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Contributions: This paper presents a mixed qualitative and 
quantitative study of the collaborative aspects of bug report 
reassignments. Based on a widely-deployed qualitative sur-
vey at Microsoft, we categorized five primary reasons for 
reassignments: finding the root cause, determining owner-
ship, poor bug report quality, hard to determine proper fix, 
and workload balancing. We then built and interpreted a 
descriptive statistical model to identify the relationship be-
tween bug report features and reassignments. We also show 
that there are certain harmful patterns of reassignments, like 
cycles at the end of a sequence. Finally, we use these find-
ings to make recommendations for the design of more so-
cially-aware bug tracking systems that can overcome some 
of the inefficiencies we observed in our study. 

 

RELATED WORK 
There has been a lot of work on bug triaging, not only in 
software engineering but also in the CSCW [4,3,5], HCI 
[7,8], and GROUP [9] communities. However to the best of 
our knowledge, there has been little work on bug report 
reassignments. 

Reassignments in bug reports. Based on interviews with 
ten software developers and a qualitative analysis of an 
unspecified number of bug reports, Halverson et al. [5] de-
scribed several problematic patterns in bug tracking.  They 
observed that assign/reassign cycles (or “ping pong” as 
called by developers) indicate that a bug is not finding the 
right owner or that the location of the bug is ambiguous.  In 
an empirical study of which bugs get fixed in Microsoft 
Windows, Guo et al. [10] observed “reassignments are not 
always detrimental to bug-fix likelihood; several might be 
needed to find the optimal bug fixer.” Compared to this 
previous work by Halverson et al. and Guo et al., this paper 
provides a comprehensive discussion of causes for reas-
signments. Our findings are quantitatively validated on a 
large number of bug reports. 

Jeong et al. [11] analyzed bug report reassignments (which 
they called “bug tossing”) in the Mozilla and Eclipse pro-
jects.  They used a graph structure and Markov chains to 
reduce the number of reassignments.  Jeong’s work was 
inspired by Shao et al. [12], who proposed an algorithm for 
ticket routing.  In ticket routing, a new ticket needs to find 
its resolver with as few steps as possible—any assignment 
to someone who cannot resolve the ticket is considered as 
inefficient.  However, as we show in this paper, there are 
many legitimate reasons for bug reassignments, such as 
finding the root cause and workload balancing. 

Communication, coordination, communities, and bugs. 
Several researchers investigated how people communicate 
and coordinate in bug reports. In his Ph.D. thesis, Sandusky 
used qualitative methods on open-source bug reports for an 
empirically grounded description of the information prac-
tices used by a distributed open-source project [13].  
Sandusky and Gasser studied the role of negotiation and its 
effect on the organization of information in software prob-

lem management [9].  Ripoche and Sansonnet analyzed 
speech acts across the Mozilla corpus of bug reports [14].  
Breu et al. [3] categorized questions asked in open-source 
bug reports and analyzed response rates and times. Carsten-
sen studied coordination via physical bug forms [15].  

Aranda and Venolia [16] reported on a study of coordina-
tion activities around bug fixing at Microsoft.  They identi-
fied common coordination patterns and provided implica-
tions for tool designers and researchers.  Bertram et al. [4] 
conducted a qualitative study of issue tracking systems as 
used by small, collocated software development teams. 
They found that even in collocated teams, issue trackers are 
a focal point for communication and coordination.  Ko and 
Chilana [7] quantified the value of contributions by “power 
users” to open bug reporting in Mozilla.  They observed 
that the primary value comes from recruiting a small pool 
of talented developers and reporters, and not from the 
masses.  Diederik van Liere [17] studied how the infor-
mation provided by open-source community members in-
fluences the repair time of software defects; he found that 
user contributions shorten repair times. 

Characterization of bug reports. Ko et al. [18] looked at 
bug report titles and identified fields that could be incorpo-
rated into new bug report forms. Bettenburg et al. [19] con-
ducted a survey among developers and users from the 
Apache, Eclipse, and Mozilla projects to determine which 
information contents comprise good quality bug reports. 
Just et al. [20] analyzed the responses from the same survey 
to suggest improvements to bug tracking systems. 

 

METHODOLOGY 
We studied bug report reassignments in the context of the 
Microsoft Windows Vista operating system project, which 
we feel is a representative example of a large-scale com-
mercial software project. Vista contains several thousand 
source code files and 40+ million lines of code, written by 
more than 2000 software engineers. The findings we pre-
sent in this paper are derived from three sources related to 
Windows Vista bug reports: free-response answers from a 
survey sent to Microsoft employees, a manual examination 
of randomly-selected bug reports, and a high-level quantita-
tive analysis of the entire Windows Vista bug database. 

Survey free-response answers 
Our primary data source is an online survey we sent in Au-
gust 2009 to 1,773 Microsoft employees with questions 
about various aspects of the bug triaging and fixing process.  
Since we wanted to get the opinions of people well-versed 
in handling Windows-related bugs, we chose as our survey 
participants the top 10% of people who have opened, been 
assigned to, or resolved Windows Vista bugs.  We received 
358 responses (20% response rate).  Most respondents were 
either developers (55%) or testers (30%).  Most were fairly 
experienced, with a median of 11.5 years of work experi-
ence in the software industry and 9 years at Microsoft. 



