
Omnicode: A Novice-Oriented Live Programming
Environment with Always-On Run-Time Value Visualizations

Hyeonsu Kang
UC San Diego

La Jolla, CA, USA
hyk149@eng.ucsd.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
Visualizations of run-time program state help novices form
proper mental models and debug their code. We push this
technique to the extreme by posing the following question:
What if a live programming environment for an imperative
language always displays the entire history of all run-time
values for all program variables all the time? To explore
this question, we built a prototype live IDE called Omnicode
(“Omniscient Code”) that continually runs the user’s Python
code and uses a scatterplot matrix to visualize the entire his-
tory of all of its numerical values, along with meaningful
numbers derived from other data types. To filter the visual-
izations and hone in on specific points of interest, the user can
brush and link over the scatterplots or select portions of code.
They can also zoom in to view detailed stack and heap visu-
alizations at each execution step. An exploratory study on 10
novice programmers discovered that they found Omnicode to
be useful for debugging, forming mental models, explaining
their code to others, and discovering moments of serendipity
that would not have been likely within an ordinary IDE.
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INTRODUCTION
One of the most fundamental skills that students learning pro-
gramming need to master is being able to form mental mod-
els of how static pieces of source code correspond to dynamic
run-time actions inside of a computer [10, 27]. Without this
basic core foundation, it is impossible to become a proficient
programmer. For instance, consider this tiny Python exam-
ple: x=[1,2,3]; y=x; x[0]=100. What is the value of y[0]
after this code runs? To be able to answer even this simple
question, a student must develop a viable mental model of
how the Python = operator affects lists and integers.
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Currently, the most widely-used tools for helping novices de-
velop this critical skill are either too primitive or too hard to
use. Perhaps the most ubiquitous tool here is the humble print
statement: Littering print statements throughout one’s code –
often toggled by commenting and uncommenting lines – is a
low-tech, messy, but somewhat reasonable way to probe run-
time values. Symbolic debuggers are more elegant and pow-
erful, but those can be hard for novices to use since they must
learn how to set breakpoints and watchpoints. Unlike print
statements, debuggers do not provide a holistic overview of
how run-time values change throughout program execution.

Live programming environments [1, 5, 6, 20, 30, 32] improve
upon print statements and debuggers by continually running
code and displaying its run-time values. However, existing
live environments for general-purpose imperative languages
(e.g., Java [5], JavaScript [20], Python [13]) display only the
most recent value for each executed line, expression, or active
object – not the entire history of all values. In this paper, we
want to push this promising idea of liveness to one logical
extreme by asking: What if a live programming environment
for an imperative language always displays the entire history
of all run-time values for all program variables all the time?

At first glance, this idea seems impractical. How could it ever
scale? Our key insight is that it does not, in fact, need to scale.
Our target audience is novices learning to solve algorithmic
problems by writing small, self-contained pieces of code. As
a ballpark estimate, this kind of code contains around 10 vari-
ables and runs for around 100 execution steps. Displaying
the values of 10 variables at all 100 steps is only 1,000 data
points, which is well within reach of data visualization tools.

Despite being small in size, this kind of self-contained
algorithmically-focused code is pervasive: Millions of stu-
dents who are learning programming in both residential
classes and MOOCs all need to write this type of code for
their assignments. In addition, everyone who is preparing
for software engineering and data science technical job inter-
views needs to practice solving algorithmic coding problems;
their solution code must usually be small enough to fit on
a whiteboard during interviews. Also, everyone who enters
programming contests must also train on similar problems.

To help these millions of novices develop mental models for
the kind of code they write for class or interview prep, we cre-
ated Omnicode (“Omniscient Code”), a live IDE with always-
on run-time visualizations. Figure 1 shows a usage scenario:



Figure 1. Omnicode is an IDE for novice programmers that allows the user to: a.) load a programming problem and test cases, b.) write Python code
and run test cases, c.) see live visualizations of run-time values on a scatterplot matrix, d.) visualize derived values and arbitrary Python expressions,
e.) filter the visualizations by brushing over either the code or the scatterplots, f.) zoom in to view all variables and data structures at an execution step.

