
Porta: Profiling Software Tutorials Using
Operating-System-Wide Activity Tracing

Alok Mysore
UC San Diego

La Jolla, CA, USA
amysore@eng.ucsd.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
It can be hard for tutorial creators to get fine-grained feed-
back about how learners are actually stepping through their
tutorials and which parts lead to the most struggle. To pro-
vide such feedback for technical software tutorials, we in-
troduce the idea of tutorial profiling, which is inspired by
software code profiling. We prototyped this idea in a sys-
tem called Porta that automatically tracks how users navigate
through a tutorial webpage and what actions they take on their
computer such as running shell commands, invoking compil-
ers, and logging into remote servers. Porta surfaces this trace
data in the form of profiling visualizations that augment the
tutorial with heatmaps of activity hotspots and markers that
expand to show event details, error messages, and embed-
ded screencast videos of user actions. We found through a
user study of 3 tutorial creators and 12 students who followed
their tutorials that Porta enabled both the tutorial creators and
the students to provide more specific, targeted, and actionable
feedback about how to improve these tutorials. Porta opens
up possibilities for performing user testing of technical docu-
mentation in a more systematic and scalable way.

Author Keywords
tutorial profiling; activity tracing; software tutorials

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
It can be hard for experts in any field to write high-quality
documentation, instructional materials, and step-by-step tu-
torials since they are too intimately familiar with their own
subject matter and thus cannot easily predict where new users
might struggle [22, 26]. Despite their best efforts, it is all too
easy to omit certain tutorial steps, gloss over subtle details,
or provide incomplete explanations. This is an instance of
the expert blind spot effect [27] where experts have trouble
relating to what novices might know and not know.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST ’18, October 14–17, 2018, Berlin, Germany
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5948-1/18/10...$15.00
https://doi.org/10.1145/3242587.3242633

Even worse, since tutorials are static documents or videos,
once they are released, their creators cannot easily get a sense
of how people navigate through them or what parts they fre-
quently get stuck on. Thus, learners inevitably struggle in
ways that tutorial creators are not able to foresee. Some ask
for help in discussion forums or mailing lists, but those re-
sources are disconnected from the context of the original tu-
torials. These limitations inspired our core research question:
Can we provide effective feedback to tutorial creators about
how learners are actually stepping through their tutorials
and which parts lead to the most struggle?

In this paper, we address this question for technical software
tutorials, which are commonly found on the websites of open-
source projects, in blog posts, and in instructional materials
of programming classes and MOOCs. These tutorials are es-
pecially challenging for their creators to test and maintain
due to the complexities of software environments: 1) If they
create a tutorial that works perfectly on their own computer,
chances are that it will not work properly on some other users’
computers since they may have subtly differing versions of
libraries or configuration settings that are hard to test for.
2) Even if they make a perfectly robust tutorial, some parts
will inevitably break over time as users’ installed versions of
libraries, frameworks, and operating systems get upgraded.

To address these challenges of tutorial testing and upkeep,
we introduce the idea of tutorial profiling and demonstrate an
automated approach to doing so based on operating-system-
wide activity tracing. Our idea is loosely inspired by code
profiling [16, 31], which instruments and runs source code in
order to surface performance and quality problems. We in-
stantiated our profiling approach in a prototype called Porta1

for macOS. Figure 1 illustrates an example use case:

1. Imagine you are the creator of a tutorial on how to make a
full-stack web application with the Angular framework and
TypeScript compiler for the frontend [30], Python’s Flask
framework [2] for the backend, and deployment to a Linux-
based hosting provider. Your tutorial consists of a webpage
with step-by-step textual instructions, example command
and code snippets, and embedded screencast videos.

2. To get feedback on your tutorial, you find test participants
by recruiting either in person or remotely. Each participant
installs the Porta macOS app and accompanying Chrome

1Profiling Operating-system Recordings for Tutorial Assessment

Figure 1. Porta provides feedback to tutorial creators about how users navigated through their tutorials and what application errors they encountered.

browser extension. Then they activate Porta and start read-
ing through your tutorial webpages in their web browser.

3. As each participant follows your tutorial step by step, they
launch a variety of applications to accomplish the indicated
tasks. Here they might open: a) a text editor to write code,
b) a terminal to run Python commands for the Flask back-
end, c) a terminal to run TypeScript build commands for
the frontend, d) a terminal to ssh into a Linux server to
run online deployment commands, e) a web browser win-
dow to configure the hosting provider’s settings, f) another
open browser window to debug the app they are building.

4. Porta records a screencast video of the session and auto-
matically tracks selected activities within all of these appli-
cations to build up a cross-application usage profile. This
profile includes the code that was compiled and the com-
mands that executed in both local and remote shells, along
with what error messages resulted from those actions.

5. Porta also tracks user navigation within tutorial webpages,
such as mouse and scroll positions, seek positions of em-
bedded video players, and what other tabs were opened.

6. Porta combines webpage navigation and usage profile data
to create a tutorial profile visualization that shows what
users were doing on their computer and what errors they
encountered as they were viewing each part of the tutorial.
This visualization augments the tutorial with heatmaps of
activity hotspots and markers that expand to show event de-
tails, error messages, and screencast videos of user actions.

7. By inspecting this profiler output, you can see where par-
ticipants had trouble or what unexpected actions each one
took. You can use these insights to revise your tutorial or
show it to participants in post-study debriefing interviews
to help them reflect on why they struggled at specific steps.

Porta works on existing unmodified webpages viewed in
Chrome. It is best-suited for profiling technical tutorials in
domains such as software development, data science, system

administration, DevOps, and computational research. What
these have in common is that they involve a heterogeneous
mix of command-line and GUI applications. Since users have
subtly differing software setups on their computers, it is hard
for tutorial creators to take this vast array of possible config-
urations into account when writing their instructions [26].

The potential significance of Porta lies in how it opens up
opportunities for user testing of technical documentation in
a more systematic and scalable way, which can in turn help
make software easier to learn and use.

Beyond our Porta prototype, our overall approach of combin-
ing data on how users navigate through tutorials with the ac-
tions they take while following them could generalize to other
technical domains such as hardware, 3D fabrication, or craft-
ing. To extend to those domains, one must build the proper
monitoring probes and domain-specific data visualizations.

To assess Porta’s efficacy, we used it to perform user studies
on 3 tutorial creators and 12 learners who tried to follow their
tutorials. We recruited 3 instructors who created tutorials for
their courses on Python, Git, and web design, respectively.
We had 4 undergraduate students try to follow each tutorial
while their actions were recorded by Porta. When we showed
Porta’s output to the students, we found that it allowed them
to provide more specific and targeted feedback about how to
improve those tutorials. Finally, when we showed Porta’s out-
put back to the 3 instructors, we found that it allowed them to
discover surprising insights about student behavior and come
up with actionable ideas for improving their own tutorials.

The contributions of this paper are:

• The idea of tutorial profiling, which is inspired by ideas
from code profiling [16, 31] and activity visualization [19].
• Porta, a prototype that instantiates this idea for macOS.

Porta consists of an OS-wide activity recorder, a webpage
navigation tracker, and interactive profiling visualizations.