 

We analyzed responses to most of the survey questions for 
another paper [10]; for this paper, we analyzed responses to 
the following free-response question, which we did not ex-
plore in our other paper: 

In your experience, what are some reasons why a bug 
would be reassigned multiple times before being suc-
cessfully resolved as Fixed?  E.g., why wasn’t it as-
signed directly to the person who ended up fixing it? 

Response length varied from one phrase (e.g., “bug cause 
was not initially understood”) to long paragraphs. We print-
ed out all 358 responses on index cards and performed card 
sorting [21].  Two of the authors independently performed 
an open card sort and then merged their results into a single 
taxonomy.  Then a third author read over all of the respons-
es to check and made minor adjustments to the categories. 

Manual examination of bug reports 
Informed by our analysis of survey results, we informally 
examined the contents of 50 Windows Vista bug reports, 
chosen by randomly sampling from all bug reports with 
more than 5 reassignments (10% of total bug reports had 
more than 5 reassignments).  The main reason we manually 
examined selected bug reports was to corroborate the sur-
vey respondents’ opinions with firsthand observations from 
the bug reports themselves. 

Quantitative analysis of bug and personnel data 
We quantified certain observations to the extent possible by 
mining data from the Windows Vista bug database and the 
Microsoft employee personnel database. We collected all 
pre- and post-release bug reports for Windows Vista in July 
2009 (2.5 years after Vista’s release date).  We consider our 
dataset to be fairly complete for the factors we want to in-
vestigate, since very few new Vista bugs are being opened, 
compared to when it was under active development (2002-
2007).  For confidentiality reasons, we cannot reveal the 
exact number of bug reports, but it is at least an order of 
magnitude larger than datasets used in related work [22].  
For each bug report, we extracted a list of edit events that 
occurred throughout its lifetime.  Each event alters one or 
more of the following fields (fields not relevant to our anal-
ysis in this paper have been omitted): 

 State: OPENED, RESOLVED, or CLOSED 

 Opener: Who opened this bug? 

 Assignee: Who is now assigned to handle this bug? 

 Severity: An indicator of the bug’s potential impact on 
customers.  Crashes, hangs, and security exploits have the 
highest severity (Level 4); minor UI blemishes, typos, or 
trivial cosmetic bugs have the lowest severity (Level 1). 

 Component path: Which component is the bug in? e.g., 
DesktopShell/Navigation/StartMenu 

 Bug type: What kind of bug is it? e.g., bug in code, spec-
ification, documentation, or test suite 

 Bug source: How was this bug found? e.g., by a custom-
er, an internal Microsoft user, or a system test 

 Resolution status: How has this bug been resolved? e.g., 
FIXED, BY DESIGN, WON’T FIX, NOT REPRODUCIBLE.  
(Null if state is not RESOLVED) 

Here is a typical bug’s life cycle: When it is first opened, all 
of its fields except for “Resolution status” are set.  Then the 
bug might be edited a few times (e.g., to upgrade its severi-
ty).  A special type of edit called a reassignment occurs 
when the “Assignee” field is edited.  When somebody 
thinks that he/she has resolved the bug, its “Resolution sta-
tus” field is set.  After the resolution attempt is approved 
(usually by the opener), the bug is closed.  However, it 
might be reopened if the problem has not actually been 
properly resolved. 

To explore the impacts of geographical and organizational 
distance on bug reassignments, we obtained the office loca-
tion and manager of each employee circa July 2009 from 
the Microsoft employee personnel database. Thus, we can 
determine whether two employees worked in the same 
building, campus, country, or on the same team (i.e., had 
the same manager).  Sometimes people switch locations or 
teams, but in general Microsoft tries to keep employees in 
the same location and team during a product cycle [23]. 

Follow-up survey 
Lastly, we solicited additional feedback on our findings in 
another survey among 397 Microsoft employees. We chose 
as our participants based on the number of bug reports they 
have been assigned to or the number of reassignment cycles 
they have been involved in Windows 7. We received 118 
responses (30% response rate) 

CAUSES OF BUG REPORT REASSIGNMENTS 
In this section, we combine card sort results from our sur-
vey, observations from examining selected bug reports, and 
descriptive statistics to characterize the 5 main causes of 
bug reassignments in the Windows Vista project: 

1. Finding the root cause 

2. Determining ownership 

3. Poor bug report quality 

4. Hard to determine proper fix 

5. Workload balancing 

A typical bug report gets reassigned a few times before it 
gets resolved.  The median number of reassignments for 
Windows Vista bug reports is 2, and the mean is 2.5.  90% 
of reports have 5 or fewer reassignments. In general, reas-
signments aren’t necessarily detrimental, but they do take 
up time and cause developers to context-switch between 
multiple reports. 