(a) The user starts with a programming problem statement, a
set of test cases, and a code editor seeded with starter code.

(b) As the user is coding, Omnicode continuously runs their
code, reports test status and error messages in the left pane,
and displays the values of all program variables in the right
pane. There is no “Run” button; everything updates live.

(c) The run-time value visualization is a matrix of scatterplots.
Each numerical value is plotted both relative to all execu-
tion steps (to show the entire history of how it changed over
time) as well as relative to all other values (to show dyadic
two-variable correlations).

(d) Omnicode automatically derives relevant numerical val-
ues for non-numeric types such as the lengths of lists and
strings. The user can also write arbitrary Python expres-
sions to visualize on the scatterplots, such as sum(x) or
pow(x, 2) for the sum of list elements or x2, respectively.

(e) To counteract visual overload, Omnicode implements bi-
directional brushing-and-linking: The user can select a re-
gion of source code (e.g., a variable or set of lines) and the
scatterplot matrix gets filtered to include only data points
relevant to the user’s code selection. Conversely, the user
can select any region of any scatterplot, and all other scat-
terplots as well as the source code selection get updated to
include only data that is relevant to the user’s selection.

(f) Finally, to probe run-time state in more detail, the user can
select a line of code and see a pop-up tooltip that shows
a complete heap visualization of all data structures present
when that line executes (powered by Python Tutor [13]).
Whereas the scatterplot matrix shows only numbers, this
inline visualization shows values of all Python data types.

To our knowledge, Omnicode is the first attempt to dis-
play always-on live visualizations of the entire history of all
numerical program values across all execution steps. Al-
though Omnicode visualizes only numerical values, the type
of algorithmic student code that it targets most frequently
manipulates numbers; in addition, users can visualize arbi-
trary number-producing expressions (Figure 1d) and call on
Python Tutor to visualize all Python data types (Figure 1f).

To investigate whether Omnicode can help novices debug,
form mental models, and explain how their code works to oth-
ers, we ran an exploratory user study on 10 university students
who identified as novice programmers. Subjects used Omni-
code to solve three programming problems of the sort seen
in introductory courses and coding interviews. They found
Omnicode useful as both a helper for forming mental models
and as a visual explanatory aid for teaching code execution
semantics. Some even found serendipity by glancing at the
always-on visualizations and embarked on impromptu explo-
rations that they would not have done within a normal IDE.

The contributions of this paper are:

• The idea of pushing live programming for general-purpose
languages to the extreme by displaying the entire history of
all run-time values for all program variables all the time.
• Omnicode, a prototype live IDE that takes steps toward this

idea using always-on, bidirectionally-linked visualizations.
• An exploratory user study demonstrating that Omnicode

can potentially help novice programmers debug their code,
form proper mental models, and explain how their code
works to others.



RELATED WORK
Omnicode lies at the intersection of research on program vi-
sualization systems and live programming environments.

The most closely-related precursors to Omnicode are pro-
gram visualization systems [28] such as Jeliot [23], Python
Tutor [13], and UUhistle [29]. These tools allow users to
write code, run it, and see step-by-step visualizations of stack
frames, variables, values, and pointers. Despite their useful-
ness, these tools all still require the user to run their code and
navigate to a specific execution step before inspecting the vi-
sualizations. Omnicode takes a more proactive approach by
displaying always-on value visualizations live while the user
is coding. Also, it is built upon an existing program visualiza-
tion system (Python Tutor [13]) and embeds those step-level
visualizations as a component (Figure 1f).

More distantly related are algorithm visualization (AV) sys-
tems [26], which render conceptual visualizations of algo-
rithms rather than concrete run-time values of executing code.
Active engagement with AV systems appear to be positively
correlated with their effectiveness [17]. In response to these
findings, researchers have coupled AV systems with inter-
active exercises [22] and live environments where users can
write pseudocode and see it instantly visualized [16]. Omni-
code is inspired by such findings about active engagement and
liveness but differs from AV systems because it is designed
for working with general-purpose programming languages,
not with pseudocode-based algorithm description languages.

