Online Python Tutor: Embeddable Web-Based
Program Visualization for CS Education

Philip J. Guo

Google, Inc.
Mountain View, CA, USA

ABSTRACT

This paper presents Online Python Tutor, a web-based pro-
gram visualization tool for Python, which is becoming a pop-
ular language for teaching introductory CS courses. Using
this tool, teachers and students can write Python programs
directly in the web browser (without installing any plugins),
step forwards and backwards through execution to view the
run-time state of data structures, and share their program
visualizations on the web.

In the past three years, over 200,000 people have used On-
line Python Tutor to visualize their programs. In addition,
instructors in a dozen universities such as UC Berkeley, MIT,
the University of Washington, and the University of Water-
loo have used it in their CS1 courses. Finally, Online Python
Tutor visualizations have been embedded within three web-
based digital Python textbook projects, which collectively
attract around 16,000 viewers per month and are being used
in at least 25 universities. Online Python Tutor is free and
open source software, available at pythontutor. com.

Categories and Subject Descriptors

K.3.1 [Computers and Education]: Computer Uses in
Education—Computer-assisted instruction

; K.3.2 [Computers and Education]: Computer and In-
formation Science Education—Computer science education

General Terms

Languages, Human Factors, Experimentation

Keywords
CS1, Python, Program Visualization

1. INTRODUCTION

A core challenge in introductory computer science (“CS1”)
courses is getting students to understand how a static tex-
tual representation (source code) maps to a highly dynamic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’13, March 6-9, 2013, Denver, Colorado, USA.

Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

process (program execution). Instructors typically illustrate
program execution using graphical PowerPoint lecture slides,
which require a great deal of preparation effort, or by draw-
ing diagrams on a whiteboard, which is tedious and error-
prone [11]. In the past few decades, many program visual-
ization tools have been created to assist instructors in this
task. Chapter 11 of Sorva’s dissertation [15] provides a com-
prehensive overview of 40 such tools, which all look similar
at first glance: One GUI pane shows source code with the
currently-executing line highlighted, another pane shows a
visual representation of run-time state (e.g., stack frame con-
tents, heap objects), and control widgets allow the user to
step forwards and backwards through execution points.
This paper presents a free and open-source project called
Online Python Tutor, which follows in the long tradition of
program visualization tools for CS education. In spite of the
rich history of related work in this field, three characteristics
make Online Python Tutor modern, unique, and effective:

Python: In recent years, Python has been gaining traction
as a preferred language for CS1 courses across many univer-
sities. For example, two of the largest CS departments—
MIT and UC Berkeley—both ported their CS1 curricula
from Scheme to Python. Michigan State University switched
from C++ to Python and presented empirical evidence that
new students were just as prepared for advanced CS courses
taught in other languages [7]. Python is also used in free
online CS1 courses offered by Udacity, Coursera, and edX,
which each enroll tens of thousands of students per term.
Despite the prevalence of Python in teaching, there are al-
most no program visualization tools for Python. Aside from
Online Python Tutor, UUhistle [16] and Jype [9] are the
only other Python visualizers®. (However, the Jype project
seems to be inactive [15], and we cannot find its code online.)

Web-Based: Online Python Tutor is the only Python pro-
gram visualization tool that runs within a web browser with-
out any required software or plugin installation'. UUhistle
and Jype are written in Java, so they can be launched from
the web on a computer with the proper Java version in-
stalled; however, the entire application must first download
before launching, which can take a few minutes. In con-
trast, opening any visualization in Online Python Tutor is
as simple and fast as visiting a URL from a web browser.
We believe that this ease of access is a major contributor
to adoption: Online Python Tutor has been used in CS1
courses in a dozen universities including UC Berkeley, MIT,
the University of Washington, and the University of Water-

Lto the best of our knowledge

. Online Python Tutor - Vist

&= C' M | [i pythontutor.com/visualize.html#mode=display

myList = (1, (2, (3, (4, (5, None)))))

def sumlist (node, subtotal):
if not node:
return subtotal
else:
— return sumList (node[1], subtotal + node[0])

total = sumList (myList, 0)
Edit code
0

line that has just executed
= next line to execute

Program output:

@ Generate URL

| »

@ Frames Objects

Glcobal wvariables tuple tuple tuple tuple
o [1 J’ 0 |1 Al» 1 :i7 0

=4 Ed
. . - 4

1 2
| 1
. A s
function sumlist(node/ subtotal)

i o 1
myList & None

tuple
1 o
e d 5

sumlList

sumList
node yd
subtotal

sumlist /

node
subtota
sumlList /
node
subtotal |3 ///
sumlList /

node '/

subtotal |6

o
m

-

Figure 1: Online Python Tutor is a web-based program visualizer where the user can: a.) view the currently-
executing line of code, b.) step forwards and backwards through execution using a slider bar and buttons,
c.) view stack frames and variables, d.) view heap object contents and pointers, e.) view the program’s text
console output, and f.) generate a sharable URL of the current visualization at an exact execution point.

loo. Over 30,000 people (unique IP addresses) per month
use Online Python Tutor by visiting pythontutor. com.

Embeddable: Finally, Online Python Tutor is the only
program visualizer that can be seamlessly embedded within
webpages!. So far, three web-based interactive digital CS
textbooks [6, 10, 14] have embedded Online Python Tutor
into their lessons (by inserting one line of JavaScript code
per visualization). Students can read lessons and interact
with code visualizations within the same webpage (Figure 7).

These three digital textbooks attract around 16,000 unique
viewers per month and are being used in at least 25 univer-
sities around the world. Alvarado et al. analyzed usage log
data from a CS1 course that used one such textbook [10] and
found that students who interacted more with the embedded
visualizations tended to score higher on midterm exams [2].

2. OVERVIEW

Figure 1 shows the Online Python Tutor webpage loaded
in Google Chrome. In this screenshot, the user has previ-
ously typed in a 9-line Python program for computing the
sum of a linked list and is now visualizing execution step 11
of 21, in the midst of the fourth recursive call to sumList.

We now describe the GUI components corresponding to
each label in Figure 1:

a.) The source code display shows the program that is being
visualized. A red arrow in the left margin points to the next
line to be executed (line 7 in this example). A light green
arrow points to the line that has just executed, which helps
users track non-contiguous control flow (e.g., function calls).

b.) A slider bar and text indicate the current execution
point being visualized (in this example, step 11 of 21). Each
point represents a single executed line. The user can click
on or drag the mouse over the slider bar to jump to a partic-
ular point or use the VCR-style navigation buttons to step
forwards and backwards over executed lines.

c.) The frames pane shows global variables and stack frames
at the current execution point, with the stack growing down-
ward. Each frame shows the function name and a list of local
variables. Each variable’s value is an arrow that points to
a heap object. The currently-active (bottommost) frame
is highlighted in blue, as are all arrows emanating from it.
To reduce visual clutter, arrows emanating from all other
frames are rendered in light gray. In this example, the node
variable in each recursive call to sumList each point to suc-
cessive elements in the linked list. Finally, even though ev-
ery object in Python is technically on the heap, we chose to
render immutable primitive objects (e.g., numbers, strings,
bools) inline within each frame for visual simplicity.

d.) The objects pane shows visual representations of Python
objects and their pointer references to one another. Online
Python Tutor renders all compound data types necessary
for teaching CS1, including list, tuple, set, dict, class, object
instance, and closures (see Figure 2). This example shows a
linked list of integers built from a chain of five tuples.

e.) The program output text box shows the cumulative
output of print statements issued by the program at the
current execution point.