Finding the root cause 
The most common reason bug reports are reassigned is be-
cause people want to find the root cause of the problem 
before they are willing to attempt a fix.  Bug reports usually 
only indicate superficial symptoms, but a high-quality fix 
should address the root cause and not merely patch the re-
ported symptoms.  The root cause is often in a completely 



 

 

different component than symptoms indicate, though.  A 
survey respondent elaborates on this reason for why bugs 
are reassigned multiple times before being resolved: 

“Bugs many times are exposed in the UI [user inter-
face], but are not caused by the team writing the UI 
code.  These bugs can pass down several layers of 
components before landing on a lower level component 
owner.  As the UI team gets more familiar with the 
component layers they can more directly assign bugs to 
the offending component, but that takes time and 
knowledge.” 

We can quantify the above phenomenon by correlating re-
assignments with changes in the “Component path” field of 
bug reports, which indicates in which component people 
currently believe a bug originates.  People don’t usually 
change a bug’s component path without also reassigning it: 
If a bug report had no reassignments, then it only has a 13% 
chance of its component path being changed, while a bug 
with some reassignments has a 35% chance of its path be-
ing changed (almost 3x more).  There is a Spearman’s rank 
correlation [24] of 0.32 between the numbers of reassign-
ments and path changes for individual bug reports, which 
indicates a moderate positive correlation. 

Oftentimes the bug reporter doesn’t have the expertise re-
quired to ascertain the root cause, so he/she must reassign 
the bug to someone with more domain-expertise.  As a sur-
vey respondent describes: 

“Usually this seems to stem from inaccurate assump-
tions on the part of the bug filer.  For example, some-
one clicks a button in a feature, and there’s a corre-
sponding crash — usually the bug is assigned to the 
most proximal piece of interaction — the button owner.  
However, given software complexities, sometimes the 
crash is actually due to an underlying layer.  The filer 
either lacked the expertise, will, or time to investigate 
deep enough to understand the issue at hand.” 

Our data corroborates these anecdotal observations: Bugs 
originating from different sources have different average 
numbers of reassignments.  On one end, internal users (Mi-
crosoft employees using beta versions) have a hard time 
reporting bugs to the right components, thus resulting in the 
most reassigns of any bug source (mean of 3.14, median of 
2).  For example, one of the authors of this paper (a Mi-
crosoft employee) once reported a bug for Microsoft Office, 
but since he did not work on the Office project, it was hard 
for him to determine which exact component to file the bug 
under.  On the other extreme, bugs found by component and 
system tests have relatively few reassigns (mean of 2.4, 
median of 1), since they are purposefully designed to isolate 
particular components, so their root causes are quite certain. 

Unfortunately, reassignments are also done out of laziness; 
some people don’t do a thorough job of determining root 
cause and simply punt the bug to get it off their task queue: 

“Insufficient root cause analysis.  People are willing to 
do just enough to convince themselves it isn’t their 
problem and then re-assign to the person who they 
think is closer to the right owner.” 

At the end of this paper, we make design recommendations 
for improving expertise finding [2] and thereby minimizing 
the number of reassignments required to ascertain a bug’s 
root cause. 

Determining ownership (which is often unclear) 
A concept related to root cause is ‘ownership’, which is 
defined roughly as “what team is responsible for the com-
ponent that exhibits this bug?”  In a large software project 
like Windows Vista, ownership of components can often be 
unclear or ambiguous, since many components lie at the 
intersection of several teams’ jurisdictions. These survey 
respondents lament: 

“It is often very difficult to identify the correct owner 
for the bug, even when the cause of the bug is known.” 

“The bug falls into an area between two teams.  Say, 
the USB team and the WPD (Windows Portable Devic-
es) team.  The bug gets kicked around many times 
while the teams decide who is actually at fault.” 

When we manually looked through bug reports, we saw 
these disagreements over ownership play out in their edit 
histories.  As an example of such a scenario, in one bug 
report, Person A first assigns to Person B, with the message 
“You or [Person C]?”  An hour later, Person B reassigns to 
Person C with the message “Reassign to [Person C] …” 
along with a brief explanation of why he thought that the 
bug was in a component that Person C owned.  The next 
morning, Person C reassigns back to Person B with the 
message “Dunno who gets this one, but it’s not me.  I don’t 
have anything to do with [Component X], AFAIK [as far as 
I know].”  After another day of investigation, Person B then 
reassigns to Person D, who works on the bug for 2 weeks 
and then successfully resolves it as “Fixed”. 

When there are disagreements over ownership, bugs can be 
reassigned back-and-forth between two (or more) teams, an 
undesirable, time-wasting phenomenon known to our sur-
vey respondents as “bug pong” or “hot potato”: 

“Not clear ownership: Sometimes different teams work 
together to develop a product.  In such cases some-
times the ownership boundaries are not clear so the 
bugs get re-assigned back and forth till the ownership 
gets determined.” 

“Playing bug pong between teams who don’t agree on 
ownership.  It’s stupid, but some teams use this as a de-
laying-until-it’s-bad-enough-that-someone-more-
important-demands-a-fix.” 