Omnicode follows in the long tradition of work in live pro-
gramming environments [1, 30]. In Tanimoto’s classification,
Omnicode exhibits Level 3 liveness [30] since its visualiza-
tions update in near-real-time whenever the user edits code.

Omnicode innovates upon prior live programming environ-
ments by being the first, to our knowledge, to display the full
history of run-time values as well as dyadic (two-variable)
correlations for a general-purpose imperative programming
language. Many live environments have been implemented
for declarative or visual languages (e.g., spreadsheets, Hyper-
Card, Forms/3 [6, 32]), where there is no explicit notion of
execution history; the current run-time state is always shown
and updated live. However, live environments for general-
purpose imperative languages with an explicit notion of ex-
ecution history (e.g., Java [5], JavaScript [20], Python [13],
Smalltalk [18], and Lisp [12]) still display only the most re-
cent value for each executed line, expression, or active object
– not the entire history of all values. Thus, Omnicode dif-
ferentiates itself via its always-on live visualizations of all
numerical values throughout all executed program steps.

Theseus [21] also experiments with always-on visualizations
of run-time state, guided by a similar spirit as Omnicode.
However, Theseus visualizes control flow rather than data
values since its goal is to inform programmers of which
functions in their codebase have executed, how many times,
and via what callback functions (which are pervasive in
JavaScript web code). Although users of Theseus can select
any function call to view its parameter values, it does not pro-
vide a comprehensive always-on view of all program values.

Whyline [19] is a powerful debugging tool that logs a com-
prehensive execution trace of all program values, similar to
what Omnicode does. Whyline exposes a query interface for
answering “why” and “why not” questions about logged exe-
cution state. Although it is engineered to scale far better than
Omnicode, its focus is not on providing always-on visualiza-
tions of all values, which is infeasible for larger programs, but
rather is on acting as a more targeted symbolic debugger.

Omnicode was also influenced by Bret Victor’s Learnable
Programming essay [31], which argues for proactively show-
ing all program run-time state to help novices build mental
models. In particular, our visualizations abide by his design
principles of “show the data”, “show comparisons”, and “no
hidden state.” However, to fully realize his visions from that
essay, we may need to redesign programming languages and
environments from the ground up rather than simply building
visualizations atop existing ones like Omnicode does.

Finally, in terms of UI design, Omnicode’s scatterplot matrix
is a classic data visualization technique for compactly show-
ing a large set of dual-value correlations [14]. Omnicode also
implements classic data interaction techniques [15] such as
brushing-and-linking and overview+detail to help users go
from skimming over all program values to honing in on those
that they want to focus on at a given moment.

THE DESIGN AND IMPLEMENTATION OF OMNICODE
We now revisit the components of Figure 1 with a focus on
design motivations and implementation details. We refined
the design of Omnicode’s interface over several rounds of pi-
lot tests with students in introductory programming courses.

(a) Programming environment: Our current Omnicode pro-
totype is made for Python, but its ideas can potentially trans-
fer well to other general-purpose imperative languages. The
instructor first uses the built-in doctest.py [2] testing mod-
ule to write a problem statement, a set of test cases, and
skeleton starter code to load into Omnicode. The student
launches the Omnicode web app by visiting a URL, selects
a test case from the left pane, and starts writing code. They
can switch between test cases by clicking on the respective
tabs. This kind of self-contained problem-based format is
common in university classes, MOOCs, and coding interview
prep guides: The student’s task is to write a short function to
implement a given spec and pass a set of test cases.

(b) Live code execution and run-time trace generation:
Omnicode is a live programming environment that always
runs the user’s code on the currently-selected test case two
seconds after they stop typing. Thus, it implements a simple
form of continuous testing [25]. We found via pilot tests that
two seconds was about the right amount of pause time for the
experience to still feel “live” but not to seem too jarring by
re-running code and updating the UI too frequently.

