Sloppy Python: Using Dynamic Analysis to Automatically
Add Error Tolerance to Ad-Hoc Data Processing Scripts

Philip J. Guo
Computer Systems Laboratory
Stanford University
pg@cs.stanford.edu

ABSTRACT

Programmers and data analysts get frustrated when their
long-running data processing scripts crash without produc-
ing results, due to either bugs in their code or inconsistencies
in data sources. To alleviate this frustration, we developed
a dynamic analysis technique that guarantees scripts will
never crash: It converts all uncaught exceptions into special
NA (Not Available) objects and continues executing rather
than crashing. Thus, imperfect scripts will run to comple-
tion and produce partial results and an error log, which is
more informative than simply crashing with no results. We
implemented our technique as a “Sloppy” Python interpreter
that automatically adds error tolerance to existing scripts
without any programmer effort or run-time slowdown.

Categories and Subject Descriptors:
D.3.4 [Processors]: Interpreters, Run-time environments
H.5.2 [User Interfaces]: Prototyping

General Terms: Languages, Reliability

Keywords: Data processing, fault tolerance, scripting

1. INTRODUCTION

Programmers across a wide range of disciplines (e.g., bioin-
formatics, neuroscience, econometrics, finance, data mining,
information retrieval) often write scripts to parse, transform,
process, analyze, and extract insights from data. We refer
to these as ad-hoc data processing scripts because both the
scripts and the data they operate on are ad-hoc in nature:

e Ad-hoc scripts: Programmers write these scripts in
a “quick-and-dirty” manner to explore their datasets
and to formulate, test, and refine hypotheses. They
do not spend much time making these scripts robust,
error-tolerant, or modular, since their primary goal is
to discover insights from their data, not to produce a
well-engineered piece of production software.

e Ad-hoc data: Vast amounts of real-world data are
stored in ad-hoc formats [10]. Examples of such semi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WODA 11, July 18, 2011, Toronto, ON, Canada

Copyright 2011 ACM 978-1-4503-0811-3/11/07 ...$10.00.

structured and unstructured data are those scraped
from web pages, mined from emails, and logs produced
by computer systems and scientific lab equipment. Ad-
hoc data often contains inconsistencies and errors due
to lack of well-defined schemas, malfunctioning equip-
ment corrupting logs, non-standard values to indicate
missing data, or human errors in data entry [10].

Although domain-specific data processing languages are
being developed in research labs [10, 13, 14], most mod-
ern programmers write ad-hoc data processing scripts in
general-purpose languages such as Python, Perl, and Ruby
due to their flexibility, support for rapid prototyping, and
actively-maintained ecosystems of open-source libraries.

Problem: We have heard our colleagues gripe about the
following problem regarding the brittleness of their scripts:

1. They start executing a script that is expected to take a
long time to run (e.g., tens of minutes to a few hours).

2. They work on another task or go home for the evening.

3. When they return to their computer, they see that
their script crashed upon encountering the first un-
caught exception and thus produced no useful output.

The crash could have occurred due to a bug in the script or
the data: Since programmers write scripts in a “quick-and-
dirty” manner without carefully handling edge cases, many
bugs manifest as uncaught run-time exceptions. Also, ad-
hoc data sources often contain badly-formatted “unclean”
records that cause an otherwise-correct script to fail [10].

Regardless of cause, the programmer gets frustrated be-
cause he/she has waited for a long time and still cannot see
any results. The best he/she can do now is to try to fix
that one single visible error and re-execute the script. It
might take another few minutes or hours of waiting before
the script gets past the point where it originally crashed, and
then it will likely crash again with another uncaught excep-
tion. The programmer might have to repeat this debugging
and re-executing process several times before the script suc-
cessfully finishes running and actually produces results.

For another scenario that exhibits this problem, consider
an online real-time data analytics script (e.g., deployed on a
server) that continuously listens for input and incrementally
processes incoming data. Unless the programmer meticu-
lously handled all edge cases, that script will inevitably en-
counter some data it cannot process and crash with an un-
caught exception. Discovering that the script crashed, de-
bugging and fixing the error, and re-deploying it might lead

to missing a few hours’ or days’ worth of incoming data, all
just because of one unexpected crash-causing input.

Our proposed solution: To address this problem of script
brittleness, we developed a dynamic analysis technique that
automatically adds error tolerance to existing scripts with-
out requiring any programmer effort. It works as follows:

1. The script executes in a custom interpreter.

2. When an expression throws an uncaught exception, the
interpreter creates an NA (Not Available) object rep-
resenting the exception, assigns it to the expression’s
target, saves the NA object and local variable values
to a log file, and continues executing normally.