Frames Objects
Global variables list
) —— a0 1 2 3 4
animals | & vant "pear” | "cat" | "dog" | "elephant"
animalsTuple |®—_
animalsSet l\\ _*tL—lpIE 1 -
lifespans . N : .
P \ N “ant” | "bear” | "cat” | "dog” | "elephant”
\
A AN
A

C\ s

\ \ "ant" "elephant" "dog" “bear"
\
\ "cat"

\ "ant" 0.25
"cat" 12
"dog" 12
"bear" 35

"elephant” 65

Figure 2: Visualizations of Python’s four main com-
pound data types: list, tuple, set, and dict (class,
instance, and closure not shown due to space limits)

f.) Clicking the “Generate URL” button creates a URL that
uniquely identifies the current program being visualized and
also the current execution point. In this example, the URL
encodes the complete contents of the 9-line Python program
and also includes “step 11 of 21.” The user can send that
URL in an email or post it to a discussion forum along with
a note. When someone clicks on that URL, they are brought
to the exact execution point that the sender has specified.

3. DESIGN METHODOLOGY

Online Python Tutor started as a graduate student side
project in January 2010, motivated by the creator’s expe-
riences with teaching Python by drawing messy stack and
heap diagrams on the whiteboard. Around that time, web
browsers and technologies were getting sophisticated enough
that it became possible to build an educational program vi-
sualization tool that could run within the browser.

Our design goal is to make a tool that Python instructors
and students prefer to use instead of (or in addition to)
traditional whiteboard and PowerPoint diagrams.

We started by taking common features from existing pro-
gram visualization tools (surveyed in this dissertation [15])
and selectively adapting them to a web browser environ-
ment. Over the past three years, the Online Python Tu-
tor user base has grown organically via word-of-mouth pub-
licity. We refined our initial design and implemented new
features (e.g., nested function and lambda support) by con-
sulting with our users, which includes a diverse group of
CS instructors—teaching assistants, professors at both small
and large universities, and an instructor of several free online
CS classes with over 200,000 total enrolled students?.

4. IMPLEMENTATION

Online Python Tutor is a web application with a backend
written in Python and a frontend written using standard
web technologies: HTML, CSS, and JavaScript.

2

courses online at www.ai-class.com and www.udacity.com

4.1 Backend (Python)

The Online Python Tutor backend takes the source code of
a Python program as input and produces an execution trace
as output. The backend executes the input program under
supervision of the standard Python debugger module (bdb),
which stops execution after every executed line and records
the program’s run-time state. The trace is an ordered list of
execution points, where each point contains the state right
before a line of code is about to execute, including;:

e The line number of the line that is about to execute,

e the instruction type (ordinary single step, exception,
function call, or function return),

e a map of global variable names to their current values
at this execution point,

e an ordered list of stack frames, where each frame con-
tains a map of local variable names to current values,

e the current state of the heap,

and the program’s output up to this execution point.

After execution terminates, the backend encodes the trace
in JSON format [5], serializing Python data types into native
JSON types with extra metadata tags. To guard against
infinite loops and excessively long traces, the backend halts
execution after 300 executed lines. Although this limit is
tiny for real programs, it is sufficient for the pedagogical
code examples that our users want to visualize. Note that
the trace contains a great deal of redundancy, since it stores
a complete snapshot of the stack and heap at every execution
point. Traces from pedagogical code examples range from
10KB to 200KB in size. We have not found backend running
times or trace sizes to be performance bottlenecks in practice
and thus have not yet attempted to optimize.

The backend works with both Python 2 and 3, which is
important because courses are taught using both of these
major language variants.

The backend can be hosted on any webserver capable of
running CGI scripts (using Python 2 or 3) or on the Google
App Engine platform (Python 2.7). When the user’s web
browser makes an HTTP GET request to the backend and
passes in the Python program to visualize, the backend gen-
erates a trace and returns it to the browser in JSON format.

Since the backend is running untrusted Python code from
the web, it implements sandboxing to prevent the execution
of dangerous constructs such as eval, exec, file I/O, and
most module imports (except for a customizable whitelist of
modules such as math). In addition, many webservers imple-
ment “defense in depth” for additional protections. However,
we have not yet conducted a formal security audit.