Omnicode sends the user’s code and test case to run on a
server. The server uses a modified version of the Python Tutor
backend [13] to execute Python code and generate a full run-
time value trace. This trace is a list with one element for each
executed step: Each element contains all in-scope variables
at that step, along with their current types and values. Each



Figure 2. Example scatterplot matrix layout for a program with three
numeric-valued variables: foo, bar, and baz. Each variable’s value is
plotted relative to the execution step number and to all other variables.

variable gets a unique name based on its scope; e.g., local
variables are named with their enclosing function name and
stack frame index. This trace is encoded as JSON and sent
back to the Omnicode web app to render as visualizations.
To guard against infinite loops and excessive resource usage,
Python Tutor stops execution after 1,000 steps or 3 seconds.
Despite its name, the Python Tutor backend also supports ex-
ecuting Java, JavaScript, TypeScript, Ruby, C, and C++, so it
is easy to extend Omnicode to those languages in the future.

(c) Scatterplot matrix visualizations: After running the user’s
code, Omnicode parses the JSON run-time trace from the
server and visualizes the values of all numeric-valued vari-
ables at all execution steps. To show how each variable
changes throughout the entire history of execution, Omnicode
generates a set of scatterplots with each individual variable on
the y-axis and the execution step number on the x-axis.

This design explicitly surfaces the concept of variable roles
in programming education [4, 7], which have been shown to
be helpful for novices learning to identify deeper structure
beneath code execution semantics. Specifically, these scatter-
plots enable users to visually spot certain single-variable roles
such as an integer stepper increasing linearly over time or an
accumulator variable’s values increasing quadratically. Spot-
ting deviations from expected variable roles could also help
novices hone in on logic bugs in their code. Users in our pilot
tests found these plots to be the most useful, so we always
position them in the first row of the matrix (top of Figure 2).

Omnicode also creates a set of scatterplots plotting the val-
ues of each variable against all other variables, which serves
to surface dual-variable roles [4, 7] such as one variable al-
ways following another in a lock-step pattern. In each of these
plots, a data point appears for a given pair of variable values
at each execution step. For example, if a variable foo is 5 and
bar is 10 at a particular execution step, then a point appears
at (5, 10) in the foo-vs-bar scatterplot. We found in pilots
that this kind of visualization was useful for checking expec-
tations about correlations: For instance, the user may expect
variables foo and bar to exhibit a positive linear correla-
tion, but if they see that the foo-vs-bar scatterplot shows zero
or negative correlation, then that may indicate a bug.

The scatterplot matrix (SPLOM) is a classic data visualiza-
tion method that allows us to surface the program’s complete
run-time value traces in a way that facilitates comparisons
throughout time and between dyads. The variable-versus-
steps scatterplots were inspired by the “show the data” and
“no hidden state” design principles in Bret Victor’s Learnable
Programming essay [31]; the variable-versus-variable plots
were inspired by his “show comparisons” principle.

During pilot tests, we also discovered a tension between
maintaining a logically coherent layout and users’ aversion to
scrolling. Our original design (Figure 2) was a fixed-layout
matrix: Each column represents one variable, and the first
row represents the execution step number while all subse-
quent rows represent all other variables. The user can quickly
glance at the labels for a particular row and column to know
what is shown in that scatterplot. However, some users in our
pilot tests created too many variables, so their matrix grew
too wide to fit on the screen. Based on user feedback, we de-
veloped an alternative flowing layout pegged at the monitor’s
width so that users never need to scroll horizontally; but they
must still scroll vertically if there are too many plots. This
layout reduces scrolling but makes it harder to tell which scat-
terplots correspond to which variables. In the current version
of Omnicode, users can toggle between the two layouts.

(d) Visualizing custom expressions: Since Omnicode visu-
alizes only numbers by default, one frequent activity we ob-
served in pilot tests was users writing their own custom ex-
pressions and assigning them to temporary variables in their
code so that they show up in the live visualizations. For in-
stance, users would write code like y = len(x) to visualize
how the length of a list changes over time and how it is corre-
lated with other variables’ values. To accommodate this com-
mon use case, Omnicode now allows users to create their own
scatterplots by specifying Python expressions to plot on the x
and y axes of their plots. This way, they can avoid cluttering
their own code with temporary variables.

