

A
B
w
e
in
B
b

I
it
c
ti
r
a
to
f
f
r
b
d
s
o

A
B

A
D
D
a

A
H

I
B
o
ti
c
o
s
ti
i

Philip J. G
pg@cs.stanfo

1 Stanford

ABSTRACT
Bug reporting/f
ware developm
ently has strong
n how to find

Bug report reas
bug-fixing proc

In this paper, w
tative analysis

crosoft Window
ify social inter

reassignments.
are useful to de
o the popular o

ful. We categor
finding the roo
report quality,
balancing. We
dations for the
systems that ca
observed in our

Author Keywo
Bug tracking, B

ACM Classific
D.2.5 [Softwa
D.2.7 [Softwar
and Enhanceme

ACM General T
Human Factors

NTRODUCTIO
Bug reporting/f
opment process
ion of multiple

commercial on
open-source on
system is the c
ion of informa
ssues recorded

Permission to ma
personal or classr
not made or distri
bear this notice an
or republish, to p
specific permissio
CSCW 2011, Marc
Copyright 2011 A

“No
Sof

Guo1
ord.edu

T

University,

fixing is an im
ment process. T
g inter-persona

d the optimal p
ssignments, wh
cess, have rarel

we present a lar
 of the bug re

ws Vista opera
ractions in term
For instance,

etermine the be
opinion that re
rized five prim
ot cause, dete
hard to determ
then use these
design of mor

an overcome s
r study.

ords
Bug triaging, B

ation Keyword
are Engineerin
re Engineering
ent

Terms
s, Management

ON
fixing is a cent
s, and one that
e individuals. I
nes like the W
nes like Eclipse
central hub for
al notes about
d within it form

ake digital or hard
room use is grante
buted for profit or
nd the full citation
post on servers or
on and/or a fee.
ch 19–23, 2011, H

ACM 978-1-4503-

ot My B
ftware

Thomas Zim
tzimmer@mi

 USA

mportant social
The bug-fixing
al dynamics at
person to hand
hich are a com
ly been studied

rge-scale quant
assignment pro

ating system pr
ms of both use

we found tha
est person to fix
eassignments a

mary reasons fo
rmining owne

mine proper fix
e findings to m
re socially-awa
some of the in

Bug reassignme

ds
ng]: Testing a
g]: Distribution

t, Measuremen

tral part of the
t always involv
In large softwa
Windows oper
e or Firefox),
r coordination,
bug reports a

m the main sou

d copies of all or p
ed without fee pro
r commercial adva
n on the first page
r to redistribute to

Hangzhou, China.
0556-3/11/3...$10

Bug!” an
Bug Re

mmermann2

icrosoft.com
2 Microso

part of the so
g process inhe
t play, especial
dle a bug repo
mmon part of th
d.

titative and qua
ocess in the M
roject. We qua
eful and harmf
at reassignmen
x a bug, contra
are always harm
or reassignment
ership, poor bu
x, and workloa

make recomme
are bug trackin
nefficiencies w

ent

and Debuggin
n, Maintenanc

nt

e software deve
ves the coordin
are projects (e.g
ating system
the bug trackin
, and the colle
and developme
urce of organiz

part of this work
ovided that copies
antage and that cop
e. To copy otherw
o lists, requires pr

.00..

nd Othe
eport R
2 Nachia

nachi

oft Research

ft-
er-
lly

ort.
he

al-
Mi-
an-
ful
nts
ary
m-
ts:
ug
ad

en-
ng
we

ng;
ce,

el-
na-
g.,
or
ng
ec-
ent
za-

tional
often u
[2], ma
a certa
questio
these r
primar

The C
dynam
collabo
work o
should
which
knowle
dynam
tous co
ware sy

For ex
can re
simply
attemp
shows
the bu
Windo
increas
also in
aren’t
ments
fix it (i
were fe
identifi

for
are

pies
ise,
rior Figure

er Reas
Reassig

appan Nagap
in@microsoft.c

h, USA

memory [1] a
use bug trackin
aking queries t
ain software m
ons and bug r
reasons, we co
ry CSCW syste

CSCW commun
mics of bug fix
orative aspects
on bug fixing

d be fixed (or w
types of bu

edge, there ha
mics regarding

ooperative wor
ystem (the bug

xample, when
eassign it to so
y lacking the ti
pt to find a p

the number o
ug report is fi
ows Vista proj
ses, we observ

ncreases. But co
necessarily ‘b
to find the tru
it does take tim

few reassignme
fied, then that c

e 1. Number of
Vista bug repo

co

sons fo
nments

ppan2
com

B
bm

3 Micro

about the proje
ng systems to p
to determine w

module or sub
reports can be
onsider bug tr
ems in software

unity has been
xing [3,4] and
s of bug fixing

have focused
who is the best
ugs get fixed
as been little w
software bug
rk activity me

g tracker).

a bug is assig
omeone else f
ime to investig

person with be
of reassignmen
irst closed, for
ject. As the n
ve that the tim
ontrary to popu

bad’, since it d
ue cause of a b
me, though). O
ents but the op
could lead to a

f reassignments
ort is first closed
onfidentiality re

or
s

Brendan M
murphy@micr

osoft Resear

ect’s history. D
perform expert
who is the loca
b-system so th
e routed to him
rackers to be
e development

n interested in
d tools that im
[5]. But in gen
on how parti

t person to fix
d. To the be
work done on
reassignments

ediated by a C

gned to someo
for reasons ran
gate deeply to
etter expertise
nts versus the
r bugs in the

number of reas
me required fix
ular belief, reas

does take a few
bug and who t

On the other han
ptimal bug fixe
low-quality or

vs. days until a
d (y-axis hidden
easons)

urphy3
rosoft.com

rch, UK

Developers
tise finding
al expert on
at relevant
m/her. For
one of the
t.

the social
mprove the
neral, most
icular bugs
it) [6] and

est of our
the social

s, a ubiqui-
SCW soft-

one, he/she
nging from
o a genuine
. Figure 1
time until
Microsoft

ssignments
xing a bug
ssignments

w reassign-
to properly
nd, if there
er were not
r faulty fix.

a Windows
n for

Contributions: This paper presents a mixed qualitative and
quantitative study of the collaborative aspects of bug report
reassignments. Based on a widely-deployed qualitative sur-
vey at Microsoft, we categorized five primary reasons for
reassignments: finding the root cause, determining owner-
ship, poor bug report quality, hard to determine proper fix,
and workload balancing. We then built and interpreted a
descriptive statistical model to identify the relationship be-
tween bug report features and reassignments. We also show
that there are certain harmful patterns of reassignments, like
cycles at the end of a sequence. Finally, we use these find-
ings to make recommendations for the design of more so-
cially-aware bug tracking systems that can overcome some
of the inefficiencies we observed in our study.