4.2 Frontend (HTML/CSS/JavaScript)

The frontend is a website located at pythontutor.com,
which renders in all modern web browsers without requiring
the user to install any extensions or plugins. We have tested
the website on a wide range of computer monitor sizes and
even on tablet devices (see Figure 3).

The user first sees a text box and can type (or paste) a
Python program into there. When the user clicks the “Visu-
alize execution” button, the frontend sends that program to
the backend; the backend then sends back a JSON execution
trace, which the frontend renders in a GUI like Figure 1.

Figure 3: A teacher and student interacting with the
Online Python Tutor visualization shown in Figure 1
using the default Safari web browser on an iPad.

From informal testing, the webpage visualizing the code
in Figure 1 (and similar code examples) loads in ~ 0.4 sec-
onds on a home broadband Internet connection and in ~ 3
seconds from a shuttle bus with relatively slow Wi-Fi.

After the initial webpage load, all interactions occur in
the browser with no additional server calls; thus, stepping
forwards and backwards refresh the display instantaneously.

Object layout: The main technical challenge in the front-
end is rendering objects in a clear and aesthetically-pleasing
way. Since the heap can be an arbitrary graph of objects,
a naive rendering scheme could lead to a tangled mess of
boxes and pointers. We implemented the following layout
heuristics, inspired by looking at diagrams from textbooks
and PowerPoint lecture slides from CS1 instructors:

e FEach frame variable and heap object is stacked verti-
cally in the order in which they were created during
the program’s execution (see Figure 2). Thus, when
the user steps forward through execution, new vari-
ables and objects are always appended to the bottom
of the display rather than being inserted in the middle.

e Once an object has been rendered, it stays in the same
location (relative to other objects) until there are no
more pointers to it. This heuristic makes objects not
“jiggle” around when the user steps through execution.

e If a new compound object contains pointers to other
new compound objects, then nest the inner objects
inside of the outer one. For example, Figure 4 shows a
list of four new Person object instances. Nesting both
reduces clutter (instead of rendering more pointers)
and also conveys a natural “containment” relationship.

e Since linked lists are common in CS pedagogy, the
frontend visualizes them specially by laying out node
objects horizontally (see Figure 5). The frontend de-
termines that an object is likely a linked list if it con-
tains pointers to identically-structured objects (e.g., a
list/tuple of the same size or a dict/instance with the
same attribute names). Note that this heuristic fares
poorly for tree and graph structures: It simply “flat-
tens” them to one horizontal dimension.

list
0 1 2 3
Person instance Person instance

Person instance Person instance

age | 25 age | 33 age |41 age |8

name | "Alice"” name | "Bob" name | "Cindy" name | "Doug”

Figure 4: An example visualization of nested data:
a list containing four instances of the Person class.

o 1 o 1 i v] 1
'a L 'b" L e - d None
dict dict dict dict
"data" "a" "data" "b" "data" "c" "data" "d"
4 4 A
"next” L "next” L "next” ' "next" None

Figure 5: Visualizations of singly-linked lists con-
structed using Python lists (top) and dicts (bottom).

The frontend uses two main JavaScript libraries: D3 [3]
to map execution trace objects to corresponding HTML el-
ements and jsPlumb [13] to draw pointers as arrows.

Embedding: The entire visualizer GUI is encapsulated in
a JavaScript ExecutionVisualizer class, so embedding it
within a webpage takes only one line of code. For example:

var v = new ExecutionVisualizer (parentNode, trace);

parentNode is the HTML DOM element where the visual-
izer instance should be embedded. The execution trace can
either be precomputed offline or generated by the web appli-
cation backend. Multiple visualizer instances with different
traces can be simultaneously embedded within one webpage.

5. USE CASES

We conservatively estimate that over 200,000 people have
used Online Python Tutor in the past three years since its
inception. There are three main categories of use cases:

e Instructors using it as a classroom teaching aid,

e digital textbooks with embedded Python visualizations,
which collectively have been deployed in at least 25
universities and have around 16,000 viewers per month,

e students using it either while taking free online CS
courses or during self-study for, say, programming in-
terviews (pythontutor. com gets around 30,000 visitors
per month, estimated by unique IP address hits).