Custom expressions are sent to the server to evaluate at all
execution steps where the indicated variables are in scope.
Our current prototype does not guard against side effects, but
in the future it could run each expression in a state snapshot
so that its side effects do not interfere with subsequent steps.

For convenience, Omnicode automatically derives numeric
values from certain non-numeric types such as the size of
any collection object and the sum of the values within a
list/tuple/set/dictionary (if it contains only numbers). It then
proactively adds their value plots to the matrix alongside
those for regular program variables (Figure 1d).

(e) Bidirectional brushing-and-linking: The promise of
always-on visualizations is that users can quickly get an
overview of all run-time values without having to initiate any
actions, which opens the possibility of stumbling upon unex-
pected surprises. When the user does find a point of interest
in one of the plots (e.g., a strange-looking dual-value correla-
tion), Omnicode allows them to hone in to see more details.

Figure 3 shows that the user can brush over (i.e., highlight)
any 2-D region of any scatterplot, and Omnicode filters all



Figure 3. When the user brushes over a scatterplot, Omnicode filters all
other plots to display only the execution steps and corresponding lines
of code that fall within the range of that selection.

other plots to show only execution steps that fall within the
range of the selection. In addition, Omnicode highlights the
executed lines of code in the editor corresponding to those
steps. This type of brushing-and-linking allows users to see
relationships between more than two variables and also to re-
late their values back to the relevant lines of code.

Going the other direction, the user can brush over parts of
their code to filter the scatterplot matrix. If they select one
or more lines of code, that will filter the plots to show only
data points resulting from executing those lines. For instance,
users can select lines within a loop to see what values were
affected by that loop. For example, Figure 1e shows the user
selecting line 8 within a loop and the scatterplot matrix hiding
irrelevant plots and data points based on that selection.

During pilot tests, we noticed some users trying to select in-
dividual variables in their code and expecting that the plots
would filter accordingly. In response to this observation, we
added support for variable selections in addition to line selec-
tions. Omnicode consults location information in the abstract
syntax tree (AST) to find which variable the user is (fuzzily)
selecting and shows only the scatterplots for that variable.

(f) Detailed visualizations of any data type: The design of
Omnicode purposely sacrifices detail for breadth of cover-
age. However, some pilot test users wanted to zoom in to see
more details about execution state at each step and to also in-
spect non-numerical values. Thus, to complement the always-
on scatterplots, we integrated step-level visualizations from
Python Tutor. Figure 4 shows that if the user selects a line of
code, they see a pop-up pane that shows a detailed visualiza-
tion of all the steps where that line executed. This is akin to
setting a breakpoint in a symbolic debugger, except that run-
time state is instantly available in a visual form. These in-
line visualizations support arbitrary heap object graphs of all
Python data types (not just numbers), so they offer much more
details upon user demand. By incorporating Python Tutor’s
visualizations, Omnicode allows users to both get a holistic
overview using scatterplots and to zoom in on specific steps.

Figure 4. a.) When the user selects a line of code, b.) Omnicode pops
up an inline visualization that shows a detailed view of all stack frames,
variables, and data structures at each step where that line executed.

EXPLORATORY USER STUDY
Can Omnicode help novices: a) write and debug code, b) form
proper mental models, and c) explain their code to others? To
take initial steps toward answering these questions, we ran
an exploratory first-use study to get novices’ first impressions
using Omnicode to solve coding problems of the sort seen in
introductory programming courses and technical interviews.

Study procedure: We recruited 10 university students (aged
19–26, 2 female) who identified as novice programmers with
basic Python familiarity. We brought each subject to our lab
for a 75-minute session using Omnicode on a Windows 10
machine with a 34-inch monitor. We first gave a 15-minute
tutorial on all of Omnicode’s features. We then presented
three programming problems involving numerical lists:

• Problem 1: Write a function to find the difference between
the minimum and maximum values of a list of numbers.
• Problem 2: Write a function to compute the difference be-

tween the mean and median values of a given list of num-
bers without using Python’s built-in sorting functions.
• Problem 3: Write a function to compute the mean of the

smallest 25% of values in a given list of numbers.