In the follow-up survey, we also asked about the frequency 
of hot potatoes. The majority of respondents replied that hot 
potato is “uncommon”. Yet some respondents pointed out 
situations where hot potatoes occur frequently: for compo-



 

nents shared by multiple teams, high in the system stack, or 
with unclear ownership; near milestones; or for bugs with 
incomplete steps to reproduce. 

At the end of this paper, we make recommendations for 
making ownership more explicit so as to reduce the amount 
of these inefficient reassignments. 

Poor bug report quality 
If a bug report is poorly written or contains too little infor-
mation, then it might need to be reassigned a few times as 
people struggle to decipher its cause: 

“The most important factor in multiple reassigning in 
my experience is unclear bug reports.  If the person as-
signed to the bug doesn’t understand the issue, they 
will either assign it back to the person who opened it, 
or (rarely, but it happens) assign it to the wrong person 
based on misunderstood information, and then it will 
become even worse.” 

“If a bug report cites only basic symptoms (such as 
‘crash’) and has little or no information hinting at 
cause (such as call stack), then triage is very difficult 
and a bug can end up being bounced around.” 

When we manually looked through bug reports, we saw the 
detrimental effects of poor report quality in some of their 
edit histories.  An example scenario: For a particular user 
interface bug, Person A first assigns to B with the 2-word 
bug report “please investigate” without providing much 
further detail.  Person B investigates for ~2 hours and reas-
signs to Person C with the message “I debug to [function 
F].  I cannot match the source code.  Before this function 
return, No permission dialog pops up.  Please take a look.”  
Person C immediately reassigns back to B with the message 
“um … [function F] is the guy who’s rendering the dialog.  
If you’re complaining about the dialog you should find out 
who requested the dialog to show up.” 

It’s difficult to quantify bug report quality without doing 
some sort of heuristic-based text analysis that is outside the 
scope of this project; however, one proxy indicator of poor 
report quality is that a bug report’s “Bug type” field chang-
es throughout its lifetime.  If people aren’t even sure about 
the type of the bug (e.g., is it a bug in code, specs, docs, or 
tests?), then chances are that it’s a poor-quality bug report.  
9% of all Windows Vista bugs had their bug type field 
changed.  Bugs whose type changed had, on average, more 
reassigns than those whose types didn’t change: mean of 
3.6 reassigns vs. 2.4, and median of 3 vs. 2. 

Hard to determine proper fix even after cause known 
Even after the root cause and ownership have been deter-
mined, a bug might still need to be reassigned as people 
debate the proper way to fix it.  As our survey respondents 
observed: 

“There can be multiple possible fixes for a given issue 
which can straddle teams, so the bug can bounce back 
and forth until the bug fix strategy is solidified.” 

“Bug could be fixed or worked around in multiple 
places, and each place punts the fix to one of the other 
teams.” 

Workload balancing (or the appearance thereof) 
Once a bug report gets to the proper team that is eventually 
going to fix it, it still might get reassigned a few times be-
tween team members as a matter of workload balancing.  
For example, some developers might be busy with other 
tasks, so they will reassign to their teammates (with the 
hopes of reciprocity in the future).  Such load-balancing 
reassignments can be beneficial, since bugs might get fixed 
sooner: 

“Once the bug has found the right team, the biggest 
factor in reassigning is often load balancing issues 
across team members to drive down totals.  Bugs will 
be fairly static early in the development cycle but as 
bug counts become more important, we’ll move issues 
around frequently to ensure they get prompt attention.” 

However, sometimes within-team reassignments are done 
for political reasons, giving the appearance of being load-
balanced to satisfy managers while the bug sits idle 
(‘parked’): 

“A bug is parked with someone.  This may be for inves-
tigation.  It may be for some desire to appear load bal-
anced.  I believe reassignment is more common when 
playing games with balancing than it is when investi-
gation finds that the responsible code is owned by an-
other individual to whom the bug is transferred.” 

At the end of this paper, we make recommendations for 
monitoring developer activities in order to facilitate load 
balancing. 

DESCRIPTIVE STATISTICAL MODEL 
To quantify factors that contribute to bug reassignments, we 
built a descriptive statistical model and interpreted its coef-
ficients with reference to the qualitative findings we pre-
sented in the previous section. 

Logistic regression model building 
Specifically, we built a logistic regression model for the 
probability that a bug report has excessive numbers of reas-
signments, where we define “excessive” as greater than 5.  
We used 5 as our cutoff threshold since 90% of bugs had 5 
or fewer reassignments, so those with greater than 5 can be 
thought of as having “excessive numbers of reassignments” 
(in the top 10%).  We used a cutoff since we only wanted to 
separate reports with “normal” and “excessive” numbers of 
reassignments; it didn’t make much sense to try to predict 
the exact number of reassignments (e.g., it doesn’t matter if 
a bug has 23 or 42 reassignments; both are “excessive”). 

A logistic regression model aims to predict the probability 
of an event occurring (e.g., does this bug report have exces-
sive numbers of reassignments?) using a combination of 
factors that can be numerical (e.g., number of component 
path changes), Boolean (e.g., was its severity level upgrad-
ed?), or categorical (e.g., bug source). 