3. Whenever an NA object appears in an expression, the
interpreter handles it according to special rules and
logs a warning. For example, all unary and binary
operations involving an NA object will return NA.

Our technique guarantees that scripts will never crash.
As soon as a script throws an exception when processing a
record in the dataset, the interpreter marks values derived
from that record as NA and continues processing subsequent
records. Since scripts usually process each record indepen-
dently, NA objects do not propagate to taint values derived
from neighboring records (i.e., they are confined to the error-
inducing records). When the script finishes running, it out-
puts results for the successfully-processed records, which of-
ten provides more information than prematurely crashing.

The interpreter also maintains a log of what went wrong
when processing dataset records that caused the script to
throw exceptions. This log can be used to debug errors and
can even be processed to incrementally recover from errors
without re-executing the script on the entire dataset. We
demonstrate an incremental error recovery example in §4.3.

Main benefits: Our technique allows programmers to it-
erate faster when developing ad-hoc scripts in three ways:

1. Faster coding: Programmers can write “quick-and-
dirty” scripts, execute them, and see partial results
(and all errors) without being slowed down by the bur-
den of worrying about full correctness. They also do
not need to write extra code to handle exceptions that
could arise in almost every line of code (e.g., every
array operation could throw an out-of-bounds excep-
tion). A study found that 50-70% of the code in reli-
able systems software was for handling edge cases [11];
although that study was not on data processing scripts,
it shows that programmers spend lots of effort on er-
ror handling in general. Our technique acts as a safety
net to guard against unexpected edge cases without
any programmer effort. As their scripts mature, pro-
grammers can write specialized error handling (or even
recovery) code to wean themselves off of this safety net.

2. Fewer edit/run/debug iterations: After every script

execution, programmers can see a log of all run-time
errors and detailed information about their context.
Thus, they can fix multiple bugs in one round of code
edits rather than fixing one at a time and waiting for
minutes or hours before seeing whether there are ad-
ditional errors. As an analogy, if a compiler only dis-
played the first syntax error when compiling code, then
the programmer can only fix one error at a time and

must re-compile to see the next error. Fortunately,
modern compilers display as many useful errors and
warnings as possible per invocation.

3. More insights per iteration: When a script has
bugs, partial results always provide more insights than
no results, thus helping to inform code edits for the
next iteration. Partial results can actually be accurate
when computing aggregate statistics: e.g., if the true
mean housing price in a large dataset is $200k, a script
might return a mean of $198k if it can only process 95%
of the data (the other 5% might require more detailed
parsing logic). They can even provide exact answers:
e.g., Condie et al. found the top 10 most frequently
occurring words in a 5.5GB corpus of Wikipedia article
text after only processing about half of the dataset [8].

2. TECHNIQUE

Our technique involves altering run-time exception han-
dling by creating special NA objects rather than crashing.
We find it easiest to explain and implement in the context
of a programming language interpreter, but it can also be
implemented in a compiler or bytecode transformation tool.

2.1 Creating NA from Uncaught Exceptions

When a regular interpreter executes a script, as soon as
an expression throws an exception, the interpreter inspects
all functions on the stack to try to find an exception handler
(i.e., code in a try-catch block). If it can find a handler, then
it transfers control to that handler and keeps executing. If
it cannot find a handler, then it will crash the script and
print an error message. For example, executing x = 1 / 0
will crash the script with a divide-by-zero exception.

Our technique alters the interpreter so that, instead of
crashing the script on an uncaught exception, it creates a
special NA (Not Available) object that becomes the result
of the expression that threw the exception. (If the script
provides an exception handler, then it executes as usual.)
An NA object has three fields:

e Exception type (e.g., array out-of-bounds)

e Exception details (e.g., “index 25 is oul of bounds
of the array named z”)

e Stack backtrace indicating all currently-executing
function names and line numbers

When our modified interpreter executesx = 1 / 0, it cre-
ates a new NA object to represent the exception, assigns it
to the variable x, and continues normal execution.