Each subject had 45 minutes to work on the three problems
within Omnicode in whatever order they wanted. We en-
couraged think-aloud. If they finished early, we had them do
an extra task of choosing one of their solutions and verbally
explaining its behavior to the experimenter by using Omni-
code’s visualizations. After the programming session, we
spent the final 15 minutes giving them a questionnaire and
semi-structured debriefing interview.

Overview of results: Out of our 10 subjects, everyone solved
Problem 1 correctly; 6 solved Problem 2; and 9 solved Prob-
lem 3. Three completed the extra task of verbally explaining
one of their solutions to the experimenter. Table 1 shows the
sizes of subjects’ final correct solutions for the three prob-
lems. Each program had around a dozen lines of code and a
half-dozen variables (user-created + automatically derived by
Omnicode), which is consistent with the size of basic code
written in introductory courses and during whiteboard inter-
views. Table 2 shows post-study questionnaire results, sorted
by mean scores on a 5-point Likert scale from Strongly Dis-
agree (1) to Strongly Agree (5). We developed these ques-
tions based on the most salient behaviors and obstacles we



Problem µlines µuser variables µderived variables µplots
1 8.30 3.00 2.00 21.10
2 15.33 6.00 2.00 45.67
3 8.67 3.00 2.44 25.11

Table 1. Mean # lines of code, user-created variables, Omnicode-derived
variables, and plots in 10 subjects’ final code for each problem.

observed during pilot tests. Although these numbers indicate
favorable views toward Omnicode’s features, it also surfaced
concerns about visual overload (which we will detail later).
We used questionnaire responses as the basis for our post-
study debriefing interview, encouraging subjects to provide
qualitative justifications and specific anecdotes to supplement
their scores. The first author analyzed interview notes and
screen video recordings to group the qualitative user feedback
into three main themes, which we now describe in detail:

Omnicode as a Helper for Forming Proper Mental Models
Some of the subjects perceived Omnicode as a helper that
runs in the background. In particular, its visualizations helped
them to debug code and to reaffirm the correctness of their
mental models. S3 said it even helped to better structure
their code: “It motivated me to break complex expressions
into smaller ones and store them in variables to view them in
the visualization.”

As an example of debugging, when S7 had a bug in his bubble
sort algorithm that used a doubly-nested loop over i and j,
he could immediately see in the scatterplots that he had an
incorrect mental model of how scoping worked for a temp

variable declared within the inner loop: “I just saw that the
value of temp actually persists even after the inner for-loop
is completed for a given i index; temp was set to 3 when j =
2 and i = 1 then it remained at 3 for j = 0 and i = 2 ... I’ve
always assumed that the value would be set to some other
default value when the program finishes executing one inner
loop for a given i. I thought after being set to 3, temp would
contain some garbage value before getting set with another
value later.”

In terms of reaffirming the correctness of mental models, we
observed that subjects often glanced at visualizations to clear
up any doubts about the results of function calls, type conver-
sion, loop execution, and branch conditions without losing
the context and flow of their work. For example, while im-
plementing bubble sort, S3 pointed to a scatterplot and men-
tioned that “I can immediately tell that the double loop with
i and j variable is hitting every case from the plot with (i, j)
values.”

Two subjects proactively used Omnicode to refine their men-
tal models even when there was no obvious bug in their code
at the moment. For instance, when S8 was not sure whether
numeric division returned an integer or a float, he confirmed it
quickly using the visualizations: “Does sum(lst) / len(lst) re-
turn an integer? ... OK it’s a whole number in the scatterplot.
Now let me multiply 1.0 to the denominator ... Oh, it returned
a float this time. Does float() also give the same result? ...
Ahh, it does!” Out of personal curiosity as he was writing
bubble sort (unrelated to his main task), S7 spontaneously ran

Questionnaire Item µ σ
Always-on visualizations helped me verbally
explain how my program works.