RELATED WORK
Porta introduces the idea of tutorial profiling, which is in-
spired by work in application usage profiling, information
scent, improving web tutorials, and OS-wide activity tracing.

Application-Specific Usage Profiling
Porta extends the long lineage of systems that visualize usage
profiles of how people use specific software applications.

Edit Wear and Read Wear [19] pioneered the use of graphical
marks on the scrollbar of a text editor to show where users
were most frequently editing or reading a document, respec-
tively. Follow-up work showed visualizations to help users
re-find parts that they had previously visited [7]. Patina [24]
is an application-independent generalization of these ideas; it
displays heatmaps over UI elements on Windows applications
to show which ones were frequently accessed. Our Porta sys-
tem displays a form of read wear on tutorial webpages in the
browser, which is powered by traces of how users interacted
with a multitude of other applications on their computers.

In a similar vein, LectureScape [20] collects usage profiles
of how people interact with educational videos. It displays
a histogram-like visualization overlaid on the scrubber time-
line. Peaks in this visualization represent where lots of view-
ers either paused or navigated to, which could indicate po-
tential points of high interest or confusion. Porta also tracks
video navigation but additionally correlates that data with
how users interact with other applications on their computer.

ERICA [12] and ZIPT [11] capture usage profiles of how
users navigate through Android mobile apps. It displays flow
visualizations to help UX designers see which parts of the app
their users get stuck on. Porta is motivated by similar goals
in how it displays visualizations to show where users struggle
when following web-based software tutorials.

Code coverage and profiling tools [16, 31] now exist for most
major programming languages. These tools show how many
times each line of code (or function call) ran and how much
time it took. Theseus [23] improves on this idea by continu-
ally running user code and displaying always-on profile visu-
alizations in the margins of the code editor. Bifröst [25] fur-
ther extends code profiling to mixed hardware-software sys-
tems. In contrast, Porta is a tutorial profiler that tracks how
a user “runs” a software tutorial by following it step-by-step
and invoking various applications on their computer.

Porta innovates upon this class of prior work by introducing
the idea of building usage profiles for software tutorials rather
than for specific pieces of software. It is designed to pro-
file tutorials whose instructions span multiple applications in-
cluding web browsers, IDEs, terminals, and commands exe-
cuted on remote servers. This makes it well-suited for techni-
cal tutorials in domains such as software development, com-
putational research, and system administration.

Multi-Application Information Scent
The profiling sidebar that Porta displays over webpages pro-
vides information scent [28] that helps tutorial creators hone
in on which parts their users struggled with. It was inspired by
systems that connect information scent across applications.

Codetrail [15] and HyperSource [18] augment an IDE by con-
necting it to a web browser to link code and documentation.
Codetrail enables interactions such as automatically opening
documentation related to code that the user is currently edit-
ing. HyperSource automatically associates code edits with
webpages that the user is currently viewing. Porta takes
a complementary approach by displaying multi-application
scent in the browser and not being tied to any specific IDE.

InterTwine [13] connects a web browser and an image edit-
ing application. One example form of information scent it
provides is to augment Google search result pages for im-
age editing queries with overlays of screenshots and meta-
data about how the user edited their own images while read-
ing those pages in the past. It requires the GIMP image editor
to be modified to add instrumentation code. In contrast, Porta
works across arbitrary command-line and GUI applications
without needing to modify their code, but its user activity
tracing is not as deep as what InterTwine provides for GIMP.

Improving Web-Based Tutorials
The goal of Porta is to help creators improve tutorials in re-
sponse to how users interact with their content. Porta takes an
automated approach by tracking activity across applications.
In contrast, systems such as LemonAid [10] and TaggedCom-
ments [8] opt for a crowd-based approach by letting users di-
rectly annotate parts of documentation and tutorial webpages
that appear unclear to them. In the future, we can add support
for annotations to complement Porta’s automated tracking.

FollowUs [22] implements a comprehensive solution by em-
bedding an instrumented version of a web-based image edit-
ing app directly into tutorial webpages. This setup lets users
follow tutorials and post their own variant demonstrations di-
rectly on the webpage for future users to follow. Porta is
motivated by similar goals but does not require such special-
ized instrumentation. It works on existing unmodified tuto-
rial webpages and requires only installing a macOS tracer app
that monitors a variety of other apps without modifying them.

Operating-System-Wide Activity Tracing
Finally, Porta’s approach of tracing activity at the operating-
system level (rather than within specially-instrumented appli-
cations) was inspired by related projects in OS-level tracing.

The closest prior work that takes this approach is Torta [26],
which traces operating-system-wide activity to create mixed-
media text+video tutorials. That system in turn derives from
its predecessor Burrito [17], which performs similar OS-wide
tracing to create a personal log of computational activities for
researchers to reflect upon. Porta adopts a similar philosophy
of OS-wide tracing, but it traces classes of events that prior
systems did not, including web browser navigation actions,
commands on remote servers accessed via ssh, and invoca-
tions of compilers, interpreters, build tools from the com-
mand line and within IDEs. Furthermore, Porta’s goals are
complementary to Torta’s: Rather than being used to create
new tutorials, Porta is used to profile and help improve exist-
ing tutorials. Thus, Porta implements a novel web browsing
tracer and sidebar overlay for displaying multi-application in-
formation scent, which are not present in these prior systems.

PORTA DESIGN AND IMPLEMENTATION
The goal of Porta is to give tutorial creators an efficient way
to see how learners actually progress through their instruc-
tional materials and where they might have struggled. It is
meant to be activated during a user testing session where the
participant’s task is to follow the steps in a given tutorial.

Porta automatically records relevant actions with no user in-
tervention. At the end of the session, Porta produces a vi-
sualization summarizing the participant’s actions during each
part of the tutorial. In this way, Porta facilitates user testing
of tutorials and other technical documentation rather than tra-
ditional user testing of software artifacts. It consists of three
components: 1) an operating-system-wide application usage
profiler, 2) a web browsing tracker, and 3) a profiling visual-
ization that augments the original tutorial webpage.

OS-Wide Application Usage Profiler
Porta’s OS-wide usage profiler allows it to transparently mon-
itor user activity across multiple applications. Our prototype
is implemented for macOS using AppleScript, Python, Bash,
and DTrace [9] scripts; but the concept is OS-independent.

When user-testing a tutorial, the participant first launches this
profiler in the background before starting to work through the
steps on the tutorial webpage. It continually monitors the fol-
lowing data and records it to a JSON-formatted log. All mon-
itored events are timestamped, so in aggregate they form a
unified cross-application usage profile.

• Screencast video: Apple’s built-in Quicktime app is used
to record a video of the participant’s entire screen, system
audio, and spoken audio via the built-in microphone. This
is important for showing the participant’s actions within
GUI-based applications as they follow a tutorial.

• Clipboard: When the participant copies text to the clip-
board, its contents are logged. This can show what they
copied-pasted from tutorials into other apps such as IDEs.

• Shell command invocations: Porta installs a wrapper
script that logs the timestamps and arguments of all shell
commands invoked within terminals. It also logs the cur-
rent directory and environment variables used for running
each command. This logger works for Bash (default on
macOS) and zsh, but can easily be extended to other shells.