RELATED WORK
There has been a lot of work on bug triaging, not only in
software engineering but also in the CSCW [4,3,5], HCI
[7,8], and GROUP [9] communities. However to the best of
our knowledge, there has been little work on bug report
reassignments.

Reassignments in bug reports. Based on interviews with
ten software developers and a qualitative analysis of an
unspecified number of bug reports, Halverson et al. [5] de-
scribed several problematic patterns in bug tracking. They
observed that assign/reassign cycles (or “ping pong” as
called by developers) indicate that a bug is not finding the
right owner or that the location of the bug is ambiguous. In
an empirical study of which bugs get fixed in Microsoft
Windows, Guo et al. [10] observed “reassignments are not
always detrimental to bug-fix likelihood; several might be
needed to find the optimal bug fixer.” Compared to this
previous work by Halverson et al. and Guo et al., this paper
provides a comprehensive discussion of causes for reas-
signments. Our findings are quantitatively validated on a
large number of bug reports.

Jeong et al. [11] analyzed bug report reassignments (which
they called “bug tossing”) in the Mozilla and Eclipse pro-
jects. They used a graph structure and Markov chains to
reduce the number of reassignments. Jeong’s work was
inspired by Shao et al. [12], who proposed an algorithm for
ticket routing. In ticket routing, a new ticket needs to find
its resolver with as few steps as possible—any assignment
to someone who cannot resolve the ticket is considered as
inefficient. However, as we show in this paper, there are
many legitimate reasons for bug reassignments, such as
finding the root cause and workload balancing.

Communication, coordination, communities, and bugs.
Several researchers investigated how people communicate
and coordinate in bug reports. In his Ph.D. thesis, Sandusky
used qualitative methods on open-source bug reports for an
empirically grounded description of the information prac-
tices used by a distributed open-source project [13].
Sandusky and Gasser studied the role of negotiation and its
effect on the organization of information in software prob-

lem management [9]. Ripoche and Sansonnet analyzed
speech acts across the Mozilla corpus of bug reports [14].
Breu et al. [3] categorized questions asked in open-source
bug reports and analyzed response rates and times. Carsten-
sen studied coordination via physical bug forms [15].

Aranda and Venolia [16] reported on a study of coordina-
tion activities around bug fixing at Microsoft. They identi-
fied common coordination patterns and provided implica-
tions for tool designers and researchers. Bertram et al. [4]
conducted a qualitative study of issue tracking systems as
used by small, collocated software development teams.
They found that even in collocated teams, issue trackers are
a focal point for communication and coordination. Ko and
Chilana [7] quantified the value of contributions by “power
users” to open bug reporting in Mozilla. They observed
that the primary value comes from recruiting a small pool
of talented developers and reporters, and not from the
masses. Diederik van Liere [17] studied how the infor-
mation provided by open-source community members in-
fluences the repair time of software defects; he found that
user contributions shorten repair times.

Characterization of bug reports. Ko et al. [18] looked at
bug report titles and identified fields that could be incorpo-
rated into new bug report forms. Bettenburg et al. [19] con-
ducted a survey among developers and users from the
Apache, Eclipse, and Mozilla projects to determine which
information contents comprise good quality bug reports.
Just et al. [20] analyzed the responses from the same survey
to suggest improvements to bug tracking systems.

METHODOLOGY
We studied bug report reassignments in the context of the
Microsoft Windows Vista operating system project, which
we feel is a representative example of a large-scale com-
mercial software project. Vista contains several thousand
source code files and 40+ million lines of code, written by
more than 2000 software engineers. The findings we pre-
sent in this paper are derived from three sources related to
Windows Vista bug reports: free-response answers from a
survey sent to Microsoft employees, a manual examination
of randomly-selected bug reports, and a high-level quantita-
tive analysis of the entire Windows Vista bug database.

Survey free-response answers
Our primary data source is an online survey we sent in Au-
gust 2009 to 1,773 Microsoft employees with questions
about various aspects of the bug triaging and fixing process.
Since we wanted to get the opinions of people well-versed
in handling Windows-related bugs, we chose as our survey
participants the top 10% of people who have opened, been
assigned to, or resolved Windows Vista bugs. We received
358 responses (20% response rate). Most respondents were
either developers (55%) or testers (30%). Most were fairly
experienced, with a median of 11.5 years of work experi-
ence in the software industry and 9 years at Microsoft.

We analyzed responses to most of the survey questions for
another paper [10]; for this paper, we analyzed responses to
the following free-response question, which we did not ex-
plore in our other paper:

In your experience, what are some reasons why a bug
would be reassigned multiple times before being suc-
cessfully resolved as Fixed? E.g., why wasn’t it as-
signed directly to the person who ended up fixing it?

Response length varied from one phrase (e.g., “bug cause
was not initially understood”) to long paragraphs. We print-
ed out all 358 responses on index cards and performed card
sorting [21]. Two of the authors independently performed
an open card sort and then merged their results into a single
taxonomy. Then a third author read over all of the respons-
es to check and made minor adjustments to the categories.

Manual examination of bug reports
Informed by our analysis of survey results, we informally
examined the contents of 50 Windows Vista bug reports,
chosen by randomly sampling from all bug reports with
more than 5 reassignments (10% of total bug reports had
more than 5 reassignments). The main reason we manually
examined selected bug reports was to corroborate the sur-
vey respondents’ opinions with firsthand observations from
the bug reports themselves.

Quantitative analysis of bug and personnel data
We quantified certain observations to the extent possible by
mining data from the Windows Vista bug database and the
Microsoft employee personnel database. We collected all
pre- and post-release bug reports for Windows Vista in July
2009 (2.5 years after Vista’s release date). We consider our
dataset to be fairly complete for the factors we want to in-
vestigate, since very few new Vista bugs are being opened,
compared to when it was under active development (2002-
2007). For confidentiality reasons, we cannot reveal the
exact number of bug reports, but it is at least an order of
magnitude larger than datasets used in related work [22].
For each bug report, we extracted a list of edit events that
occurred throughout its lifetime. Each event alters one or
more of the following fields (fields not relevant to our anal-
ysis in this paper have been omitted):

 State: OPENED, RESOLVED, or CLOSED

 Opener: Who opened this bug?