4.11 1.05

Omnicode’s brushing-and-linking helped me
filter and focus on most relevant data.

4.11 .60

Always-on visualizations helped me construct
correct solutions to programming problems.

3.67 .87

There were too many plots displayed on-screen
with uninteresting data points.

3.56 1.13

It was easy to locate the necessary information
among all of the plots.

3.22 1.10

Plots were re-rendered too frequently. 2.00 .71
Table 2. Summary of post-study questionnaire responses, averaged over
10 subjects and sorted by mean agreement level on a 5-point Likert scale.

an experiment to see if he could determine whether Python
lists were copied by reference or by value: “Let me assign
a list variable lst to newlst. Now I’ll append an element to
newlst ... oh, the length and sum of both lst and newlst from
the execution step a new element was appended changed in
the same way ... So it’s copy-by-reference for lists!”

Subjects mentioned an advantage Omnicode had over regular
IDEs was that they can instantly test impromptu hypotheses
to refine their mental models by simply editing their code and
seeing the visualizations. There was no need to write print
statements or to wade through screenfuls of text output.

Although we did not perform a rigorous controlled study with
print statements or debugger as baselines, anecdotes like the
ones presented in this section show some initial promise that
being able to see the entire history of all relevant values at a
quick glance within Omnicode could help novices refine their
mental models and hone in on certain kinds of bugs.

Omnicode as an Explanatory and Teaching Aid
Subjects also felt that Omnicode’s visualizations were a help-
ful aid when explaining their program’s behavior to others,
such as during the extra verbal explanation task in our study.
S5 mentioned, “I think selecting parts of code and seeing how
values in the selection change visually over many steps lets us
more clearly discuss the program’s behavior.”

Subjects liked seeing all scatterplots to provide a high-level
overview when starting to explain how their code works to the
experimenter. When they needed to explain a part in detail,
they could use brushing-and-linking or step-level Python Tu-
tor visualizations. For example, in a loop using an i variable,
S4 commented: “By slicing a specific i value and brushing
over its change, I can see how all the other values change as
well; this is a great overview compared to what I would’ve
had to draw on the board if I was teaching.”

In addition to visualizing data values, Omnicode can also
show control flow. During S5’s study, he used Omnicode’s
brushing-and-linking to explain an if-statement to the experi-
menter: “As you know, the test input was [1,3,2]. Therefore,
the if-statement that tests whether the length of the given list
is even fails and its body does not execute; you can see from
mouse-overing the next step that the code executed was the
else-statement body.”



When prompted to explain her code, S9 mentioned parallels
from her personal experiences in conducting technical inter-
views and pair programming sessions: “Having the visual-
ization was helpful in explaining the behavior of the program
in a clearer manner. When I’m interviewing and teaching I
often feel like I face a wall due to the lack of common under-
standing and language between me and the person that I’m
communicating with about code. Visualizations can ground
these conversations and make them more evidence-oriented.”

These anecdotes show Omnicode’s potential as a teaching aid
for instructors to visually explain their code demos in class,
even if they do not necessarily use it as an IDE to write signif-
icant amounts of code. More broadly, a future multi-user ex-
tension of Omnicode could be useful in pedagogical settings
such as one-on-one tutoring, active learning in the classroom,
pair programming, and as a substrate for facilitating deeper
discussions during coding-based job interviews.

Visual Overload and Suggestions for Improvement
Unsurprisingly, the main downside of Omnicode that subjects
reported was visual overload from seeing too many plots at
once. An average of 21 to 45 scatterplots were on-screen by
the end of each study (Table 1). Even though they all still
fit on a 34-inch monitor with minimal scrolling, subjects felt
there were too many plots with uninteresting data and that
it was not always easy to locate necessary information (Ta-
ble 2). The situation would be even worse on a laptop screen.
Subjects did not overwhelmingly prefer either the matrix or
the flowing layout. The matrix layout made it easier to find
a particular plot (Figure 2), but the flowing layout was more
compact and did not leave large on-screen gaps.