Instructor use cases: Professors, lecturers, and teaching
assistants in a dozen universities have used Online Python
Tutor in their teaching. Class sizes ranged from 7 students
in a summer Python course for non-CS majors at the Uni-
versity of Washington to over 900 students in the Fall 2012
offering of CS1 at UC Berkeley.

Several instructors told us via email that Online Python
Tutor helped clarify concepts such as tracing parameters
and return values through function calls, control flow, ex-
ceptions, scope, recursion, local variable lifetimes, and un-
derstanding aliasing when there are multiple identifiers ref-
erencing the same object. A professor at UC Davis wrote,

Stack grows |down ¥

ix2:nt x1:list
1 0 1 2 3
%2 | X3 | x4 | x5

Running module
_ main__

L1 | x1 §x4:'|nt

x3:str

o |1 |2 |2 |4
Hie|l|l]o

x5:str

Figure 6: The University of Toronto’s customized
version of Online Python Tutor, which represents
references as labels and strings as character arrays.

“I have students who are currently retaking the class in the
summer session, since they dropped out in spring, when they
were struggling. I can see from their reaction in class that
this tool has literally been an eye-opener for them — it’s
making a huge difference!”® Another wrote, “The diagrams
[Online Python Tutor| showls] are just like the diagrams
I’'m constantly drawing on the whiteboard. So it matches
the model that I try to get the students to see exactly.”

Although most instructors simply visited pythontutor.
com during lectures and lab sessions to step through code
examples, several went further:

e A CS1 teaching assistant at MIT augmented Online
Python Tutor with beginner-friendly error messages,
which his students found more helpful than Python’s
default error messages [8]. His error message templates
were inspired by common mistakes that students in his
class made.

e A team from the University of Toronto used Online
Python Tutor as the basis for a CS peer instruction
system, inspired by those used in science classes [12].

e Another team at the University of Toronto spent the
summer of 2012 customizing Online Python Tutor to
suit their own pedagogical preferences (see Figure 6).
They deployed this customized version in their Fall
2012 CS1 offering, which is being concurrently taught
at their university and online through the Coursera
platform (with ~34,000 enrolled students) [4].

Digital textbook use cases: In preparation for teaching
the CS1 course at UC Berkeley, John DeNero ported the
classic Structure and Interpretation of Computer Programs
textbook from Scheme to Python and put it online in HTML
format [6]. He embedded Online Python Tutor visualiza-
tions directly into the HTML so that students can read the
lessons and interact with code examples on the same web-
page (see Figure 7), as opposed to simply viewing static,
manually-drawn diagrams of code examples.

Miller and Ranum embedded Online Python Tutor into
their digital textbook, How to Think Like a Computer Sci-
entist: Interactive Edition [10], as a component called Code-
Lens. This web-based e-textbook attracts around 6,000 view-
ers per month and has been adopted by 25 universities around
the world. Alvarado et al. logged student interactions with
this resource in a 61-person CS1 course and found that

3via personal email communication, August 2012

Chapter 1: Building Ab: X

« €' | [inst.eecs.berkeley.edu %) % =*
1.6.4 Functions as Returned Values

We can achieve even more expressive power in our programs by creating functions whose retumed values are themselves
functions. An important feature of lexically scoped programming languages is that locally defined functions maintain their parent
environment when they are retumned. The following example illustrates the utility of this feature.

Once many simple functions are defined, function composition is a natural method of combination to include in our programming
language. Thatis, given two functions f (x) and g (x), we might wantto define h(x) = f(g(x)). We can define function
composition using our existing tools:

>> def composel(f, g)
def h(x)
return f(g(x))
return h

The environment diagram for this example shows how the names f and g are resolved correctly, even in the presence of
conflicting names.

def square(x) Gloval frame

func square(x)
return x * x

square /
/ pfone successor

def successor (x): successor /

e o [+ />t o,

//

def composel(f, g) e/ func (x)

def h(x) /

return f(g(x)

return h
def f(x) "/
“""A function named f that is never called."""