• Compiler/interpreter toolchain invocations: In addition
to logging all shell commands, Porta performs deeper
tracking when the participant invokes compilers, inter-
preters, and other build tools (e.g., make, webpack) as
they are following a tutorial. This is important for pin-
pointing which parts of a tutorial caused the participant to
make code errors and tracking certain actions within IDEs.

Specifically, Porta records the command-line arguments of
each tool invocation. It also tracks all the files read by the
processes and its forked subprocesses, which are usually
the relevant source code files that are compiled or executed.
Finally, it records the invocation’s textual output (on both
stdout and stderr), as well as the error return code, which
indicates either a successful or erroneous execution.

To accomplish this tracking in an application-agnostic
way, when Porta is first activated it automatically gen-
erates wrapper scripts for toolchain executables such as
gcc, make, node, javac, and python (in a user-
customizable list). It adds the directory of those wrappers
to the start of the $PATH environment variable so that they
can be invoked in an identical manner as the original apps.
When a wrapper script is invoked, it forks a child process to
run the original executable with identical command-line ar-
guments. It connects stdin, stdout, stderr streams so that it
behaves identically to the original, and also logs the child’s
stdout/stderr outputs to a file. It then launches DTrace [9]
to record fopen system calls issued by that child and any
of its children. These system calls indicate which files the
toolchain invocation is taking as inputs (e.g., Makefiles,
source code files). Porta saves a copy of those files in its log
directory on each invocation. It ignores binary files (e.g.,
system libraries) by filtering using MIME types [5].
DTrace is necessary here since it is impossible to tell what
files are accessed by a command solely by inspecting its
command-line arguments. For instance, running the com-
mand python foo.py reads in not only foo.py but
also all files that are dynamically imported by its code.
Another major benefit of this wrapper- and DTrace-based
approach is that it works regardless of whether these tools
are invoked from the terminal or within an IDE. For in-
stance, when the user presses the “Compile” or “Run” but-
ton in an IDE, that will invoke the operating system’s com-
piler/interpreter executables, which will call the wrapper
versions since those appear first in the user’s $PATH.

• Remote activity tracing via ssh invocations: Many
kinds of technical tutorials involving system administra-
tion, web development, and cloud-based execution will re-
quire users to run commands on remote servers. To support
remote tracking, Porta replaces the built-in ssh executable
with a wrapper that injects a shell script into the remote
machine when the participant first logs into that machine.
This injected script lets Porta monitor command invoca-
tions on the remote machine in an identical manner as on
the participant’s local machine. It supports logging into
both macOS and Linux servers. Porta uses a Linux port
of DTrace to achieve the same kind of toolchain invocation
tracing as it does for macOS [14]. In the future, we can also
port the tracer to Windows using its Process Monitor [29].
The ssh script also injects a unique session ID into each
login session. This allows Porta to properly group remote
toolchain invocations into sessions in cases when the par-
ticipant either logs into multiple servers or to the same
server using different terminal shells. When the user logs
out at the end of each session, the ssh script copies the log
file from the server back to the participant’s local machine.

Note that the related Torta system [26] contains similar
screencast video and shell command recorders, but all other
components described in this paper are not in Torta. Also, the
goal of our Porta system differs from those of prior applica-
tion profilers: Porta’s novelty lies in combining this data with
web browser tracking (next section) to create tutorial profiles.

Figure 2. Porta uses mouse location as a proxy for where the user’s
attention is focused. a) If the user hovers over anywhere in this code
block element, Porta will record it as being in focus and b) render it as a
red hotspot in the sidebar heatmap. c) If the user hovers over an element
(e.g., background) that is larger than the viewport, that event is ignored.

Web Browsing Activity Tracker
Porta also tracks detailed user activity within web browsers
using a Google Chrome extension. The participant activates
this extension when they are about to start following a tutorial
presented on a given webpage. It tracks a timestamped log of
the following browser-related activities:

• Hover-focused webpage element: The web tracker con-
tinually records the mouse position in terms of the most
precise CSS path of the DOM element that the participant’s
mouse is currently hovering over (Figure 2). This provides
a rough indicator of what their attention is focused on at
each moment. Ideally we would gather data from an eye-
tracker to determine the participant’s true visual focus, but
mouse hover is an approximation that is commonly used in
commercial web analytics tools such as FullStory [3], Hot-
jar [4], and Mouseflow [6]. (Our profile visualizations are
designed to account for this level of imprecision.)
This tracker ignores mouse events over elements that are
larger than the browser’s viewport (Figure 2c). These posi-
tions likely indicate that the mouse is hovering over a web-
page background element, which is a weaker indicator of
focus, so the tracker conservatively ignores them. It also
does not log mouse locations over non-browser windows.
On the other extreme, when the mouse is hovering over
an element that is too small (smaller than 10 × 10 pixels),
the tracker traverses upward in the DOM to the first par-
ent element larger than this minimum size threshold. This
heuristic helps ensure it logs that the mouse is hovering
over a non-trivial element such as a block of text or an em-
bedded video rather than, say, a tiny stylistic component in
the foreground that is occluding more meaningful content.
Finally, to ignore noisy log entries due to mouse jitter, the
tracker does not log an event until the mouse has hovered
over a particular element for at least 0.5 seconds.
Why not simply record raw x-y mouse positions? Because
the goal of this tracker is to determine what meaningful
page component the user is focusing on at each moment.
For example, in Figure 2a, it does not matter whether the
user’s mouse is over the left or right half of the code block
element; we want to record that they are likely focused on

that element at the moment. Another benefit of recording
DOM elements rather than raw x-y positions is that the for-
mer is robust to browser window resizing, which can cause
elements to shift to different x-y positions.
In the end, short of directly asking the user what they are
focusing on at each moment in the tutorial, all approxima-
tions are imperfect. Even eyetrackers produce noisy data
as eye gazes wander and jitter [1]. We wanted to design a
simple tracker that works in regular browsers without spe-
cial equipment, so we adopted this mouse-based approach.

• Scroll position and viewport size: The tracker records the
current scroll position of the participant in each tab, along
with the browser’s viewport size. This provides a coarser
indicator of where the participant may be currently reading.
We assume that if they are reading a webpage, they must be
looking at content that is within view of the range defined
by the current scroll position and viewport size. (However,
we can never know for sure whether the participant is ac-
tually reading the tutorial at any given moment.)

• State of embedded video players: Technical tutorials
sometimes embed short videos alongside their textual con-
tent, perhaps to play a mini-lecture, to demonstrate GUI
operations, or to show a screencast of code being written
and executed. Porta records all events on video player com-
ponents embedded within webpages, such as play, pause,
stop, and seek events, along with their seek positions. This
tracer uses the browser’s built-in HTML5/JavaScript video
API, which works with all modern non-Flash videos in-
cluding, most commonly, embedded YouTube videos.

• Opening webpages: The tracker records the timestamp
and URL of every tab and browser window opened by the
participant. This is important because they might open new
tabs to search for topics in the tutorial that are hard for them
to understand, so Porta should track when they do so.