 Assignee: Who is now assigned to handle this bug?

 Severity: An indicator of the bug’s potential impact on
customers. Crashes, hangs, and security exploits have the
highest severity (Level 4); minor UI blemishes, typos, or
trivial cosmetic bugs have the lowest severity (Level 1).

 Component path: Which component is the bug in? e.g.,
DesktopShell/Navigation/StartMenu

 Bug type: What kind of bug is it? e.g., bug in code, spec-
ification, documentation, or test suite

 Bug source: How was this bug found? e.g., by a custom-
er, an internal Microsoft user, or a system test

 Resolution status: How has this bug been resolved? e.g.,
FIXED, BY DESIGN, WON’T FIX, NOT REPRODUCIBLE.
(Null if state is not RESOLVED)

Here is a typical bug’s life cycle: When it is first opened, all
of its fields except for “Resolution status” are set. Then the
bug might be edited a few times (e.g., to upgrade its severi-
ty). A special type of edit called a reassignment occurs
when the “Assignee” field is edited. When somebody
thinks that he/she has resolved the bug, its “Resolution sta-
tus” field is set. After the resolution attempt is approved
(usually by the opener), the bug is closed. However, it
might be reopened if the problem has not actually been
properly resolved.

To explore the impacts of geographical and organizational
distance on bug reassignments, we obtained the office loca-
tion and manager of each employee circa July 2009 from
the Microsoft employee personnel database. Thus, we can
determine whether two employees worked in the same
building, campus, country, or on the same team (i.e., had
the same manager). Sometimes people switch locations or
teams, but in general Microsoft tries to keep employees in
the same location and team during a product cycle [23].

Follow-up survey
Lastly, we solicited additional feedback on our findings in
another survey among 397 Microsoft employees. We chose
as our participants based on the number of bug reports they
have been assigned to or the number of reassignment cycles
they have been involved in Windows 7. We received 118
responses (30% response rate)

CAUSES OF BUG REPORT REASSIGNMENTS
In this section, we combine card sort results from our sur-
vey, observations from examining selected bug reports, and
descriptive statistics to characterize the 5 main causes of
bug reassignments in the Windows Vista project:

1. Finding the root cause

2. Determining ownership

3. Poor bug report quality

4. Hard to determine proper fix

5. Workload balancing

A typical bug report gets reassigned a few times before it
gets resolved. The median number of reassignments for
Windows Vista bug reports is 2, and the mean is 2.5. 90%
of reports have 5 or fewer reassignments. In general, reas-
signments aren’t necessarily detrimental, but they do take
up time and cause developers to context-switch between
multiple reports.

Finding the root cause
The most common reason bug reports are reassigned is be-
cause people want to find the root cause of the problem
before they are willing to attempt a fix. Bug reports usually
only indicate superficial symptoms, but a high-quality fix
should address the root cause and not merely patch the re-
ported symptoms. The root cause is often in a completely

different component than symptoms indicate, though. A
survey respondent elaborates on this reason for why bugs
are reassigned multiple times before being resolved:

“Bugs many times are exposed in the UI [user inter-
face], but are not caused by the team writing the UI
code. These bugs can pass down several layers of
components before landing on a lower level component
owner. As the UI team gets more familiar with the
component layers they can more directly assign bugs to
the offending component, but that takes time and
knowledge.”

We can quantify the above phenomenon by correlating re-
assignments with changes in the “Component path” field of
bug reports, which indicates in which component people
currently believe a bug originates. People don’t usually
change a bug’s component path without also reassigning it:
If a bug report had no reassignments, then it only has a 13%
chance of its component path being changed, while a bug
with some reassignments has a 35% chance of its path be-
ing changed (almost 3x more). There is a Spearman’s rank
correlation [24] of 0.32 between the numbers of reassign-
ments and path changes for individual bug reports, which
indicates a moderate positive correlation.

Oftentimes the bug reporter doesn’t have the expertise re-
quired to ascertain the root cause, so he/she must reassign
the bug to someone with more domain-expertise. As a sur-
vey respondent describes:

“Usually this seems to stem from inaccurate assump-
tions on the part of the bug filer. For example, some-
one clicks a button in a feature, and there’s a corre-
sponding crash — usually the bug is assigned to the
most proximal piece of interaction — the button owner.
However, given software complexities, sometimes the
crash is actually due to an underlying layer. The filer
either lacked the expertise, will, or time to investigate
deep enough to understand the issue at hand.”

Our data corroborates these anecdotal observations: Bugs
originating from different sources have different average
numbers of reassignments. On one end, internal users (Mi-
crosoft employees using beta versions) have a hard time
reporting bugs to the right components, thus resulting in the
most reassigns of any bug source (mean of 3.14, median of
2). For example, one of the authors of this paper (a Mi-
crosoft employee) once reported a bug for Microsoft Office,
but since he did not work on the Office project, it was hard
for him to determine which exact component to file the bug
under. On the other extreme, bugs found by component and
system tests have relatively few reassigns (mean of 2.4,
median of 1), since they are purposefully designed to isolate
particular components, so their root causes are quite certain.

Unfortunately, reassignments are also done out of laziness;
some people don’t do a thorough job of determining root
cause and simply punt the bug to get it off their task queue:

“Insufficient root cause analysis. People are willing to
do just enough to convince themselves it isn’t their
problem and then re-assign to the person who they
think is closer to the right owner.”

At the end of this paper, we make design recommendations
for improving expertise finding [2] and thereby minimizing
the number of reassignments required to ascertain a bug’s
root cause.

Determining ownership (which is often unclear)
A concept related to root cause is ‘ownership’, which is
defined roughly as “what team is responsible for the com-
ponent that exhibits this bug?” In a large software project
like Windows Vista, ownership of components can often be
unclear or ambiguous, since many components lie at the
intersection of several teams’ jurisdictions. These survey
respondents lament:

“It is often very difficult to identify the correct owner
for the bug, even when the cause of the bug is known.”

“The bug falls into an area between two teams. Say,
the USB team and the WPD (Windows Portable Devic-
es) team. The bug gets kicked around many times
while the teams decide who is actually at fault.”