 

 

Table 1 shows the model we constructed by training on the 
entire Windows Vista bug report dataset using the R statis-
tics package.  We determined that all factors had independ-
ent effects by adding each one to an empty model and ob-
serving that the model’s deviance (error) decreases by a 
statistically significant amount for all added factors (a 
standard technique called Analysis of Deviance [25]). 

Note that the sole purpose of our model is to describe vari-
ous independent effects on bug reassignments.  It cannot 
actually be used in practice to predict the probability that a 
newly-opened bug report will have excessive (greater than 
5) reassignments, since it uses factors that are not available 
at the time a bug is first opened (e.g., number of component 
path changes). 

How to interpret logistic regression coefficients 
One main benefit of using logistic regression over other 
types of statistical models (e.g., support vector machines) is 
that its parameters (e.g., the coefficients in Table 1) have 
intuitive meanings. 

For numerical and Boolean factors, the sign of each coef-
ficient is its direction of correlation with the probability that 
a bug contains excessive reassignments.  For example, 
“Num. component path changes” is positively correlated 
with reassignments, so its coefficient is positive (0.72).  The 
magnitude of each coefficient approximately indicates how 
much a particular factor affects reassignments.  See Hosmer 
and Lemeshow [25] for details on how to transform these 
coefficients into exact probabilities.  In general, it’s hard to 
compare coefficient magnitudes across factors, since their 
units of measurement likely differ.  However, it’s possible 
to compare coefficients for, say, two Boolean factors like 
“Severity level upgraded?” and “Bug type changed?”  The 
coefficient of the former (1.30) is larger than that of the 
latter (0.87), which means that a severity upgrade has a 
larger positive effect on the probability that a bug will have 
excessive reassignments than a change in bug type does. 

For categorical factors (“Bug source” is the only one in 
our model), if a factor has N categories (levels), then N – 1 
of them get their own coefficient, and the remaining one 
gets its coefficient folded into the intercept term (the R sta-
tistics package we use chooses the alphabetically earliest 
category to fold, so that’s why “Ad-hoc testing” has no co-
efficient in Table 1).  What matters isn’t the value of each 
coefficient but rather their ordering across categories.  For 
example, “Internal user” has a larger coefficient than “Hu-
man review”, which means that the former is more positive-
ly correlated with reassignments than the latter. 

Interpreting our model’s coefficients 
Bug source is a categorical factor whose coefficients can 
only sensibly be compared against one another.  Bugs re-
ported by internal Microsoft users are likely to have exces-
sive reassignments, since Microsoft employees using beta 
versions of software have permission to directly submit bug 
reports but often lack the expertise to submit a high-quality 
report targeting the specific component exhibiting the bug.  

In contrast, QA staff usually vet bugs submitted by custom-
ers before entering them into the bug database.  Bugs found 
by component and system tests are less likely to be reas-
signed since it’s much easier to pinpoint their root causes 
and ownership; after all, tests are designed to target specific 
well-defined areas.  Finally, bugs found by human review 
(e.g., code or documentation review) are unlikely to have 
excessive reassignments, since if a bug is found in some-
one’s code or documentation during a review, then they are 
likely the owner responsible for fixing it. 

Number of component path changes is positively corre-
lated with excessive reassignments, since a bug’s compo-
nent path changes throughout the normal process of ascer-
taining root cause and determining ownership. 

Initial severity level is positively correlated with excessive 
reassignments, since higher-severity bugs get more atten-
tion so people might pass them around in an effort to triage 
and fix them.  In contrast, many low-severity bugs are 
simply ‘parked’ in someone’s task queue and receive little 
attention (since they are probably busy handling higher-
severity bugs). 

If a bug’s severity level is upgraded, then that’s a strong 
“call to action” for developers to work harder to find the 
root cause, assign ownership, and actually fix the bug.  
Thus, it’s also positively correlated with reassignments. 

If a bug’s type is changed, then it’s likely a low-quality 
bug report (it doesn’t even contain enough information for 
people to accurately determine its type), which our survey 
respondents mentioned was positively correlated with reas-
signments. 

Factor Coefficient 

Bug source: 
(categorical) 

Internal user 0.26 
Component test 0.11 
System test 0.11 
Human review 0.05 
Ad-hoc testing † 
Code analysis tool * 
Customer * 
  

Num. component path changes 0.72 
Initial severity level 0.15 
Severity level upgraded? (Boolean) 1.30 
Bug type changed? (Boolean)  0.87 
  

Bug opener reputation -0.16 
Opener / 1st assignee same manager -0.52 
Opener / 1st assignee same building -0.26 

Table 1. Descriptive logistic regression model for whether a 
bug report has greater than 5 reassignments, trained on all 

Windows Vista bugs.  Factors labeled * had statistically insig-
nificant coefficients (with p > 0.001), so they cannot be mean-

ingfully compared.  The factor labeled † folds into the  
intercept term, which is omitted for confidentiality. 