//
1: composel/ | /Nﬂ(h(x) [parent=f1]
Y
94/
return -x h
/

4/
Retun | /
add_one_and_square = composel(square, successor) vaiue

result = add_one_and_square (12)

Edit code

<Back | Step 8 of 15 | Foward >

B

Figure 7: Online Python Tutor visualization of a
code example embedded within DeNero’s digital
textbook (used for UC Berkeley’s CS1 course) [6].

students who interacted more with CodeLens visualizations
outside of class hours scored higher on midterm exams [2].
Lastly, the Computer Science Circles project [14], a free
online introductory programming course and textbook serv-
ing 10,000 visitors per month, has integrated Online Python
Tutor as its main visualization and debugging tool. Accord-
ing to its creators, an average of 600 code snippets per day
are visualized by their embedded Online Python Tutor>.
Digital textbook authors often ran our Python backend
offline to generate traces for individual code examples, which
they then embedded directly as JSON objects in JavaScript
code. Thus, the textbooks can work offline without needing
to make server calls, which Miller found useful for deploying

in regions with slow and unreliable Internet connections?.

Student use cases: Over 30,000 unique IP addresses visit
pythontutor.com each month, but to our knowledge, in-
structors in only a dozen universities are using it in their
courses. Thus, we suspect that the majority of users are
self-directed learners using it without instructor supervision.

Although we do not have detailed demographic informa-
tion on users, we know at least one major source of users:
students taking free online CS courses offered by Udacity [1],
such as CS101: Introduction to Computer Science (186,000
total students over two offerings) and CS212: Design of
Computer Programs (almost 40,000 students).

Online Python Tutor was not an official component of
these courses, but some students found the tool and shared
their use cases in discussion forums. One student posted,
“This tool is particularly helpful when debugging recursive
functions. I used it for the recursive unit at ¢s101 and it was
a lifesaver.” Other students wrote that it was “exactly what
I need to solve knotty python questions without cheating”
and “exactly what I need to untangle lists and arrays.” [1]

Udacity’s CS101 students, many of whom are computer
novices, liked the web-based nature of Online Python Tutor

because they did not need to install or configure software.
They also posted custom URLSs to accompany questions that
they asked in the forums like, “Click on this link and please
explain why this program does X at execution point Y.”

6. LIMITATIONS AND ONGOING WORK

We are delighted by the number of people who have ben-
efited from Online Python Tutor so far, but at the same
time, we acknowledge that numbers and anecdotes are no
substitutes for a rigorous evaluation of efficacy. We would
like to run some formal studies with academic partners to
understand students’ attitudes toward and usage of Online
Python Tutor, how it correlates with their performance in
tracing, explaining, and writing programs, and impacts on
their attitudes toward programming in general.

Study results might determine whether we should add new
features to encourage active engagement with program visu-
alizations, which prior work has shown to be effective [15],
rather than passive viewing. This effort could involve em-
bedding question prompts, mini-quizzes, textual annotations,
and discussion threads directly within visualization elements.

Another Online Python Tutor limitation is that it steps
through execution one line at a time like a debugger and
does not show the details of expression and subexpression
evaluation. In contrast, UUhistle [16] visualizes expression
evaluation for a subset of Python constructs. Some users
have requested such finer-grained stepping functionality.

A limitation we might not immediately address is scalabil-
ity: Online Python Tutor can visualize only several hundred
execution steps of programs with relatively small data struc-
tures. It is not meant to be used for debugging production-
sized software systems. However, we may investigate how to
cache and visually summarize large data structures to scale
up to larger pedagogical code examples.

Currently the visualization works well for linked lists, but
not for more sophisticated data types. Thus, we are planning
to add custom visualizations for trees, graphs, numerical
matrices, and other data structures so that Online Python
Tutor can be useful in more advanced CS courses.

