39] Daniel Drew, Julie L. Newcomb, William McGrath,
Filip Maksimovic, David Mellis, and Björn Hartmann.
2016. The Toastboard: Ubiquitous Instrumentation and
Automated Checking of Breadboarded Circuits. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 677–686. DOI:
http://dx.doi.org/10.1145/2984511.2984566

http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1145/2702123.2702509
http://dx.doi.org/10.1525/fsr.2015.27.4.222
http://dx.doi.org/10.1145/1095034.1095062
http://dx.doi.org/https://doi.org/10.1016/S0378-7206(01)00091-X
http://dx.doi.org/https://doi.org/10.1016/S0378-7206(01)00091-X
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1145/1518701.1518944
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
http://dx.doi.org/10.14778/1453856.1453916
http://dx.doi.org/10.1109/TVCG.2008.178
http://dx.doi.org/10.1145/3242587.3242661
https://transcranial.github.io/keras-js/
https://hacks.mozilla.org/2019/03/iodide-an-experimental-tool-for-scientific-communicatiodide-for-scientific-communication-exploration-on-the-web/
https://hacks.mozilla.org/2019/03/iodide-an-experimental-tool-for-scientific-communicatiodide-for-scientific-communication-exploration-on-the-web/
https://hacks.mozilla.org/2019/03/iodide-an-experimental-tool-for-scientific-communicatiodide-for-scientific-communication-exploration-on-the-web/
https://hacks.mozilla.org/2019/03/iodide-an-experimental-tool-for-scientific-communicatiodide-for-scientific-communication-exploration-on-the-web/
https://blog.fastforwardlabs.com/2019/02/28/machine-learning-in-the-browser.html
https://blog.fastforwardlabs.com/2019/02/28/machine-learning-in-the-browser.html
http://dx.doi.org/10.1145/2984511.2984566

[40] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin
Ko, Susan M Swetter, Helen M Blau, and Sebastian
Thrun. 2017. Dermatologist-level classification of skin
cancer with deep neural networks. Nature 542, 7639
(2017), 115.

[41] Jerry Alan Fails and Dan R. Olsen, Jr. 2003. Interactive
Machine Learning. In Proceedings of the 8th
International Conference on Intelligent User Interfaces
(IUI ’03). ACM, New York, NY, USA, 39–45. DOI:
http://dx.doi.org/10.1145/604045.604056

[42] Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge. 2016. Image Style Transfer Using
Convolutional Neural Networks. In 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR). 2414–2423. DOI:
http://dx.doi.org/10.1109/CVPR.2016.265

[43] Nina Grgic-Hlaca, Elissa M. Redmiles, Krishna P.
Gummadi, and Adrian Weller. 2018. Human
Perceptions of Fairness in Algorithmic Decision
Making: A Case Study of Criminal Risk Prediction. In
Proceedings of the 2018 World Wide Web Conference
(WWW ’18). International World Wide Web
Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland, 903–912. DOI:
http://dx.doi.org/10.1145/3178876.3186138

[44] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. 2009.
The WEKA Data Mining Software: An Update.
SIGKDD Explor. Newsl. 11, 1 (Nov. 2009), 10–18.
DOI:http://dx.doi.org/10.1145/1656274.1656278

[45] James A. Hanley and Barbara J. McNeil. 1982. The
meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology 143, 1 (1982),
29–36.

[46] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile
Vision Applications. CoRR abs/1704.04861 (2017).
http://arxiv.org/abs/1704.04861

[47] David F. Huynh, Robert C. Miller, and David R.
Karger. 2006. Enabling Web Browsers to Augment
Web Sites’ Filtering and Sorting Functionalities. In
Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology (UIST ’06).
ACM, New York, NY, USA, 125–134. DOI:
http://dx.doi.org/10.1145/1166253.1166274

[48] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe:
Convolutional Architecture for Fast Feature
Embedding. In Proceedings of the 22Nd ACM
International Conference on Multimedia (MM ’14).
ACM, New York, NY, USA, 675–678. DOI:
http://dx.doi.org/10.1145/2647868.2654889

[49] Josua Krause, Adam Perer, and Kenney Ng. 2016.
Interacting with Predictions: Visual Inspection of
Black-box Machine Learning Models. In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 5686–5697. DOI:
http://dx.doi.org/10.1145/2858036.2858529