 

The bug opener’s reputation is negatively correlated with 
reassignments.  We quantify reputation using the same met-
ric as Hooimeijer and Weimer [22]: 

bug	opener	reputation ൌ 	
|OPENED ∩ FIXED|
|OPENED|  1

 

For each bug report, we calculate its opener’s reputation by 
dividing the number of previous bugs that he/she has 
opened and gotten successfully fixed by the total number of 
previous bugs he/she has opened (+1).  Adding 1 to the 
denominator prevents divide-by-zero and, more important-
ly, prevents people who have opened very few bugs from 
earning high reputations (e.g., 1/(1+1) << 100/(100+1)).  
Bug openers with higher reputations (i.e., those better at 
getting their bugs successfully fixed) might be more experi-
enced in finding the right person to assign bugs to, thus not 
incurring as many reassignments. 

If the bug’s opener and first assignee have the same man-
ager (i.e., are on the same team), then the bug is less likely 
to have excessive reassignments.  Bugs assigned between 
team members get the benefits of better communication and 
more face-to-face discussions rather than having disagree-
ments recorded in the bug database as reassignments. 

Similarly, if the bug’s opener and its first assignee work in 
the same building, then the bug is also less likely to have 
excessive reassignments, again due to the benefits of face-
to-face contact. 

QUANTIFYING REASSIGNMENT PATTERNS 
We performed a quantitative analysis to explore the ques-
tion of whether certain patterns of reassignments (e.g., cy-
cles or back-and-forth “bug pong”) had an impact on the 
chances that a bug gets successfully fixed.  By “successfully 
fixed” we mean that its final resolution status is FIXED (as 
opposed to an unsuccessful resolution status like BY 

DESIGN, WON’T FIX, or NOT REPRODUCIBLE). 

Certain patterns of reassignments are beneficial to bugs 
getting successfully fixed (so they are “good reassign-
ments”), while others are detrimental (“bad reassign-
ments”).  Thus, in order to improve the chances that a bug 
will be successfully fixed, we should strive to make rec-
ommendations to encourage “good reassignments” while 
discouraging bad ones (not to merely reduce the total num-
ber of reassignments). 

Reassignment cycles at the beginning of triage 
We observed that reassignment cycles at the beginning of 
the triage process are beneficial for getting a bug success-
fully fixed.  By ‘cycle’ we mean reassignment back to a 
person who has previously been assigned the bug, thus 
forming a cycle in the sequence of assignees. 

For concreteness, let’s use x to denote the base probability 
of any Windows Vista bug being successfully fixed (we 
cannot reveal the exact value of x due to confidentiality 
reasons).  Let’s use sequences of letters to denote reassign-
ment patterns: e.g., “ABA” means the bug is first assigned 

to Person A, who then reassigns it to Person B, who then 
reassigns it back to Person A. 

An ABA sequence at the beginning of triage has a 1.16x 
chance of getting successfully fixed: 16% greater than the 
baseline.  In contrast, an ABC sequence has a 1.05x chance, 
and an AB[END] sequence (Person A assigns to Person B, 
and then the investigation stops) has only a 0.96x chance of 
being successfully fixed.  Thus, it’s better to have a cycle at 
the beginning of triage (ABA) than to pass it onto a new 
person (ABC) or simply ending the investigation. 

This same pattern holds true for sequences of length 4: 
ABCA has a 1.11x chance of successful fix, ABCB has a 
1.08x chance, ABCD has a 1.06x chance, and ABC[END] 
has only a 1.02x chance.  Again, the presence of a cycle 
(ABCA and ABCB) is more beneficial than its absence 
(ABCD and ABC[END]). 

In fact, the benefits of cycles at the beginning of triage are 
present even as the cycle size increases.  Table 2 shows the 
relative chances of a bug being successfully fixed if it con-
tains cycles of sizes 2 through 7.  For reference, ABA is a 
cycle of size 2, while ABCA is a cycle of size 3.  The left-
most “Beginning” column shows that cycles at the begin-
ning of triage are better than those in the middle or at the 
end.  Furthermore, all bugs containing cycles at the begin-
ning have greater than the baseline x chance of being suc-
cessfully fixed. 

The respondents of the follow-up survey pointed out that 
the main reason for beneficial cycles in the beginning is that 
if the initial assignee passes the bug onto someone else but 
then it gets back to him/her, there is now more information 
to effectively fix the bug rather than give up on it.  

“The initial bug report is incomplete or inaccurate and 
Alice sends back to the tester (Bob) for more infor-
mation, better repro steps, etc. This is a common cycle. 
Once the bug is improved, it has a high likelihood of 
being fixed.” 

Respondents also pointed out that cycles occur often when 
someone is searching for the correct owner of a bug report. 
Such a cycle in the beginning indicates that while Bob was 
not the actual owner, he probably provided some pointers to 
Alice on who can fix the bug. 

Cycle size Beginning Middle End 

2 1.11x 1.05x 0.96x 
3 1.10x 1.06x 0.96x 
4 1.12x 1.06x 0.93x 
5 1.04x 1.03x 0.89x 

6 1.07x 1.01x 0.97x 

7 1.03x 0.99x 0.88x 

Table 2. The effects of cycle size and location on the likelihood 
of a bug report being successfully fixed.  The exact percent-

ages are confidential, so we present values normalized relative 
to x, which is the likelihood of successful fix for any bug report 

with at least one cycle. 