Another area of ongoing work is determining whether to
add animations and smooth transitions between visualiza-
tion states. The D3 library [3] we already use makes it
easy to add animations, but the main design challenge will
be determining which animations are pedagogically effective
without becoming distractions.

Finally, since the Online Python Tutor frontend can tech-
nically visualize programs written in any mainstream lan-
guage, we are now working with students to write backends
for Ruby, JavaScript, and Racket (a Scheme dialect). Also,
since the backend generates an execution trace that is not
tied to any particular visualization, some users have sug-
gested parsing the trace to render an audio “reading” of ex-
ecution states to help teach visually-impaired students.

In closing, we have presented Online Python Tutor: a
free, open-source, web-based tool following in the long tra-
dition of program visualizations for CS education. Although
the high-level ideas embodied by Online Python Tutor are
decades-old, our main contribution is adapting and redesign-
ing this sort of tool for a modern web-based environment,
where it has been able to reach over 200,000 users thus far.

Acknowledgments: Thanks to Peter Norvig, Andrew Pe-
tersen, and David Pritchard for reading drafts of this paper.

7.
1]

2]

8]

[4]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

Udacity - 21st Century University.
http://www.udacity.com/.

C. Alvarado, B. Morrison, B. Ericson, M. Guzdial,
B. Miller, and D. A. Ranum. Performance and use
evaluation of an electronic book for introductory
Python programming. Technical Report GT-1C-12-02,
Georgia Institute of Technology, 2012.

M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-Driven Documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 2011.

J. Campbell and P. Gries. Learning to Program: The
Fundamentals.
https://www.coursera.org/course/programmingl.
D. Crockford. JSON (JavaScript Object Notation).
http://json.org/.

J. DeNero. CS61A: Structure and Interpretation of
Computer Programs.
http://www-inst.eecs.berkeley.edu/ cs6la/.

R. J. Enbody, W. F. Punch, and M. McCullen.
Python CS1 as preparation for C++ CS2. In
Proceedings of the 40th ACM technical symposium on
Computer Science Education, SIGCSE ’09, pages
116-120, New York, NY, USA, 2009. ACM.

A. J. Hartz. CAT-SOOP: A tool for automatic
collection and assessment of homework exercises.
Master’s thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA,
June 2012.

J. Helminen and L. Malmi. Jype - a program
visualization and programming exercise tool for
Python. In Proceedings of the 5th International
Symposium on Software Visualization, SOFTVIS ’10,
pages 153-162, New York, NY, USA, 2010. ACM.

B. Miller and D. Ranum. Beyond PDF and ePub:
toward an interactive textbook. In Proceedings of the
17th ACM annual conference on Innovation and
technology in computer science education, ITICSE 12,
pages 150-155, New York, NY, USA, 2012. ACM.

M. C. Orsega, B. T. Vander Zanden, and C. H.
Skinner. Experiments with algorithm visualization
tool development. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,
SIGCSE ’12, pages 559-564, 2012.

A. Petersen, D. Zingaro, Y. Cherenkova, and

O. Karpova. Facilitating Code-Writing in PI Classes.
In Proceedings of the ACM technical symposium on
Computer Science Education, SIGCSE ’13, 2013.

S. Porritt. The jsPlumb JavaScript library.
http://www. jsplumb.org/.

D. Pritchard and T. Vasiga. CS Circles: An
In-Browser Python Course for Beginners. In
Proceedings of the ACM technical symposium on
Computer Science Education, SIGCSE ’13, 2013.

J. Sorva. Visual Program Simulation in Introductory
Programming Education. Ph.D. dissertation, Aalto
University, 2012.

J. Sorva and T. Sirkid. UUhistle: a software tool for
visual program simulation. In Proceedings of the 10th
Koli Calling International Conference on Computing
Education Research, Koli Calling 10, pages 49-54,
New York, NY, USA, 2010. ACM.