• Opening Chrome developer tools: It also records the
tabs in which the participant has opened the browser’s de-
veloper tools pane, which contains a JavaScript console,
HTML/CSS inspector, network inspector, and JavaScript
debugger. This action signals that they may be trying to
follow some kind of web development tutorial and are cur-
rently debugging their web-related code in that tab.

• JavaScript errors: Finally, the tracker logs all JavaScript
errors on webpages where the participant has opened the
developer tools to presumably debug their web-related
code while following a tutorial. In addition, errors are al-
ways logged for pages on the localhost domain, even with-
out opening developer tools, since those are likely pages
that the participant is editing and debugging locally while
following a web development tutorial. This within-browser
logging is similar to Porta logging the error messages pro-
duced by compiler/interpreter toolchain invocations.

Although profiling user activity within webpages is not a new
idea (commercial analytics tools do some form of this [3, 4,
6]), the main novelty of Porta lies in combining web tracking
with the application usage profiler from the prior section to
create tutorial profiling visualizations.

OS-Wide Application Usage Profiler
Screencast video (fullscreen audio/video recording of test session)
Clipboard text (for tracking copy-paste actions)
Shell commands (all commands run in Bash/zsh in any terminal)
Toolchain invocations (run from shell or within an IDE)
Remote ssh invocations (shell/toolchain commands on remote servers)

Web Browsing Activity Tracker
Hover-focused webpage element (use mouse as proxy for user focus)
Scroll position and viewport size
Embedded video player state (all HTML5 players including YouTube)
Opening webpages
Opening Chrome developer tools
JavaScript errors

Table 1. Summary of trace data that is automatically collected by Porta’s
OS-wide and within-browser trackers. All events are timestamped.

Tutorial Profiling Visualizations
Table 1 summarizes the data that Porta automatically collects
on the participant’s computer as they follow a tutorial during
a testing session. Porta combines all this data into a tutorial
profiling visualization, which can be used in two main ways:

• The test facilitator shows it to the participant in a post-
study debriefing so that the participant can see where they
struggled and better reflect on why they took those actions.
• Porta can aggregate the trace data from a group of test users

and present it to the tutorial’s creator so that they can see
where people collectively struggled.

In both use cases, the ultimate goal is to provide feedback to
the tutorial’s creator so that they can improve its contents.

Heatmap visualizations: Figure 3 shows that Porta displays
tutorial profiles as positional and temporal heatmaps along-
side the left and bottom of the tutorial webpage, respectively.
The right half of Figure 1 shows this UI on a real webpage.

We implemented this visualization as a web application that
embeds the original tutorial webpage in an iframe. We took
this iframe-based approach so that we do not need to mod-
ify the tutorial webpages. In earlier iterations of Porta, we
injected DOM elements and JavaScript events as an overlay
atop webpages, but that was not robust; our elements some-
times altered the layout of those pages or came into con-
flict with frontend frameworks or libraries. Overlays also oc-
cluded certain page elements. Using our iframe approach, the
profiled webpages appear exactly as how the test participant
and tutorial creator originally saw them.

The positional heatmap shows where on the tutorial webpage
the participant was looking at the most, and what else they
were doing on their computer while looking at each part. Just
like how a source code profiler [16, 31] shows hotspots of
lines of code where the computer spent the most time exe-
cuting, this heatmap visualization shows hotspots of where
participants spent the most time while following a tutorial.

This heatmap shows the approximate amounts of time that
the participant spent on each vertical portion of the webpage
throughout the session. Figure 4 shows how it is the time-
weighted sum of two components: 1) a precise component
based on mouse hover locations over specific DOM elements,
and 2) a coarse component based on browser scroll position

Figure 3. Porta uses the trace data collected from test sessions to aug-
ment the original tutorial webpage with heatmap visualizations showing
positional focus and temporal density of events. Specific occurrences of
events show up as clickable markers on both heatmaps.

Figure 4. The positional heatmap’s intensity is a time-weighted sum of
precise (mouse hovering over a specific DOM element) and coarse com-
ponents (Gaussian centered at the middle of the viewport).

and viewport size. For example, in Figure 4, the mouse is
hovering over an example code block, so the precise compo-
nent covers the entire height of that DOM element. However,
we cannot be certain that the participant is actually looking
at that element; they might have left the mouse there while
reading other content on the page. To account for this inher-
ent uncertainty, we add a coarse component consisting of a
Gaussian distribution at the middle of the viewport. We chose
parameters to cover the viewport within 2 standard deviations
(95% of the Gaussian’s area). The assumption here is that the
user is more likely looking at the center rather than the edges.

If the participant now moves their mouse away from the
browser to another application window such as their IDE, we
can no longer use mouse location as a proxy for their current
focus. Thus, Porta instead relies only on the coarse (Gaus-
sian) component to approximate their focus location. If the
browser window is occluded, that may decrease the chances
that they are looking at certain parts of the webpage, but we
have not yet accounted for this level of detail in our prototype.

To produce the positional heatmap for the entire session,
Porta time-weighs the computed values for each moment and
maps them to a monochromatic color scale to display a 1-D
vertical heatmap along the left side of the tutorial webpage.
Since this is located in a separate iframe, Porta synchronizes
vertical scroll events and viewport size changes between the
tutorial webpage iframe and the heatmap’s iframe so both are
always in sync regardless of page scrolling or resizing. We

Figure 5. Event markers and pop-ups: a) When the user clicks on an
event marker on a heatmap, Porta will b) pop up a dialog showing details
about that event. c) This dialog also includes a fullscreen video of the test
session that starts playing 20 seconds before that event occurred.

chose a 1-D vertical heatmap since tutorials are usually for-
matted vertically. This also matches the interface of code pro-
filers, which display vertically down an IDE’s or text editor’s
gutter to show which lines of code were executed the most.

Similarly, a temporal heatmap along the bottom of the tutorial
webpage shows the density of events logged from Table 1
throughout the time duration of the testing session. This lets
viewers get a sense for the temporal ordering of events in the
testing session and filter by time ranges (described later).

Event markers and pop-ups: Heatmaps show an overview
of the session’s activity, but it is also important to see exactly
which actions the participant performed while they were fo-
cusing on each part of the tutorial. To surface this data, Porta
displays an event marker for each type of event in Table 1 at
the approximate webpage location where the user was look-
ing when they performed that action. When mouse hover data
is available, this marker is placed at the center of the focused
DOM element; when it is not available, the marker is placed
at the center of the viewport’s vertical position. An identical
copy of that marker appears on the temporal heatmap as well.

When the user clicks on an event marker on either the posi-
tional or temporal heatmap (Figure 5a), a pop-up dialog ap-
pears to show the details of that event (Figure 5b). This dialog
contains an embedded screencast video recording of the en-
tire session with its seek position set to 20 seconds prior to
that event’s occurrence (Figure 5c). This way, viewers can
see the context leading up to the selected event.

It also displays more detailed contextual data depending on
event type (Figure 5b): Clipboard events show the textual
contents that were copied at the time of occurrence. Shell
commands, toolchain invocations, and remote ssh invocations
show all of the logged data, including command-line argu-
ments, textual outputs, error messages, return codes, and the

contents of the affected files at the time that command was
run. Likewise for browser actions: If a new webpage tab
or window was opened, it shows that page’s URL; if any
JavaScript errors arose, those are also shown.