When we manually looked through bug reports, we saw
these disagreements over ownership play out in their edit
histories. As an example of such a scenario, in one bug
report, Person A first assigns to Person B, with the message
“You or [Person C]?” An hour later, Person B reassigns to
Person C with the message “Reassign to [Person C] …”
along with a brief explanation of why he thought that the
bug was in a component that Person C owned. The next
morning, Person C reassigns back to Person B with the
message “Dunno who gets this one, but it’s not me. I don’t
have anything to do with [Component X], AFAIK [as far as
I know].” After another day of investigation, Person B then
reassigns to Person D, who works on the bug for 2 weeks
and then successfully resolves it as “Fixed”.

When there are disagreements over ownership, bugs can be
reassigned back-and-forth between two (or more) teams, an
undesirable, time-wasting phenomenon known to our sur-
vey respondents as “bug pong” or “hot potato”:

“Not clear ownership: Sometimes different teams work
together to develop a product. In such cases some-
times the ownership boundaries are not clear so the
bugs get re-assigned back and forth till the ownership
gets determined.”

“Playing bug pong between teams who don’t agree on
ownership. It’s stupid, but some teams use this as a de-
laying-until-it’s-bad-enough-that-someone-more-
important-demands-a-fix.”

In the follow-up survey, we also asked about the frequency
of hot potatoes. The majority of respondents replied that hot
potato is “uncommon”. Yet some respondents pointed out
situations where hot potatoes occur frequently: for compo-

nents shared by multiple teams, high in the system stack, or
with unclear ownership; near milestones; or for bugs with
incomplete steps to reproduce.

At the end of this paper, we make recommendations for
making ownership more explicit so as to reduce the amount
of these inefficient reassignments.

Poor bug report quality
If a bug report is poorly written or contains too little infor-
mation, then it might need to be reassigned a few times as
people struggle to decipher its cause:

“The most important factor in multiple reassigning in
my experience is unclear bug reports. If the person as-
signed to the bug doesn’t understand the issue, they
will either assign it back to the person who opened it,
or (rarely, but it happens) assign it to the wrong person
based on misunderstood information, and then it will
become even worse.”

“If a bug report cites only basic symptoms (such as
‘crash’) and has little or no information hinting at
cause (such as call stack), then triage is very difficult
and a bug can end up being bounced around.”

When we manually looked through bug reports, we saw the
detrimental effects of poor report quality in some of their
edit histories. An example scenario: For a particular user
interface bug, Person A first assigns to B with the 2-word
bug report “please investigate” without providing much
further detail. Person B investigates for ~2 hours and reas-
signs to Person C with the message “I debug to [function
F]. I cannot match the source code. Before this function
return, No permission dialog pops up. Please take a look.”
Person C immediately reassigns back to B with the message
“um … [function F] is the guy who’s rendering the dialog.
If you’re complaining about the dialog you should find out
who requested the dialog to show up.”

It’s difficult to quantify bug report quality without doing
some sort of heuristic-based text analysis that is outside the
scope of this project; however, one proxy indicator of poor
report quality is that a bug report’s “Bug type” field chang-
es throughout its lifetime. If people aren’t even sure about
the type of the bug (e.g., is it a bug in code, specs, docs, or
tests?), then chances are that it’s a poor-quality bug report.
9% of all Windows Vista bugs had their bug type field
changed. Bugs whose type changed had, on average, more
reassigns than those whose types didn’t change: mean of
3.6 reassigns vs. 2.4, and median of 3 vs. 2.

Hard to determine proper fix even after cause known
Even after the root cause and ownership have been deter-
mined, a bug might still need to be reassigned as people
debate the proper way to fix it. As our survey respondents
observed:

“There can be multiple possible fixes for a given issue
which can straddle teams, so the bug can bounce back
and forth until the bug fix strategy is solidified.”

“Bug could be fixed or worked around in multiple
places, and each place punts the fix to one of the other
teams.”

Workload balancing (or the appearance thereof)
Once a bug report gets to the proper team that is eventually
going to fix it, it still might get reassigned a few times be-
tween team members as a matter of workload balancing.
For example, some developers might be busy with other
tasks, so they will reassign to their teammates (with the
hopes of reciprocity in the future). Such load-balancing
reassignments can be beneficial, since bugs might get fixed
sooner:

“Once the bug has found the right team, the biggest
factor in reassigning is often load balancing issues
across team members to drive down totals. Bugs will
be fairly static early in the development cycle but as
bug counts become more important, we’ll move issues
around frequently to ensure they get prompt attention.”

However, sometimes within-team reassignments are done
for political reasons, giving the appearance of being load-
balanced to satisfy managers while the bug sits idle
(‘parked’):

“A bug is parked with someone. This may be for inves-
tigation. It may be for some desire to appear load bal-
anced. I believe reassignment is more common when
playing games with balancing than it is when investi-
gation finds that the responsible code is owned by an-
other individual to whom the bug is transferred.”

At the end of this paper, we make recommendations for
monitoring developer activities in order to facilitate load
balancing.

DESCRIPTIVE STATISTICAL MODEL
To quantify factors that contribute to bug reassignments, we
built a descriptive statistical model and interpreted its coef-
ficients with reference to the qualitative findings we pre-
sented in the previous section.

Logistic regression model building
Specifically, we built a logistic regression model for the
probability that a bug report has excessive numbers of reas-
signments, where we define “excessive” as greater than 5.
We used 5 as our cutoff threshold since 90% of bugs had 5
or fewer reassignments, so those with greater than 5 can be
thought of as having “excessive numbers of reassignments”
(in the top 10%). We used a cutoff since we only wanted to
separate reports with “normal” and “excessive” numbers of
reassignments; it didn’t make much sense to try to predict
the exact number of reassignments (e.g., it doesn’t matter if
a bug has 23 or 42 reassignments; both are “excessive”).

A logistic regression model aims to predict the probability
of an event occurring (e.g., does this bug report have exces-
sive numbers of reassignments?) using a combination of
factors that can be numerical (e.g., number of component
path changes), Boolean (e.g., was its severity level upgrad-
ed?), or categorical (e.g., bug source).

Table 1 shows the model we constructed by training on the
entire Windows Vista bug report dataset using the R statis-
tics package. We determined that all factors had independ-
ent effects by adding each one to an empty model and ob-
serving that the model’s deviance (error) decreases by a
statistically significant amount for all added factors (a
standard technique called Analysis of Deviance [25]).