[50] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen
Cypher, and Tessa A. Lau. 2009. End-user
Programming of Mashups with Vegemite. In
Proceedings of the 14th International Conference on
Intelligent User Interfaces (IUI ’09). ACM, New York,
NY, USA, 97–106. DOI:
http://dx.doi.org/10.1145/1502650.1502667

[51] Dan Maynes-Aminzade, Terry Winograd, and Takeo
Igarashi. 2007. Eyepatch: Prototyping Camera-based
Interaction Through Examples. In Proceedings of the
20th Annual ACM Symposium on User Interface
Software and Technology (UIST ’07). ACM, New York,
NY, USA, 33–42. DOI:
http://dx.doi.org/10.1145/1294211.1294219

[52] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan
Sparks, Shivaram Venkataraman, Davies Liu, Jeremy
Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. 2016. MLlib:
Machine Learning in Apache Spark. J. Mach. Learn.
Res. 17, 1 (Jan. 2016), 1235–1241. http:
//dl.acm.org/citation.cfm?id=2946645.2946679

[53] Adam S Miner, Arnold Milstein, Stephen Schueller,
Roshini Hegde, Christina Mangurian, and Eleni Linos.
2016. Smartphone-based conversational agents and
responses to questions about mental health,
interpersonal violence, and physical health. JAMA
internal medicine 176, 5 (2016), 619–625.

[54] Vincent Mühler. 2019. face-api.js: JavaScript API for
face detection and face recognition in the browser and
nodejs with tensorflow.js. https:
//github.com/justadudewhohacks/face-api.js.
(2019). Accessed: 2019-04-02.

[55] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on
Transfer Learning. IEEE Transactions on Knowledge
and Data Engineering 22, 10 (Oct 2010), 1345–1359.
DOI:http://dx.doi.org/10.1109/TKDE.2009.191

[56] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[57] Kayur Patel, Naomi Bancroft, Steven M. Drucker,
James Fogarty, Andrew J. Ko, and James Landay.
2010. Gestalt: Integrated Support for Implementation
and Analysis in Machine Learning. In Proceedings of
the 23Nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, New York,
NY, USA, 37–46. DOI:
http://dx.doi.org/10.1145/1866029.1866038

http://dx.doi.org/10.1145/604045.604056
http://dx.doi.org/10.1109/CVPR.2016.265
http://dx.doi.org/10.1145/3178876.3186138
http://dx.doi.org/10.1145/1656274.1656278
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1145/1166253.1166274
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1145/2858036.2858529
http://dx.doi.org/10.1145/1502650.1502667
http://dx.doi.org/10.1145/1294211.1294219
http://dl.acm.org/citation.cfm?id=2946645.2946679
http://dl.acm.org/citation.cfm?id=2946645.2946679
https://github.com/justadudewhohacks/face-api.js
https://github.com/justadudewhohacks/face-api.js
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1145/1866029.1866038

[58] Fabian Pedregosa, Gaël Varoquaux, Alexandre
Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. J. Mach.
Learn. Res. 12 (Nov. 2011), 2825–2830. http:
//dl.acm.org/citation.cfm?id=1953048.2078195

[59] Mark Pilgrim. 2005. Greasemonkey Hacks: Tips &
Tools for Remixing the Web with Firefox (Hacks).
O’Reilly Media, Inc.

[60] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. 2016. You Only Look Once: Unified,
Real-Time Object Detection. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
779–788. DOI:
http://dx.doi.org/10.1109/CVPR.2016.91

[61] Oscar Schwartz. 2019. Don’t look now: why you
should be worried about machines reading your
emotions. https:
//www.theguardian.com/technology/2019/mar/06/
facial-recognition-software-emotional-science.
(2019). Accessed: 2019-04-02.

[62] Remy Sharp. 2019. Web based console - for
presentations and workshops.
https://github.com/remy/jsconsole/. (2019).
Accessed: 2019-04-02.

[63] Daniel Shiffman. 2018. ml5: Friendly Open Source
Machine Learning Library for the Web. ADJACENT
(2018). Issue 3.