If an event occurred when an embedded video on the tutorial
webpage was playing (or was paused at a non-starting posi-
tion), then its pop-up dialog also displays a video player that
loads that video at the same position. This level of detail is
important for video-centric tutorials: Without it, viewers can
see only that the event occurred when the mouse was hover-
ing over an embedded video element on the tutorial webpage,
but not where the participant was watching within the video
when they performed an action that logged that event.

Filtering to reduce visual overload: By default all events
are shown on both the positional and temporal heatmaps. Al-
though their positions are slightly jittered to prevent direct
overlap, if there are too many events, it may still be hard to
select individual markers. To mitigate this problem, Porta al-
lows viewers to filter by event type using facets (checkboxes),
which will show only selected kinds of events on heatmaps.

Viewers can also filter by time. By dragging a double-ended
range slider on the temporal heatmap, they can hone in on a
time range. This will show markers for only events that oc-
curred within that range in both the temporal and positional
heatmaps. It will also re-render the positional heatmap to
show the relative amounts of time that the participant viewed
portions of the webpage during that selected time range.

Viewers can also filter by position using a similar double-
ended range slider on the positional heatmap. This will again
filter events on both heatmaps to show only those within the
selected range. Another benefit of positional filtering is being
able to zoom in on a detailed heatmap about a specific portion
of the webpage. One limitation of showing a single global
heatmap that spans the entire webpage is that certain regions
may be too close in value and thus appear almost as the same
color. When the user selects a positional range, the heatmap
will be computed only for vertical positions within that range,
which will amplify those subtle value differences.

Aggregating multiple sessions: Porta can aggregate the data
collected from multiple test sessions in a simple way. It over-
lays all of the trace data on the positional heatmap so that it
visualizes the relative amounts of time spent by all partici-
pants on each portion of the tutorial webpage. This is akin to
a source code profiler showing aggregated results from multi-
ple independent executions. Likewise, event markers from all
participants are shown on the heatmap. To avoid further vi-
sual overload, Porta adds an additional facet so that the viewer
can filter by participant ID as well as by event type.

We chose not to display a temporal heatmap when aggregat-
ing multiple sessions since each participant likely takes dif-
fering amounts of time to work through the tutorial and per-
form their actions in different orders. An alternative design
is to display separate temporal heatmaps for each participant,
but that may lead to even more visual overload. If a viewer
wants to inspect an individual participant’s session in detail,
they can view it in isolation in its own browser window.

DISCUSSION: SYSTEM SCOPE AND LIMITATIONS
Porta is best suited for profiling multi-application tutorials
commonly found in domains such as software engineering,
web development, system administration, and data science. It
is less well-suited for detailed profiling of single-application
tutorials such as those for MS Word, Excel, or Photoshop.
Since Porta does not perform tracking within GUI apps, the
most it can do for those tutorials is display a general heatmap
and screencast videos. One way to overcome this limitation
is to build plug-ins that track these applications in detail.

We envision two main classes of use cases: testing newly-
written tutorials and updating more mature tutorials, which
can suffer from bit rot over time as target users’ computer
configurations change. Creators may be motivated to use
Porta to make sure that older tutorials keep working properly.

There is inherent imprecision to Porta’s heatmaps since it is
impossible to tell where in the tutorial the participant is truly
focusing on, short of continually asking them. The Gaussian
distribution is a crude model for approximating uncertainty in
positional focus. Time estimates are also imprecise because
Porta cannot easily tell whether the user is on task, distracted,
or taking a break. On a related note, is spending more time
on a certain part of the tutorial good or bad? Maybe it is good
since that part is more engaging, or maybe it is bad if there are
lots of error-related events at those parts. Thus, profile visual-
izations should be used as a substrate to facilitate discussion
and reflection, not as a source of precise ground truth.

Porta requires installing and running OS-wide monitoring
software that may lead to privacy concerns. When used in an
in-person user test, it can come pre-installed on the lab com-
puter where session state gets erased after each trial. When
used in online experiments, participants must both be tech-
nically adept enough to install it and put their trust in it.
To respect privacy, Porta starts recording in a new empty
Chrome browser profile only when the user explicitly acti-
vates it, stores data only on the computer it is installed on,
and never transmits data remotely without consent. The user
can inspect all raw data that Porta collects and view the pro-
file visualizations, which is exactly what the tutorial creator
sees. They can manually delete portions of the logs or video
files that they do not want to share, or choose not to share at
all. These complexities mean that Porta is not well-suited for
longer-term always-on deployment in a field study. Rather,
we envision it being selectively activated only during user
testing sessions, whether in-person or remote. In the end, par-
ticipants must determine if the potential benefits (e.g., altru-
ism, paid compensation) outweigh the privacy costs of usage.

Since Porta’s positional heatmaps are vertically aligned, it is
not designed for horizontally-scrolling tutorials or those that
dynamically render content without scrolling (e.g., using an
image carousel or flipbook metaphor). In our experience,
though, these formats are rarely seen in software tutorials.

Finally, Porta displays heatmaps and event markers for only
one tutorial webpage at a time. If a tutorial spans multiple
webpages, then viewers must view each profile webpage sep-
arately. Inter-page linking is one direction for future work.

EVALUATION: USER STUDIES
To assess Porta’s potential efficacy, we had 12 students acti-
vate it while following 3 software tutorials. We then showed
the resulting Porta outputs to the instructors who created
those tutorials. We wanted to investigate two main questions:

• Does Porta help students better reflect on the difficulties
they faced while following tutorials?

• Does Porta provide useful feedback to instructors about
how to improve their own tutorials in the future?

Materials: For this study, we used three web-based tutori-
als created by instructors at our university for classes they
teach: 1) Python: A primer on basic Python types, control
flow, and functions; created for a data science course (~800
words). 2) Git: Intro. to the Git version control system and
GitHub [21]; created as part of a MOOC on introducing sci-
entists to command-line development tools (~3,000 words).
3) Web Design: Intro. to HTML, CSS, and JavaScript with
jQuery; created for an HCI course (~500 words).

Each tutorial was formatted as step-by-step instructions on
a single vertically-scrolling webpage with mini-exercises for
students to check their understanding. The Web Design tuto-
rial also featured embedded screenshots and mini-videos.

Procedure for Student User Study: We recruited 12 com-
puter science undergraduate students (9 women) from our
university each for a 1-hour user study; each was paid $10.
To find novices, we limited recruitment to those who had lit-
tle to no experience with the subject of the tutorial they saw.
Each participant came to our lab to work through one tutorial
on a macOS machine with both Porta and the necessary soft-
ware (e.g., text editors, terminal app, Python, Git) installed:

1. We activated Porta and gave the participant up to 40 min-
utes to work through the tutorial in any way they wished.

2. After stopping Porta, we asked the participant to reflect on
any difficulties they faced while following the tutorial and
to provide suggestions for improving the tutorial. Note that
this debriefing occurs before they ever see Porta’s output.

3. Finally, we showed the participant the output of Porta and
let them freely explore the profile visualization interface.
Throughout this process, we asked them to further reflect
on any suggestions they have for improving the tutorial.