Note that the sole purpose of our model is to describe vari-
ous independent effects on bug reassignments. It cannot
actually be used in practice to predict the probability that a
newly-opened bug report will have excessive (greater than
5) reassignments, since it uses factors that are not available
at the time a bug is first opened (e.g., number of component
path changes).

How to interpret logistic regression coefficients
One main benefit of using logistic regression over other
types of statistical models (e.g., support vector machines) is
that its parameters (e.g., the coefficients in Table 1) have
intuitive meanings.

For numerical and Boolean factors, the sign of each coef-
ficient is its direction of correlation with the probability that
a bug contains excessive reassignments. For example,
“Num. component path changes” is positively correlated
with reassignments, so its coefficient is positive (0.72). The
magnitude of each coefficient approximately indicates how
much a particular factor affects reassignments. See Hosmer
and Lemeshow [25] for details on how to transform these
coefficients into exact probabilities. In general, it’s hard to
compare coefficient magnitudes across factors, since their
units of measurement likely differ. However, it’s possible
to compare coefficients for, say, two Boolean factors like
“Severity level upgraded?” and “Bug type changed?” The
coefficient of the former (1.30) is larger than that of the
latter (0.87), which means that a severity upgrade has a
larger positive effect on the probability that a bug will have
excessive reassignments than a change in bug type does.

For categorical factors (“Bug source” is the only one in
our model), if a factor has N categories (levels), then N – 1
of them get their own coefficient, and the remaining one
gets its coefficient folded into the intercept term (the R sta-
tistics package we use chooses the alphabetically earliest
category to fold, so that’s why “Ad-hoc testing” has no co-
efficient in Table 1). What matters isn’t the value of each
coefficient but rather their ordering across categories. For
example, “Internal user” has a larger coefficient than “Hu-
man review”, which means that the former is more positive-
ly correlated with reassignments than the latter.

Interpreting our model’s coefficients
Bug source is a categorical factor whose coefficients can
only sensibly be compared against one another. Bugs re-
ported by internal Microsoft users are likely to have exces-
sive reassignments, since Microsoft employees using beta
versions of software have permission to directly submit bug
reports but often lack the expertise to submit a high-quality
report targeting the specific component exhibiting the bug.

In contrast, QA staff usually vet bugs submitted by custom-
ers before entering them into the bug database. Bugs found
by component and system tests are less likely to be reas-
signed since it’s much easier to pinpoint their root causes
and ownership; after all, tests are designed to target specific
well-defined areas. Finally, bugs found by human review
(e.g., code or documentation review) are unlikely to have
excessive reassignments, since if a bug is found in some-
one’s code or documentation during a review, then they are
likely the owner responsible for fixing it.

Number of component path changes is positively corre-
lated with excessive reassignments, since a bug’s compo-
nent path changes throughout the normal process of ascer-
taining root cause and determining ownership.

Initial severity level is positively correlated with excessive
reassignments, since higher-severity bugs get more atten-
tion so people might pass them around in an effort to triage
and fix them. In contrast, many low-severity bugs are
simply ‘parked’ in someone’s task queue and receive little
attention (since they are probably busy handling higher-
severity bugs).

If a bug’s severity level is upgraded, then that’s a strong
“call to action” for developers to work harder to find the
root cause, assign ownership, and actually fix the bug.
Thus, it’s also positively correlated with reassignments.

If a bug’s type is changed, then it’s likely a low-quality
bug report (it doesn’t even contain enough information for
people to accurately determine its type), which our survey
respondents mentioned was positively correlated with reas-
signments.

Factor Coefficient

Bug source:
(categorical)

Internal user 0.26
Component test 0.11
System test 0.11
Human review 0.05
Ad-hoc testing †
Code analysis tool *
Customer *

Num. component path changes 0.72
Initial severity level 0.15
Severity level upgraded? (Boolean) 1.30
Bug type changed? (Boolean) 0.87

Bug opener reputation -0.16
Opener / 1st assignee same manager -0.52
Opener / 1st assignee same building -0.26

Table 1. Descriptive logistic regression model for whether a
bug report has greater than 5 reassignments, trained on all

Windows Vista bugs. Factors labeled * had statistically insig-
nificant coefficients (with p > 0.001), so they cannot be mean-

ingfully compared. The factor labeled † folds into the
intercept term, which is omitted for confidentiality.

The bug opener’s reputation is negatively correlated with
reassignments. We quantify reputation using the same met-
ric as Hooimeijer and Weimer [22]:

bug	opener	reputation ൌ 	
|OPENED ∩ FIXED|
|OPENED| 1

For each bug report, we calculate its opener’s reputation by
dividing the number of previous bugs that he/she has
opened and gotten successfully fixed by the total number of
previous bugs he/she has opened (+1). Adding 1 to the
denominator prevents divide-by-zero and, more important-
ly, prevents people who have opened very few bugs from
earning high reputations (e.g., 1/(1+1) << 100/(100+1)).
Bug openers with higher reputations (i.e., those better at
getting their bugs successfully fixed) might be more experi-
enced in finding the right person to assign bugs to, thus not
incurring as many reassignments.

If the bug’s opener and first assignee have the same man-
ager (i.e., are on the same team), then the bug is less likely
to have excessive reassignments. Bugs assigned between
team members get the benefits of better communication and
more face-to-face discussions rather than having disagree-
ments recorded in the bug database as reassignments.

Similarly, if the bug’s opener and its first assignee work in
the same building, then the bug is also less likely to have
excessive reassignments, again due to the benefits of face-
to-face contact.

QUANTIFYING REASSIGNMENT PATTERNS
We performed a quantitative analysis to explore the ques-
tion of whether certain patterns of reassignments (e.g., cy-
cles or back-and-forth “bug pong”) had an impact on the
chances that a bug gets successfully fixed. By “successfully
fixed” we mean that its final resolution status is FIXED (as
opposed to an unsuccessful resolution status like BY

DESIGN, WON’T FIX, or NOT REPRODUCIBLE).

Certain patterns of reassignments are beneficial to bugs
getting successfully fixed (so they are “good reassign-
ments”), while others are detrimental (“bad reassign-
ments”). Thus, in order to improve the chances that a bug
will be successfully fixed, we should strive to make rec-
ommendations to encourage “good reassignments” while
discouraging bad ones (not to merely reduce the total num-
ber of reassignments).

Reassignment cycles at the beginning of triage
We observed that reassignment cycles at the beginning of
the triage process are beneficial for getting a bug success-
fully fixed. By ‘cycle’ we mean reassignment back to a
person who has previously been assigned the bug, thus
forming a cycle in the sequence of assignees.