 

 

Reassignment cycles at the end of triage 
In contrast, Table 2 shows that reassignment cycles at the 
end of the triage process are detrimental to the chances of a 
bug being successfully fixed.  An example of a cycle at the 
end of the triage process is ABCDEFGF[END], where FGF 
is a cycle of size 2 at the end of triaging.  All entries in the 
rightmost “End” column have less than the baseline x 
chance of being successfully fixed. 

The respondents of the follow-up survey pointed out that 
the main reason for detrimental cycles at the end (whereas 
cycles in the beginning are beneficial) is that they are relat-
ed to discussions whether a bug should be fixed at all. 

“This example feels more like a triage cycle where Al-
ice is the PM [program manager] (or opener) and Bob 
is the war team/triage team, etc. The war team is send-
ing the bug back to PM/opener for justification why the 
bug should be fixed (and not punted). The fact that this 
conversation is happening at all means the bug is at 
risk and likely to be punted.” 

Unclear ownership was another reason mentioned occa-
sionally in the responses to the follow-up survey: 

“When ABA is at the end, I think the bug is likely going 
back and forth between two developers, who either do 
not agree, or do not want the responsibility of fixing 
the bug.” 

THREATS TO VALIDITY 
Internal validity: In a qualitative study of ten bugs, Aranda 
and Venolia [16] found that sometimes details are discussed 
even before a bug report is created and that not all infor-
mation is recorded in bug tracking systems. For our study, 
this is only a minor threat because bug reassignments must 
be recorded in the bug database. We also validated our 
quantitative results with qualitative feedback from Mi-
crosoft employees. 

Bird et al. [26] raised the issue of bias in bug datasets for 
defect prediction in open-source projects. However, the 
likelihood of bias in our dataset is low since we analyzed 
the entire population of Windows Vista bug reports. 

External validity: Drawing general conclusions from em-
pirical studies in software engineering is difficult because 
any process depends on a potentially large number of rele-
vant context variables [27]. For this reason, we cannot as-
sume a priori that the results of our study generalize beyond 
the specific environment in which it was conducted. That is, 
other large-scale systems software projects. 

LESSONS LEARNED AND RECOMMENDATIONS FOR 
BUG TRACKING SYSTEM DESIGN 

Not all reassignments are necessarily bad 
Previous research [5,11] considered all bug reassignments 
to be problematic and consequently proposed ways to avoid 
reassignments. However, as the study in this paper shows, 
bug reassignments are often needed to locate the root cause 
and the person who should fix the bug. Unfortunately, it is 

not yet possible to automatically separate the wheat (bene-
ficial reassignments) from the chaff (unnecessary reassign-
ments). While in some cases, it is possible to identify prob-
lematic patterns such as “ping pong” bugs [5], such patterns 
typically apply to only a small fraction of bug reports. In 
the follow-up survey, most respondents considered ping 
pong bugs to be fairly uncommon. We also asked about the 
percentage of detrimental/wrong reassignments. On average 
respondents considered only 17.6% of reassignments to be 
detrimental; the median was even lower with 10%. 

Ideally, bug tracking systems would have ways to assess 
and rate reassignments. Beneficial reassignments could be 
marked by users or automatically identified with heuristics. 
This would help to increase the quality of tools that lever-
age reassignment information to make recommendations to 
engineers. Bug tossing graphs [11] are an example of such a 
tool, which can reduce the number of reassignments. How-
ever, bug tossing graphs do not have the concept of benefi-
cial reassignment; their goal is simply to direct a bug report 
to the final resolver via as few intermediate people as pos-
sible. Thus, it is possible and likely that an essential person 
is omitted from the list of people who inspect a bug report. 

Tool support for finding root causes and owners 
A salient finding from our study is the significance of root 
causes and component owners when fixing bugs. Often it is 
not immediately clear from the bug description which part 
of the software needs to be fixed; bug reassignments narrow 
down possibilities for fault location. Once the fault location 
is known, another challenge is identifying the right person 
who is able to fix the fault; again this can lead to reassign-
ments because ownership is not always clearly defined. 
Based on this observation, we make several recommenda-
tions for improving bug tracking systems:  

1. Integrate a knowledge database of top experts and their 
areas of expertise into bug tracking software. For exam-
ple, recommending the best engineers to fix heap cor-
ruption errors would allow other engineers to assign 
specialized types of bug reports to the people who are 
most skilled to either fix the bug report or to find some-
one who can. 

2. Similarly, having experienced technical engineers on the 
team who are intimately familiar with the entire mod-
ule’s code base and can pick the right engineers to work 
on bugs, will help to reduce the number of misdirected 
assignments. While several projects have engineers re-
sponsible for bug triaging, especially in open-source 
projects [6,28], there is only limited tool support in ex-
isting bug tracking systems related to bug triaging. 

Ideally, bug triagers act as information hubs and are 
aware of the entire social network of engineers and the 
technical dependency network. To support engineers 
staying on top of these networks, tools and techniques 
from the field of socio-technical congruence [29,30] 
should be integrated into bug tracking systems. 