Procedure for Instructor User Study: After completing the
student user study, each of the 3 tutorials now had profile in-
formation collected from 4 students trying to follow them.
For this study, we had the instructors who created each tuto-
rial come to our lab for one hour and inspect Porta’s output:

1. We began by showing the instructor their own tutorial and
having them reflect on if they wished to make any changes
to it. Note that this occurs before they ever see Porta.

2. We then showed the instructor Porta outputs from each of
the 4 student studies, as well as the aggregate visualization
of all 4 sessions together. We let them freely explore the in-
terface. We asked them to think aloud and again reflect on
whether they wished to make any changes to their tutorial.

Study Limitations: Our findings came from self-reported
anecdotes from first-time users. We have no evidence of lon-
gitudinal effects such as whether the instructors actually made
the suggested improvements to their tutorials or whether fu-
ture students ended up benefiting from those improvements.
We also opted for a within-subjects study design so that we
could directly compare the nature of each participant’s feed-
back before and after they saw Porta’s output. There may
be some ordering effects, but it is infeasible to flip the order
of exposure: i.e., if we first show someone Porta’s output,
then they cannot “un-see” it later in the session. Also, due to
time constraints in study sessions, we opted not to have each
instructor first view a baseline condition where they would
have needed to watch 4×40-minute raw screencast videos
from their respective student sessions. Note that instructors
can still view selected excerpts of raw student videos within
Porta by clicking on relevant events in the UI (Figure 5c).

Findings from Student User Study
Table 2 summarizes Porta’s recordings for the 12 participants
in the student user study (P1–P12). Everyone completed their
tutorial within the 40 minutes they were given. Since we did
not formally assess students’ understanding of the subjects,
it is possible that they made mistakes while performing the
given actions or harbored some misconceptions; however, we
feel that this is a realistic simulation since students would not
be supervised when following these tutorials on their own.

Table 2 also shows the occurrences of events that Porta
recorded during each session. Taken together, these three tu-
torials elicited all event types: The Python tutorial involved
running shell commands, the Git tutorial involved ssh-based
commands to use Git on a remote server, and the Web tutorial
involved Chrome developer tool interactions. Although we
did not formally measure application run-time speeds, partic-
ipants did not report any performance-related problems.

Feedback comparison: Table 3 contrasts the qualitative
feedback that participants provided before and after seeing
Porta’s output. Before seeing Porta’s output, they provided
either vague or non-existent feedback. We gave each one the
opportunity to look through their tutorial again, and 8 out of
12 participants felt like it was good enough in its current state.
For instance, P1 said that the Python tutorial was “easy to fol-
low” and P5 said the Git tutorial “seemed straightforward.”
When they did offer critiques, their descriptions were high-
level: e.g., “language could be more novice friendly” (P8).

In contrast, once participants started exploring Porta’s out-
put, they were able to give much more specific and targeted
feedback. Everybody had at least one concrete suggestion for
improvement, even those who minutes earlier had just said
that the tutorial looked fine as-is. The upper right of Table 3
shows one example from each participant. Aside from being
specific, each suggestion was made while referencing a spe-
cific location in the tutorial, so they were precisely targeted.

For example, both P3 and P4 originally said the tutorial
looked fine, but as they explored Porta’s output they zoomed
in on occurrences of errors while running Python commands.
They saw that there were error messages related to them using

application events # web browser events
Participant Time Local (errors) Remote Clip Pages Devtools Errors
P1 Py 38 50 (10) 0 0 0 0 0
P2 Py 26 35 (1) 0 23 0 0 0
P3 Py 26 36 (5) 0 12 0 0 0
P4 Py 29 30 (3) 0 18 0 0 0
P5 Git 24 0 57 0 0 0 0
P6 Git 28 0 73 0 0 0 0
P7 Git 21 0 52 0 0 0 0
P8 Git 21 0 49 33 0 0 0
P9 Web 28 0 0 9 2 0 2
P10 Web 17 0 0 0 2 0 5
P11 Web 21 0 0 8 4 1 3
P12 Web 37 0 0 0 10 1 2
Table 2. Summary of Porta events recorded during the 12 student user
study sessions for Python, Git, and Web Design tutorials. Session time
is in minutes. “Local” events include both shell commands and com-
piler/interpreter toolchain (e.g., Python) invocations. “Clip” is clipboard
copy-and-paste. “Pages” is opening additional webpages in new tabs.

“true” and “false” for booleans instead of the properly capital-
ized versions (“True” and “False”) that Python requires. They
suggested for the tutorial creator to add a clarifying note there
to help students who were used to bools in other languages.

In theory, participants could glean this same information from
watching a raw screencast video recording of their sessions,
but it would likely be harder to pinpoint occurrences of key
events in a 40-minute-long video. Porta’s visualizations al-
lowed participants to quickly zoom in on key events such
as command invocations and toolchain errors so that they
watched only the video segments centered at those events.
Thus, it provided a convenient event- and time-based index
into the underlying raw screencast videos that it recorded.

Findings from Instructor User Study
The ultimate goal of Porta is to give useful feedback to tu-
torial creators. To assess how well it achieves this goal, we
showed the instructor who created each tutorial the Porta out-
puts from all 4 of its student user study sessions. (To evaluate
Porta in isolation, we did not show instructors the actual feed-
back that students provided; they saw only Porta’s outputs.)

To get baseline impressions, before introducing Porta we
asked each instructor to look over their tutorial and let us
know if they wanted to make any specific changes to it. As the
lower left of Table 3 shows, they provided only vague ideas
such as “split some of the sections up.” All three felt their tu-
torial was in good shape since it had been used by many past
students: The Python tutorial had been used in two iterations
of a 400-student data science course; the Web Design one was
used in four iterations of a 300-student HCI course; and the
Git tutorial was featured in a 10,000-student MOOC. Thus,
these instructors had already fixed many issues from having
these tutorials so heavily used over the past few years.

Expert blind spot effect: While exploring Porta’s visualiza-
tions, all three instructors noticed unexpected student behav-
ior that surprised them, even despite having taught multiple
times using these instructional materials. This could be an
instance of the expert blind spot [27] whereby experts have
trouble relating to what novices know and do not know since,
as experts, they are too familiar with their own subject matter.