For concreteness, let’s use x to denote the base probability
of any Windows Vista bug being successfully fixed (we
cannot reveal the exact value of x due to confidentiality
reasons). Let’s use sequences of letters to denote reassign-
ment patterns: e.g., “ABA” means the bug is first assigned

to Person A, who then reassigns it to Person B, who then
reassigns it back to Person A.

An ABA sequence at the beginning of triage has a 1.16x
chance of getting successfully fixed: 16% greater than the
baseline. In contrast, an ABC sequence has a 1.05x chance,
and an AB[END] sequence (Person A assigns to Person B,
and then the investigation stops) has only a 0.96x chance of
being successfully fixed. Thus, it’s better to have a cycle at
the beginning of triage (ABA) than to pass it onto a new
person (ABC) or simply ending the investigation.

This same pattern holds true for sequences of length 4:
ABCA has a 1.11x chance of successful fix, ABCB has a
1.08x chance, ABCD has a 1.06x chance, and ABC[END]
has only a 1.02x chance. Again, the presence of a cycle
(ABCA and ABCB) is more beneficial than its absence
(ABCD and ABC[END]).

In fact, the benefits of cycles at the beginning of triage are
present even as the cycle size increases. Table 2 shows the
relative chances of a bug being successfully fixed if it con-
tains cycles of sizes 2 through 7. For reference, ABA is a
cycle of size 2, while ABCA is a cycle of size 3. The left-
most “Beginning” column shows that cycles at the begin-
ning of triage are better than those in the middle or at the
end. Furthermore, all bugs containing cycles at the begin-
ning have greater than the baseline x chance of being suc-
cessfully fixed.

The respondents of the follow-up survey pointed out that
the main reason for beneficial cycles in the beginning is that
if the initial assignee passes the bug onto someone else but
then it gets back to him/her, there is now more information
to effectively fix the bug rather than give up on it.

“The initial bug report is incomplete or inaccurate and
Alice sends back to the tester (Bob) for more infor-
mation, better repro steps, etc. This is a common cycle.
Once the bug is improved, it has a high likelihood of
being fixed.”

Respondents also pointed out that cycles occur often when
someone is searching for the correct owner of a bug report.
Such a cycle in the beginning indicates that while Bob was
not the actual owner, he probably provided some pointers to
Alice on who can fix the bug.

Cycle size Beginning Middle End

2 1.11x 1.05x 0.96x
3 1.10x 1.06x 0.96x
4 1.12x 1.06x 0.93x
5 1.04x 1.03x 0.89x

6 1.07x 1.01x 0.97x

7 1.03x 0.99x 0.88x

Table 2. The effects of cycle size and location on the likelihood
of a bug report being successfully fixed. The exact percent-

ages are confidential, so we present values normalized relative
to x, which is the likelihood of successful fix for any bug report

with at least one cycle.

Reassignment cycles at the end of triage
In contrast, Table 2 shows that reassignment cycles at the
end of the triage process are detrimental to the chances of a
bug being successfully fixed. An example of a cycle at the
end of the triage process is ABCDEFGF[END], where FGF
is a cycle of size 2 at the end of triaging. All entries in the
rightmost “End” column have less than the baseline x
chance of being successfully fixed.

The respondents of the follow-up survey pointed out that
the main reason for detrimental cycles at the end (whereas
cycles in the beginning are beneficial) is that they are relat-
ed to discussions whether a bug should be fixed at all.

“This example feels more like a triage cycle where Al-
ice is the PM [program manager] (or opener) and Bob
is the war team/triage team, etc. The war team is send-
ing the bug back to PM/opener for justification why the
bug should be fixed (and not punted). The fact that this
conversation is happening at all means the bug is at
risk and likely to be punted.”

Unclear ownership was another reason mentioned occa-
sionally in the responses to the follow-up survey:

“When ABA is at the end, I think the bug is likely going
back and forth between two developers, who either do
not agree, or do not want the responsibility of fixing
the bug.”

THREATS TO VALIDITY
Internal validity: In a qualitative study of ten bugs, Aranda
and Venolia [16] found that sometimes details are discussed
even before a bug report is created and that not all infor-
mation is recorded in bug tracking systems. For our study,
this is only a minor threat because bug reassignments must
be recorded in the bug database. We also validated our
quantitative results with qualitative feedback from Mi-
crosoft employees.

Bird et al. [26] raised the issue of bias in bug datasets for
defect prediction in open-source projects. However, the
likelihood of bias in our dataset is low since we analyzed
the entire population of Windows Vista bug reports.

External validity: Drawing general conclusions from em-
pirical studies in software engineering is difficult because
any process depends on a potentially large number of rele-
vant context variables [27]. For this reason, we cannot as-
sume a priori that the results of our study generalize beyond
the specific environment in which it was conducted. That is,
other large-scale systems software projects.

LESSONS LEARNED AND RECOMMENDATIONS FOR
BUG TRACKING SYSTEM DESIGN

Not all reassignments are necessarily bad
Previous research [5,11] considered all bug reassignments
to be problematic and consequently proposed ways to avoid
reassignments. However, as the study in this paper shows,
bug reassignments are often needed to locate the root cause
and the person who should fix the bug. Unfortunately, it is

not yet possible to automatically separate the wheat (bene-
ficial reassignments) from the chaff (unnecessary reassign-
ments). While in some cases, it is possible to identify prob-
lematic patterns such as “ping pong” bugs [5], such patterns
typically apply to only a small fraction of bug reports. In
the follow-up survey, most respondents considered ping
pong bugs to be fairly uncommon. We also asked about the
percentage of detrimental/wrong reassignments. On average
respondents considered only 17.6% of reassignments to be
detrimental; the median was even lower with 10%.

Ideally, bug tracking systems would have ways to assess
and rate reassignments. Beneficial reassignments could be
marked by users or automatically identified with heuristics.
This would help to increase the quality of tools that lever-
age reassignment information to make recommendations to
engineers. Bug tossing graphs [11] are an example of such a
tool, which can reduce the number of reassignments. How-
ever, bug tossing graphs do not have the concept of benefi-
cial reassignment; their goal is simply to direct a bug report
to the final resolver via as few intermediate people as pos-
sible. Thus, it is possible and likely that an essential person
is omitted from the list of people who inspect a bug report.