 

3. Once the fault location has been narrowed down, better 
tools for finding code ownership and expertise based 
on actual code contributions would help in identifying 
the appropriate person who can resolve the bug report 
and avoiding unnecessary reassignments. Note that in 
practice, ownership and expertise are often two different 
concepts. Someone who owns a piece of code might not 
necessarily have the most expertise to change it. While 
it is difficult to mine ownership automatically, several 
approaches can identify engineers who are familiar with 
a piece of code [31,32,2]. 

Assign bugs to arbitrary artifacts rather than just people 
Another more radical change to bug tracking is to allow 
assignment of bug reports to one or more arbitrary artifacts 
rather than just one person. Examples of artifacts include 
components, files, but also UI elements, features, or simple 
keywords. Based on historical data and social networking 
techniques or expertise finding techniques [32,2], keywords 
could then fluidly map to people who probably can fix the 
bug. For example, engineers who previously have fixed bug 
reports about keyword WindowManager will see any new 
bug reports about this keyword (and related keywords). 

This extra layer of indirection means that bug reports can be 
assigned to multiple persons rather than individuals. While 
this might come at the cost of lower accountability, we be-
lieve that more bug reports will find the right person faster. 
Rather than developers fixing bugs reactively when as-
signed reports, the role of developers would be more proac-
tive, constantly picking bug reports from a pool. If certain 
reports are not picked after a certain amount of time, they 
could be automatically assigned to the most appropriate 
developers, based on heuristics. 

Tool support for awareness and coordination 
Another recommendation is to increase the awareness of 
the changes happening around bug (re)assignments. For 
example, if Person A assigns to B, but then B assigns to C, 
then A typically does not know that B assigned the bug to 
C, and would be under the impression that B should get 
future bugs (of that type or component) when in fact C 
should be assigned those bugs. If Person A were more 
aware of the updates to reassignments, that could help bet-
ter direct his/her own future reassignments. 

Bug tracking systems should also include better visualiza-
tions of reassignment patterns to help engineers identify 
problematic patterns such as reassignment cycles or ping 
pongs. Similar to context awareness, a visualization of the 
status of the bug reassignment would help engineers under-
stand the process of finding the right engineer for a bug so 
that this knowledge can be applied to future bugs. Halver-
son et al. [5] proposed visualizations for the history of indi-
vidual work items and the social health of all open work 
items in a project. Their primary focus was to identify prob-
lematic patterns. Ultimately, we believe that the way that 
engineers interact with bug reports needs to move away 
from a bug list and to-do list to more flexible presentation. 
One of these presentations might consist of (code) bubbles 

[33,34]. A bubble is a fully editable and interactive view of 
an artifact that exists in a large, pannable 2-D virtual space. 

Furthermore, information on bug reassignments can be 
used by engineers for archival purposes too. For example, 
if an engineer wants to find out who should be assigned 
bugs that are part of component X, he/she can extract the 
bugs from the database and look though the reassignment 
patterns to gain a better understanding of the correct person 
to assign the bug to. Currently, the reassignment infor-
mation in bug databases is simply presented as a series of 
text fields and edits, which is hard to decipher and makes it 
cumbersome to extract high-level patterns. We feel that 
historical reassignment data should be easily accessible for 
engineers to make the right triaging decisions. 

Finally, most bug tracking systems measure only when a 
person edits a bug report, but not when they are in the 
process of investigating the report. To increase workload 
awareness, we recommend building a system that would let 
developers/testers pick a bug they plan to work on and have 
the system to passively (unobtrusively) monitor their activi-
ty while they work on that bug. This way, team members 
and managers will know if a developer is actively working 
on a bug or whether the bug is parked (inactive). This will 
allow team members and managers to find out if a develop-
er is already overloaded, so that they will know to find al-
ternative options to fix this bug. 

CONCLUSION 
In this paper, we have investigated the bug reassignment 
process in Windows Vista using qualitative and quantitative 
approaches. To the best of our knowledge, our paper is the 
first to study these social dynamics in the bug reassignment 
process.  In sum, we learned that: 

 Reassignments are not always harmful. They are in fact 
beneficial to find the best person to fix a bug. Excessive 
reassignments are harmful, though. 

 Qualitatively, the five primary reasons for reassignments 
are finding the root cause, determining ownership, poor 
bug report quality, hard to determine proper fix, and 
workload balancing. 

 Quantitatively, the number of component path changes, 
initial severity level, upgrading the severity level, and 
bug type change correlate positively with reassignments, 
whereas the bug opener’s reputation and co-location of 
opener and first assignee correlate negatively. 

 Based on quantifying reassignment patterns, we observe 
that cycles at the beginning of bug triage are useful for 
finding the right person to fix the bug, but cycles at the 
end are detrimental. 

Bug reassignments currently occur in an ad-hoc manner as 
part of the software development process. There is little tool 
support in current bug tracking systems for efficiently di-
recting reassignments. We hope that designers of future bug 
tracking systems can adopt our recommendations to create 
more socially-aware systems that, amongst other goals, 
eliminate inefficient reassignments. 
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