Students Feedback on tutorial (before seeing Porta’s output) Feedback on tutorial given while using Porta
P1 Py “easy to follow” “mention the variable in a ‘for’ loop is a value and not an index”
P2 Py “tutorial is nice” “colons are used to start code blocks in Python”
P3 Py “I didn’t know where to start writing the code” “boolean values start with capital letters in Python”
P4 Py “a summary of the tutorial would be good.” “boolean values should be capitalized in Python”
P5 Git “seemed straightforward” “talk about how to exit the ‘less’ program when showing ‘git status’”
P6 Git “need more Windows-specific advice” “explain what the ‘cat’ command does here”
P7 Git “some parts did not clearly explain other tools used in the tutorial” “explain the git staging step better”
P8 Git “the language could be more novice friendly” “use a different formatting for text and commands”
P9 Web “some screenshots were too small to read” “show large CSS changes that can be seen in screenshots”
P10 Web “more details about Bootstrap” “add more comments in the starter code about what’s going on”
P11 Web “more explanation about what was supposed to happen” “no explanation of where event object for click handler comes from”
P12 Web “more explanation about the lines they added” “make the file in which code is to be written more clean”

Instructors What they want to change in their tutorial (before using Porta) What they want to change, mentioned while using Porta
“talk about needing to start code blocks with colons & indentation”

Python tutorial “update this for Python 3” “split text into inline comments which the students actually read”
creator “in the past, students had trouble with looping in this tutorial. look

into how to do that part better.”
“didn’t realize escape sequences threw people off; add more
explanation about that”
“introduce basic Python syntax before talking about types”
“use HEAD∼1 instead of HEAD∼ because it’s more clear that you’re
going 1 commit back”

Git tutorial “tutorial is probably too long” “don’t use the intentional “fil2” typo; none of the students got it”
creator “split some of the sections up” “make it more clear that students should use their own user names and

email addresses in examples”
“don’t use HTML placeholders in code; students copy them literally”

Web tutorial “link to more external content” “show that capitalization matters when linking external files”
creator “reformat some of the steps for better flow” “make more obvious CSS changes so students can actually see

something happening”
“reverse the order of changes in the CSS of steps 7, 8, and 9”

Table 3. Examples of feedback given by the 12 students (top) and 3 instructors (bottom) on each tutorial, both before seeing Porta (left) and while using
Porta (right). Feedback while using Porta was usually more concrete, specific, and precisely targeted to one particular location within the tutorial.

All three explored Porta’s positional heatmaps to see where
students spent relatively more time. Each clicked on an aver-
age of 31 event markers and spent 33% of their total session
time viewing event details; for reference, each of the 12 stu-
dents clicked an average of 6.8 event markers and spent 17%
of time viewing details in their own sessions. While we do not
have rigorous data on mouse tracking accuracy, when partici-
pants were reviewing their own heatmaps, there were no times
at which they reported being surprised by false positives.

Table 3 shows that all three gained actionable insights. For
instance, the Python tutorial’s creator did not realize that syn-
tax to demarcate code blocks with colon and whitespace was
a major hurdle for novices; he realized this only when he saw
several students struggling with indentation errors and repeat-
edly having those error events show up in Porta’s output. The
Git tutorial’s creator had mastered Unix command-line tools,
so he did not anticipate that students would have such a hard
time using basic commands such as ‘less’ and ‘cat’.

Ideas for improving tutorials: Instructors were also able to
use Porta to come up with concrete ideas for improving their
tutorials. The lower right of Table 3 summarizes their ideas.

For instance, the Python tutorial’s creator saw from heatmap
visualizations that most students did not even read through
major parts of his tutorial. He realized that reformatting those
parts as inline comments in code examples might work better.
Also, from observing the temporal order of events, he came
to the conclusion that he should have introduced code blocks
and whitespace significance in the tutorial first before intro-
ducing Python types. The Git tutorial’s creator was surprised

that adding in an intentional typo for “fil2” tripped up all the
students who encountered it. He expected students to run the
command verbatim with the typo, but everyone actually used
the correct spelling of “file2” and therefore got confused by
the next section that explained the consequences of the inten-
tional mistake.The Web Design tutorial’s creator saw that he
should have made CSS style changes more visually salient.

In theory, instructors could have gleaned these insights via di-
rect observation or by watching videos of test sessions. How-
ever, needing to directly observe users limits scale, whereas
Porta could be used to run user tests remotely and be admin-
istered by third parties. It would also likely take them much
longer to watch the raw videos, and they would not get the
benefits of Porta’s heatmaps or event markers to hone in on
clusters of related user activities. Finally, Porta provides a
compact summary of test sessions that can easily be shared
with other people such as co-instructors or future students.

CONCLUSION
This paper addresses the challenges of providing effective,
fine-grained feedback on the contents of software tutorials.
To do so, we created Porta, a system that automatically builds
tutorial profiles by tracking user activity within a tutorial
webpage and across multiple applications on their computer.
Porta surfaces these profiles as interactive visualizations that
show hotspots of user focus alongside details of logged appli-
cation events and embedded segments of recorded screencast
videos. In sum, Porta opens up possibilities for systematic
user testing of technical documentation at scale by providing
fine-grained data to both test participants and tutorial creators.

ACKNOWLEDGMENTS
Thanks to Kandarp Khandwala, Sean Kross, Xiong Zhang,
and the UCSD Design Lab for their feedback.

REFERENCES
1. 2011. Accuracy and precision test method for remote

eye trackers. https://www.tobiipro.com/siteassets/
tobii-pro/accuracy-and-precision-tests/
tobii-accuracy-and-precisiontest-method-\
version-2-1-1.pdf. (2011).

2. 2018. Flask (A Python Microframework).
http://flask.pocoo.org/. (2018).

3. 2018. FullStory: Pixel-Perfect Session Replay.
https://www.fullstory.com/. (2018).

4. 2018. Hotjar: All-in-one Analytics & Feedback.
https://www.hotjar.com/. (2018).

5. 2018. MDN web docs: MIME types.
https://developer.mozilla.org/en-US/docs/Web/
HTTP/Basics_of_HTTP/MIME_types. (2018).

6. 2018. Mouseflow - Session Replay, Heatmaps, Funnels,
Forms & User Feedback. https://mouseflow.com/.
(2018).

7. Jason Alexander, Andy Cockburn, Stephen Fitchett,
Carl Gutwin, and Saul Greenberg. 2009. Revisiting
Read Wear: Analysis, Design, and Evaluation of a
Footprints Scrollbar. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’09). ACM, New York, NY, USA, 1665–1674.
DOI:http://dx.doi.org/10.1145/1518701.1518957

8. Andrea Bunt, Patrick Dubois, Ben Lafreniere,
Michael A. Terry, and David T. Cormack. 2014.
TaggedComments: Promoting and Integrating User
Comments in Online Application Tutorials. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 4037–4046. DOI:
http://dx.doi.org/10.1145/2556288.2557118

9. Bryan M. Cantrill, Michael W. Shapiro, and Adam H.
Leventhal. 2004. Dynamic Instrumentation of
Production Systems. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference
(ATEC ’04). USENIX Association, Berkeley, CA, USA.
http:
//dl.acm.org/citation.cfm?id=1247415.1247417

10. Parmit K. Chilana, Andrew J. Ko, and Jacob O.
Wobbrock. 2012. LemonAid: Selection-based
Crowdsourced Contextual Help for Web Applications.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 1549–1558. DOI:
http://dx.doi.org/10.1145/2207676.2208620

11. Biplab Deka, Zifeng Huang, Chad Franzen, Jeffrey
Nichols, Yang Li, and Ranjitha Kumar. 2017. ZIPT:
Zero-Integration Performance Testing of Mobile App
Designs. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology

(UIST ’17). ACM, New York, NY, USA, 727–736.
DOI:http://dx.doi.org/10.1145/3126594.3126647

12. Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016.
ERICA: Interaction Mining Mobile Apps. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 767–776. DOI:
http://dx.doi.org/10.1145/2984511.2984581