[64] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann
Yuan, Nick Kreeger, Ping Yu, Kangyi Zhang, Shanqing
Cai, Eric Nielsen, David Soergel, Stan Bileschi,
Michael Terry, Charles Nicholson, Sandeep N. Gupta,
Sarah Sirajuddin, D. Sculley, Rajat Monga, Greg
Corrado, Fernanda B. Viégas, and Martin Wattenberg.
2019. TensorFlow.js: Machine Learning for the Web
and Beyond. CoRR abs/1901.05350 (2019).
http://arxiv.org/abs/1901.05350

[65] Chris Urmson and William “Red” Whittaker. 2008.
Self-Driving Cars and the Urban Challenge. IEEE
Intelligent Systems 23, 2 (March 2008), 66–68. DOI:
http://dx.doi.org/10.1109/MIS.2008.34

[66] Aäron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew W. Senior, and Koray

Kavukcuoglu. 2016. WaveNet: A Generative Model for
Raw Audio. CoRR abs/1609.03499 (2016).
http://arxiv.org/abs/1609.03499

[67] James Vincent. 2019. Gender and racial bias found in
Amazon’s facial recognition technology (again).
https://www.theverge.com/2019/1/25/18197137/
amazon-rekognition-facial-recognition-bias-
race-gender. (2019). Accessed: 2019-04-02.

[68] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen
Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung,
and Mike Y. Chen. 2016. CircuitStack: Supporting
Rapid Prototyping and Evolution of Electronic Circuits.
In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 687–695. DOI:
http://dx.doi.org/10.1145/2984511.2984527

[69] Greg Wilson. 2006. Software Carpentry: Getting
Scientists to Write Better Code by Making Them More
Productive. Computing in Science Engineering 8, 6
(Nov 2006), 66–69. DOI:
http://dx.doi.org/10.1109/MCSE.2006.122

[70] Jeffrey Wong and Jason I. Hong. 2007. Making
Mashups with Marmite: Towards End-user
Programming for the Web. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’07). ACM, New York, NY, USA,
1435–1444. DOI:
http://dx.doi.org/10.1145/1240624.1240842

[71] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David S. Ebert. 2019. Manifold: A Model-Agnostic
Framework for Interpretation and Diagnosis of
Machine Learning Models. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (Jan 2019),
364–373. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2864499

[72] Xiong Zhang and Philip J. Guo. 2017. DS.Js: Turn Any
Webpage into an Example-Centric Live Programming
Environment for Learning Data Science. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17).
ACM, New York, NY, USA, 691–702. DOI:
http://dx.doi.org/10.1145/3126594.3126663

[73] Xiong Zhang and Philip J. Guo. 2018. Fusion:
Opportunistic Web Prototyping with UI Mashups. In
Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology (UIST ’18).
ACM, New York, NY, USA, 951–962. DOI:
http://dx.doi.org/10.1145/3242587.3242632

http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dx.doi.org/10.1109/CVPR.2016.91
https://www.theguardian.com/technology/2019/mar/06/facial-recognition-software-emotional-science
https://www.theguardian.com/technology/2019/mar/06/facial-recognition-software-emotional-science
https://www.theguardian.com/technology/2019/mar/06/facial-recognition-software-emotional-science
https://github.com/remy/jsconsole/
http://arxiv.org/abs/1901.05350
http://dx.doi.org/10.1109/MIS.2008.34
http://arxiv.org/abs/1609.03499
https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender
https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender
https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender
http://dx.doi.org/10.1145/2984511.2984527
http://dx.doi.org/10.1109/MCSE.2006.122
http://dx.doi.org/10.1145/1240624.1240842
http://dx.doi.org/10.1109/TVCG.2018.2864499
http://dx.doi.org/10.1145/3126594.3126663
http://dx.doi.org/10.1145/3242587.3242632

	Introduction
	Related Work
	MALLARD System Design and Implementation
	Step 1: Acquire Data from Existing Webpages
	Step 2: Prototype in an Interactive Coding Environment
	Step 3: Visualize Debugging Outputs in Console
	Step 4: Augment Host Webpage with Analysis Outputs

	Discussion: System Scope and Limitations
	Case Study of Prototyping ML with MALLARD
	1. Augmenting Amazon and Twitter with Sentiment Analysis
	2. Augmenting Restaurant Menus with OCR-Based Search
	3. Classifying Birds on Stock Photo Websites
	4. Augmenting Wikipedia Tables with Animal Species Labels
	5. Retraining a Neural Network for Binary Classification
	6. Training a Superhero Face Recognizer
	7. Augmenting ML Tutorial Webpage with Live Coding
	8. Playing Pac-Man Game using Real-Time Face Tracking
	9. Performing Style Transfer on Google Images Results

	Reflecting on Our Prototyping Experiences

	Conclusion
	Acknowledgments
	References