Tool support for finding root causes and owners
A salient finding from our study is the significance of root
causes and component owners when fixing bugs. Often it is
not immediately clear from the bug description which part
of the software needs to be fixed; bug reassignments narrow
down possibilities for fault location. Once the fault location
is known, another challenge is identifying the right person
who is able to fix the fault; again this can lead to reassign-
ments because ownership is not always clearly defined.
Based on this observation, we make several recommenda-
tions for improving bug tracking systems:

1. Integrate a knowledge database of top experts and their
areas of expertise into bug tracking software. For exam-
ple, recommending the best engineers to fix heap cor-
ruption errors would allow other engineers to assign
specialized types of bug reports to the people who are
most skilled to either fix the bug report or to find some-
one who can.

2. Similarly, having experienced technical engineers on the
team who are intimately familiar with the entire mod-
ule’s code base and can pick the right engineers to work
on bugs, will help to reduce the number of misdirected
assignments. While several projects have engineers re-
sponsible for bug triaging, especially in open-source
projects [6,28], there is only limited tool support in ex-
isting bug tracking systems related to bug triaging.

Ideally, bug triagers act as information hubs and are
aware of the entire social network of engineers and the
technical dependency network. To support engineers
staying on top of these networks, tools and techniques
from the field of socio-technical congruence [29,30]
should be integrated into bug tracking systems.

3. Once the fault location has been narrowed down, better
tools for finding code ownership and expertise based
on actual code contributions would help in identifying
the appropriate person who can resolve the bug report
and avoiding unnecessary reassignments. Note that in
practice, ownership and expertise are often two different
concepts. Someone who owns a piece of code might not
necessarily have the most expertise to change it. While
it is difficult to mine ownership automatically, several
approaches can identify engineers who are familiar with
a piece of code [31,32,2].

Assign bugs to arbitrary artifacts rather than just people
Another more radical change to bug tracking is to allow
assignment of bug reports to one or more arbitrary artifacts
rather than just one person. Examples of artifacts include
components, files, but also UI elements, features, or simple
keywords. Based on historical data and social networking
techniques or expertise finding techniques [32,2], keywords
could then fluidly map to people who probably can fix the
bug. For example, engineers who previously have fixed bug
reports about keyword WindowManager will see any new
bug reports about this keyword (and related keywords).

This extra layer of indirection means that bug reports can be
assigned to multiple persons rather than individuals. While
this might come at the cost of lower accountability, we be-
lieve that more bug reports will find the right person faster.
Rather than developers fixing bugs reactively when as-
signed reports, the role of developers would be more proac-
tive, constantly picking bug reports from a pool. If certain
reports are not picked after a certain amount of time, they
could be automatically assigned to the most appropriate
developers, based on heuristics.

Tool support for awareness and coordination
Another recommendation is to increase the awareness of
the changes happening around bug (re)assignments. For
example, if Person A assigns to B, but then B assigns to C,
then A typically does not know that B assigned the bug to
C, and would be under the impression that B should get
future bugs (of that type or component) when in fact C
should be assigned those bugs. If Person A were more
aware of the updates to reassignments, that could help bet-
ter direct his/her own future reassignments.

Bug tracking systems should also include better visualiza-
tions of reassignment patterns to help engineers identify
problematic patterns such as reassignment cycles or ping
pongs. Similar to context awareness, a visualization of the
status of the bug reassignment would help engineers under-
stand the process of finding the right engineer for a bug so
that this knowledge can be applied to future bugs. Halver-
son et al. [5] proposed visualizations for the history of indi-
vidual work items and the social health of all open work
items in a project. Their primary focus was to identify prob-
lematic patterns. Ultimately, we believe that the way that
engineers interact with bug reports needs to move away
from a bug list and to-do list to more flexible presentation.
One of these presentations might consist of (code) bubbles

[33,34]. A bubble is a fully editable and interactive view of
an artifact that exists in a large, pannable 2-D virtual space.

Furthermore, information on bug reassignments can be
used by engineers for archival purposes too. For example,
if an engineer wants to find out who should be assigned
bugs that are part of component X, he/she can extract the
bugs from the database and look though the reassignment
patterns to gain a better understanding of the correct person
to assign the bug to. Currently, the reassignment infor-
mation in bug databases is simply presented as a series of
text fields and edits, which is hard to decipher and makes it
cumbersome to extract high-level patterns. We feel that
historical reassignment data should be easily accessible for
engineers to make the right triaging decisions.

Finally, most bug tracking systems measure only when a
person edits a bug report, but not when they are in the
process of investigating the report. To increase workload
awareness, we recommend building a system that would let
developers/testers pick a bug they plan to work on and have
the system to passively (unobtrusively) monitor their activi-
ty while they work on that bug. This way, team members
and managers will know if a developer is actively working
on a bug or whether the bug is parked (inactive). This will
allow team members and managers to find out if a develop-
er is already overloaded, so that they will know to find al-
ternative options to fix this bug.

CONCLUSION
In this paper, we have investigated the bug reassignment
process in Windows Vista using qualitative and quantitative
approaches. To the best of our knowledge, our paper is the
first to study these social dynamics in the bug reassignment
process. In sum, we learned that:

 Reassignments are not always harmful. They are in fact
beneficial to find the best person to fix a bug. Excessive
reassignments are harmful, though.

 Qualitatively, the five primary reasons for reassignments
are finding the root cause, determining ownership, poor
bug report quality, hard to determine proper fix, and
workload balancing.

 Quantitatively, the number of component path changes,
initial severity level, upgrading the severity level, and
bug type change correlate positively with reassignments,
whereas the bug opener’s reputation and co-location of
opener and first assignee correlate negatively.

 Based on quantifying reassignment patterns, we observe
that cycles at the beginning of bug triage are useful for
finding the right person to fix the bug, but cycles at the
end are detrimental.

Bug reassignments currently occur in an ad-hoc manner as
part of the software development process. There is little tool
support in current bug tracking systems for efficiently di-
recting reassignments. We hope that designers of future bug
tracking systems can adopt our recommendations to create
more socially-aware systems that, amongst other goals,
eliminate inefficient reassignments.

Acknowledgments: Thanks to the CSCW reviewers for their
insightful critiques and to the Microsoft Windows team for their
help in understanding the data. Philip Guo performed this work
during a summer internship and a visit to Microsoft Research.

REFERENCES
1. Randall, D., Jon, O., Rouncefield, M., and Hughes, J.A. Organizational

Memory and CSCW: Supporting the Mavis Phenomenon. In
Proceedings of the 6th Australian Conference on Computer-Human
Interaction (1996), 26-33.