13. Adam Fourney, Ben Lafreniere, Parmit Chilana, and
Michael Terry. 2014. InterTwine: Creating
Interapplication Information Scent to Support
Coordinated Use of Software. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’14). ACM, New York, NY, USA,
429–438. DOI:
http://dx.doi.org/10.1145/2642918.2647420

14. Paul D. Fox. 2018. Linux port of DTrace.
https://github.com/dtrace4linux/linux. (2018).

15. Max Goldman and Robert C. Miller. 2009. Codetrail:
Connecting Source Code and Web Resources. J. Vis.
Lang. Comput. 20, 4 (Aug. 2009), 223–235. DOI:
http://dx.doi.org/10.1016/j.jvlc.2009.04.003

16. Susan L. Graham, Peter B. Kessler, and Marshall K.
Mckusick. 1982. Gprof: A Call Graph Execution
Profiler. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction (SIGPLAN ’82).
ACM, New York, NY, USA, 120–126. DOI:
http://dx.doi.org/10.1145/800230.806987

17. Philip J. Guo and Margo Seltzer. 2012. BURRITO:
Wrapping Your Lab Notebook in Computational
Infrastructure. In Proceedings of the 4th USENIX
Workshop on the Theory and Practice of Provenance
(TaPP’12). USENIX Association, Berkeley, CA, USA.
http:
//dl.acm.org/citation.cfm?id=2342875.2342882

18. Björn Hartmann, Mark Dhillon, and Matthew K. Chan.
2011. HyperSource: Bridging the Gap Between Source
and Code-related Web Sites. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’11). ACM, New York, NY, USA,
2207–2210. DOI:
http://dx.doi.org/10.1145/1978942.1979263

19. William C. Hill, James D. Hollan, Dave Wroblewski,
and Tim McCandless. 1992. Edit Wear and Read Wear.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’92). ACM, New
York, NY, USA, 3–9. DOI:
http://dx.doi.org/10.1145/142750.142751

20. Juho Kim, Philip J. Guo, Carrie J. Cai,
Shang-Wen (Daniel) Li, Krzysztof Z. Gajos, and
Robert C. Miller. 2014. Data-driven Interaction
Techniques for Improving Navigation of Educational
Videos. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). ACM, New York, NY, USA, 563–572.
DOI:http://dx.doi.org/10.1145/2642918.2647389

https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-accuracy-and-precisiontest-method-\version-2-1-1.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-accuracy-and-precisiontest-method-\version-2-1-1.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-accuracy-and-precisiontest-method-\version-2-1-1.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-accuracy-and-precisiontest-method-\version-2-1-1.pdf
http://flask.pocoo.org/
https://www.fullstory.com/
https://www.hotjar.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://mouseflow.com/
http://dx.doi.org/10.1145/1518701.1518957
http://dx.doi.org/10.1145/2556288.2557118
http://dl.acm.org/citation.cfm?id=1247415.1247417
http://dl.acm.org/citation.cfm?id=1247415.1247417
http://dx.doi.org/10.1145/2207676.2208620
http://dx.doi.org/10.1145/3126594.3126647
http://dx.doi.org/10.1145/2984511.2984581
http://dx.doi.org/10.1145/2642918.2647420
https://github.com/dtrace4linux/linux
http://dx.doi.org/10.1016/j.jvlc.2009.04.003
http://dx.doi.org/10.1145/800230.806987
http://dl.acm.org/citation.cfm?id=2342875.2342882
http://dl.acm.org/citation.cfm?id=2342875.2342882
http://dx.doi.org/10.1145/1978942.1979263
http://dx.doi.org/10.1145/142750.142751
http://dx.doi.org/10.1145/2642918.2647389

21. Sean Kross. 2017. The Unix Workbench. Chapter 6: Git
and GitHub. https://seankross.com/
the-unix-workbench/git-and-github.html. (2017).

22. Benjamin Lafreniere, Tovi Grossman, and George
Fitzmaurice. 2013. Community Enhanced Tutorials:
Improving Tutorials with Multiple Demonstrations. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 1779–1788. DOI:
http://dx.doi.org/10.1145/2470654.2466235

23. Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014.
Addressing Misconceptions About Code with
Always-on Programming Visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 2481–2490. DOI:
http://dx.doi.org/10.1145/2556288.2557409

24. Justin Matejka, Tovi Grossman, and George
Fitzmaurice. 2013. Patina: Dynamic Heatmaps for
Visualizing Application Usage. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
3227–3236. DOI:
http://dx.doi.org/10.1145/2470654.2466442

25. Will McGrath, Daniel Drew, Jeremy Warner, Majeed
Kazemitabaar, Mitchell Karchemsky, David Mellis, and
Björn Hartmann. 2017. Bifröst: Visualizing and
Checking Behavior of Embedded Systems Across
Hardware and Software. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’17). ACM, New York, NY, USA,
299–310. DOI:
http://dx.doi.org/10.1145/3126594.3126658

26. Alok Mysore and Philip J. Guo. 2017. Torta: Generating
Mixed-Media GUI and Command-Line App Tutorials
Using Operating-System-Wide Activity Tracing. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17).
ACM, New York, NY, USA, 703–714. DOI:
http://dx.doi.org/10.1145/3126594.3126628

27. Mitchell J Nathan, Kenneth R Koedinger, and Martha W
Alibali. 2001. Expert blind spot: When content
knowledge eclipses pedagogical content knowledge. In
Proceedings of the third international conference on
cognitive science. Beijing: University of Science and
Technology of China Press, 644–648.

28. Peter L. T. Pirolli. 2007. Information Foraging Theory:
Adaptive Interaction with Information (1 ed.). Oxford
University Press, Inc., New York, NY, USA.

29. Mark Russinovich. 2018. Microsoft Sysinternals:
Process Monitor v3.50. https://docs.microsoft.com/
en-us/sysinternals/downloads/procmon. (2018).

30. Victor Savkin. 2016. Angular: Why TypeScript?
https://vsavkin.com/
writing-angular-2-in-typescript-1fa77c78d8e8.
(2016).

31. Amitabh Srivastava and Alan Eustace. 1994. ATOM: A
System for Building Customized Program Analysis
Tools. In Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and
Implementation (PLDI ’94). ACM, New York, NY,
USA, 196–205. DOI:
http://dx.doi.org/10.1145/178243.178260

https://seankross.com/the-unix-workbench/git-and-github.html
https://seankross.com/the-unix-workbench/git-and-github.html
http://dx.doi.org/10.1145/2470654.2466235
http://dx.doi.org/10.1145/2556288.2557409
http://dx.doi.org/10.1145/2470654.2466442
http://dx.doi.org/10.1145/3126594.3126658
http://dx.doi.org/10.1145/3126594.3126628
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
http://dx.doi.org/10.1145/178243.178260

	Introduction
	Related Work
	Application-Specific Usage Profiling
	Multi-Application Information Scent
	Improving Web-Based Tutorials
	Operating-System-Wide Activity Tracing

	Porta Design and Implementation
	OS-Wide Application Usage Profiler
	Web Browsing Activity Tracker
	Tutorial Profiling Visualizations

	Discussion: System Scope and Limitations
	Evaluation: User Studies
	Findings from Student User Study
	Findings from Instructor User Study

	Conclusion
	Acknowledgments
	REFERENCES