Besides commenting on the sheer number of plots, some sub-
jects also did not like the large amounts of data points within
certain plots. Since all points were shown in the same color,
denser plots looked like undifferentiated masses of data.

Subjects made insightful suggestions for coping with visual
overload. S1, S2, and S5 suggested merging similar or identi-
cal plots together to remove redundancy. S9 suggested color-
coding data points to differentiate them based on, say, which
code constructs set those values (e.g., a for-loop, if-else). S1
wanted to let the user resize, move, and hide plots. S2 sug-
gested analyzing the run-time traces to automatically detect
and highlight “interesting-looking” values and correlations.

However, despite concerns about visual overload, subjects
were still satisfied with using brushing-and-linking to hone in
on necessary information (µ = 4.11 out of 5 on questionnaire)
and were able to solve most of the programming problems.

Study Limitations
The main limitation of our study is that it was exploratory
in nature, so we cannot make any rigorous claims about the
specific effects of Omnicode’s visualizations on comprehen-
sion, engagement, or learning. We did not directly compare
Omnicode to the status quo of print statements or debug-
gers, nor to prior live programming environments with dif-
ferent kinds of visualizations. Also, this study involved three
small programming problems given in a lab setting; a more

ecologically-valid study would be to deploy Omnicode in a
university course where students could use it to solve more re-
alistic problems. As such, the findings of this study should be
mainly viewed as an elicitation of design ideas from our tar-
get audience of learners for possible uses in educational con-
texts. Specifically, our findings raise the possibility of Omni-
code’s always-on visualizations leading to serendipitous vi-
sual discoveries and their uses as communication aids in ad-
dition to being debugging tools. These findings could inform
follow-up comparative studies or future tool development.

CONCLUSION
We created Omnicode to push on one extreme end of the
design space of live programming and program visualiza-
tion systems by probing the following question: What if a
live programming environment for an imperative language
always displays the entire history of all run-time values for
all program variables all the time? We found through our
exploratory study that this visually-oriented design – though
unconventional – has the potential to be useful as both a de-
bugging and communication aid.

One line of future work that Omnicode has inspired is to
explore the role of always-on visualizations in facilitating
self-explanations [8, 9] amongst novice programmers to help
them improve their own understanding of code execution. Re-
searchers in other domains have found that diagrams encour-
age students to generate more self-explanations [3], which
positively affect learning outcomes. But to our knowledge,
this has not been explored as much in the context of program-
ming. However, it is important to distinguish between learn-
ing about how specific pieces of code operate (which Omni-
code and similar tools are well-positioned to do) and learning
how programming or programming language semantics work
in general (which requires far more scaffolding) [24].

On the flip side, our dogmatic decision to display all numeric
values all the time led to some visual overload in our study
and would likely prevent Omnicode from scaling to larger
programs with, say, dozens of variables and hundreds of plots.
Although some subjects wanted us to implement ways to re-
duce visual overload, others found serendipity because they
could see all historical values at a glance without the friction
of initiating any user actions (e.g., S7 having an “Aha!” mo-
ment about variable scoping within nested loops). A more tra-
ditional debugger or visualizer interface might have led users
to miss out on some of those delightful “Aha!” moments.

One compromise we can pursue in the future is to still keep
Omnicode’s unique “DISPLAY ALL THE VALUES!” spirit,
but to also add automatically-generated suggestions of “inter-
esting” visualizations and code regions for users to focus on.
This way, users can still see everything at a glance, but their
gaze can be gently directed toward what the system deems as
the most interesting. Omnicode 2.0 could determine interest-
ingness based on static code analysis (e.g., variables i and j

always appear close together syntactically), dynamic analysis
akin to Daikon [11] (e.g., i and j always take on strongly-
correlated values), or by tracking user interactions within the
IDE such as keyboard and mouse locations to determine what
the user likely cares about the most at any given moment.
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