2. McDonald, D.W. and Ackerman, M.S. Expertise recommender: a
flexible recommendation system and architecture. In Proceeding on
the ACM Conference on Computer Supported Cooperative Work
(2000), 231-240.

3. Breu, S., Premraj, R., Sillito, J., and Zimmermann, T. Information
needs in bug reports: improving cooperation between developers and
users. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work (2010), 301-310.

4. Bertram, D., Voida, A., Greenberg, S., and Walker, R.
Communication, collaboration, and bugs: the social nature of issue
tracking in small, collocated teams. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work (2010), 291-
300.

5. Halverson, C.A., Ellis, J.B., Danis, C., and Kellogg, W.A. Designing
task visualizations to support the coordination of work in software
development. In Proceedings of the 20th Anniversary Conference on
Computer Supported Cooperative Work (2006), 39-48.

6. Anvik, J., Hiew, L., and Murphy, G.C. Who should fix this bug? In
Proceedings of the 28th International Conference on Software
Engineering (2006), 361 - 370.

7. Ko, A.J. and Chilana, P.K. How power users help and hinder open bug
reporting. In Proceedings of the 28th International conference on
Human Factors in Computing Systems (2010), 1665-1674.

8. Avnon, Y. and Boggan, S.L. Fit and Finish using a bug tracking
system: challenges and recommendations. In Proceedings of the 28th
of the International Conference on Human Factors in Computing
Systems (Extended Abstracts) (2010), 4717-4720.

9. Sandusky, R.J. and Gasser, L. Negotiation and the coordination of
information and activity in distributed software problem management.
In Proceedings of the international ACM SIGGROUP Conference on
Supporting Group Work (2005), 187-196.

10. Guo, P.J., Zimmermann, T., Nagappan, N., and Murphy, B.
Characterizing and predicting which bugs get fixed: an empirical study
of Microsoft Windows. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (2010), 495-504.

11. Jeong, G., Kim, S., and Zimmermann, T. Improving bug triage with
bug tossing graphs. In Proceedings of Joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (2009), 111-120.

12. Shao, Q., Chen, Y., Tao, S., Yan, X., and Anerousis, N. Efficient ticket
routing by resolution sequence mining. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2008), 605-613.

13. Sandusky, R.J. Information, activity and social order in distributed
work: The case of distributed software problem management. PhD
Thesis, University of Illinois at Urbana-Champaign, 2005.

14. Ripoche, G. and Sansonnet, J.-P. Experiences in Automating the
Analysis of Linguistic Interactions for the Study of Distributed
Collectives. Journal Computer Supported Cooperative Work, 15, 2-3
(June 2006), 149-183.

15. Carstensen, P.H. Computer Supported Coordination. (PhD Thesis).
Risø National Laboratory, Roskilde, Denmark, 1996.

16. Aranda, J. and Venolia, G. The secret life of bugs: Going past the
errors and omissions in software repositories. In Proceedings of the
31st International Conference on Software Engineering (2009), 298-
308.

17. van Liere, D.W. How Shallow is a Bug? Open Source Communities as
Information Repositories and Solving Software Defects. In ERIM
Report Series Reference Forthcoming.
http://ssrn.com/abstract=1507233 (2009).

18. Ko, A.J., Myers, B.A., and Chau, D.H. A Linguistic Analysis of How
People Describe Software. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (2006), 127-134.

19. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and
Zimmermann, T. What makes a good bug report? In Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (2008), 308-318.

20. Just, S., Premraj, R., and Zimmermann, T. Towards the next
generation of bug tracking systems. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing
(2008), 82-85.

21. Barker, I. What is information architecture?, 2005. KM Column,
http://www.steptwo.com.au.

22. Hooimeijer, P. and Weimer, W. Modeling bug report quality. In
Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (2007), 34-43.

23. Bird, C., Nagappan, N., Devanbu, P.T., Gall, H., and Murphy, B. Does
distributed development affect software quality? An empirical case
study of Windows Vista. In Proceedings of the 31st International
Conference on Software Engineering (2009), 518-528.

24. Cohen, J. Statistical Power Analysis for the Behavioral Sciences.
Routledge Academic, 1988.

25. Hosmer, D.W. and Lemeshow, S. Applied Logistic Regression. John
Wiley & Sons, 2000.

26. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V.,
and Devanbu, P.T. Fair and balanced? Bias in bug-fix datasets. In
Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (2009), 121-130.

27. Basili, V., Shull, F., and Lanubile, F. Building knowledge through
Families of Experiments. IEEE Trans. Software Eng., 25, 4 (1999),
456-473.

28. Anvik, J., Hiew, L., and Murphy, G.C. Coping with an open bug
repository. In Proceedings of the OOPSLA Workshop on Eclipse
Technology eXchange (2005), 35-39.

29. Cataldo, M., Herbsleb, J.D., and Carley, K.M. Socio-technical
congruence: a framework for assessing the impact of technical and
work dependencies on software development productivity. In
Proceedings of the 2nd ACM-IEEE international symposium on
Empirical software engineering and measurement (2008), 2-11.

30. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley, K.M.
Identification of coordination requirements: implications for the
Design of collaboration and awareness tools. In Proceedings of the
20th anniversary conference on Computer supported cooperative work
(2006), 353-362.

31. Fritz, T., Ou, J., Murphy, G.C., and Murphy-Hill, E.R. A degree-of-
knowledge model to capture source code familiarity. In Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering (2010), 385-394.

32. Mockus, A. and Herbsleb, J.D. Expertise browser: a quantitative
approach to identifying expertise. In Proceedings of the 22rd
International Conference on Software Engineering (2002), 503-512.

33. Bragdon, A., Zeleznik, R.C., Reiss, S.P., Karumuri, S., Cheung, W.,
Kaplan, J., Coleman, C., Adeputra, F., and Jr., J.J.L. Code bubbles: a
working set-based interface for code understanding and maintenance.
In Proceedings of the 28th International Conference on Human
Factors in Computing Systems (2010), 2503-2512.

34. Bragdon, A., Reiss, S.P., Zeleznik, R.C., Karumuri, S., Cheung, W.,
Kaplan, J., Coleman, C., Adeputra, F., and Jr., J.J.L. Code bubbles:
rethinking the user interface paradigm of integrated development
environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (2010), 455-464.