2.2 Logging Exception Context for Debugging
and Incremental Error Recovery

When the interpreter creates a new NA object, it saves
a snapshot of that object and the current values of all local
variables to a log file. For example, consider this Python
script, which iterates through each line in big_data.txt,
splits it into tokens based on whitespace, converts the first
two tokens into numbers, and prints their quotient (ratio):

line_number = 1
for line in open(’big_data.txt’):
tokens = line.split(’ ~’
ratio = float (tokens[0]) / float (tokens[1])
print ratio
line_number +=1

Although this script is tiny, it can throw three possible ex-
ceptions when processing big_data.txt:

1. If a line contains fewer than two tokens, then accessing
tokens[1] will throw an out-of-bounds exception.

2. If a token does not represent a floating-point number,
then converting it to a float will throw an exception.

3. If float(tokens[1]) is 0, then there is a divide-by-
zero exception.

If big_data.txt has 1 million lines, then when the script
finishes processing it, the warning log file might look like:

Divide-by-zero exception: 5 / 0
line_number=291818, line=’5 0’, tokens=[’5’, ’0’]

< ... full stack backtrace ... >

Invalid float exception: ’six’ is not a valid float
line_number=320183, line=’5 six’, tokens=[’5’, ’six’]
< ... full stack backtrace ... >

Out-of-bounds exception: tokens[1] is out of bounds
line_number=983012, line=’2’, tokens=[’2’]
< ... full stack backtrace ... >

This example log file indicates that the script failed to
process three records in big_data.txt. The exception ob-
ject, stack backtrace, and values of local variables pinpoint
the exact cause of each failure. The programmer now knows
exactly where to insert error handling or recovery code to
avoid triggering those exceptions in future runs. Alterna-
tively, he/she could edit the dataset to alter or remove those
problematic records (located at line_number).

Finally, in some cases, he/she can write an amended ver-
sion of the script to process the log file itself and merge the
results with those from the original computation. Since the
log file contains partially-processed records stored in local
variables, an amended script can directly process that file,
which can be much faster than re-executing on the entire
dataset (a technique colloquially known as “sloppy seconds”).
In the above example, an amended script would only need to
process the three error-inducing records in the log file rather
than the 1 million in the original dataset. In Section 4.3, we
demonstrate this form of incremental error recovery.

2.3 Treatment of NA Objects

The interpreter treats NA objects in the following special
ways throughout execution:

e A unary operation on an NA object (e.g., negation)
returns itself (the original NA object).

e A binary operation involving an NA object (e.g., ad-
dition, subtraction) returns itself *.

e A comparison involving an NA object (e.g., less than,
equal to, greater than) returns itself !, since the result
is unknown (neither TRUE nor FALSE).

e Calling an NA object as a function returns itself.

e Accessing an element of an NA object (e.g., via array
indexing) returns itself.

e Accessing a named field of an NA object returns itself.
e NA and FALSE (conjunction) returns FALSE
e NA or TRUE (disjunction) returns TRUE

e Mutating an NA object does nothing.

If it involves two NA objects, then it returns the first one.

To inform the user about how NA objects propagate dur-
ing execution, the interpreter logs all N A-related operations
(e.g., a comparison involving an NA object) to the log file.

When an NA object appears in most types of expressions,
the interpreter simply propagates it to the expression’s re-
sult. The intuition here is that if an operand has an unknown
(NA) value, then the result should also be unknown. For ex-
ample, if x is NA, then after executing z = x + 5, the value
of z is also NA. Note that x and z refer to the same NA
object since the interpreter re-uses (aliases) the NA operand
of the addition as the result. This is not only more efficient
than creating a new object, but it also propagates informa-
tion about the original error to aid in debugging.

Note that this technique is most effective on scripts with
short error propagation distances, like those that process
each record independently of one another [15]. If script ex-
ecution causes NA objects to taint all subsequent values,
then the interpreter cannot produce much useful output.

Iterators: Scripts often compute aggregate statistics by it-
erating over a collection (e.g., a list) and performing com-
putations such as summing up the elements. If a collection
contains even one NA object, then that will taint the com-
putation’s result as NA. Thus, when iterating over a collec-
tion, the interpreter should skip over NA objects rather than
emitting them. This provides the illusion that a collection
contains no NA elements, so iterator-based aggregate com-
putations can produce partial results rather than NA. At
the same time, though, NA objects remain in the collection,
so that direct indexing still returns the correct element.

Branch conditions: When a script must branch based on
an NA condition value (e.g., in an if statement), which side
should the interpreter take? Technically, neither is correct,
since an NA value is neither TRUE nor FALSE. Thus, the
interpreter can pick either side (our implementation always
takes the if side rather than the else side). At the end
of execution, the user can consult the log file to see which
branches had NA conditions, so that he/she can be more
suspicious about results dependent on those branches. We
might consider adding a mode where the interpreter forks to
take both sides of NA-based branches, but then we need to
address the obvious challenges of exponential path explosion.

2.4 Special Handling for Assertion Failures

Programmers write assertions to specify constraints on
their scripts’ data. A regular interpreter crashes with an as-
sertion failure as soon as one of these constraints is violated,
since it is incorrect to continue executing with invalid data.

Our technique alters the interpreter so that when it en-
counters an assertion failure, rather than crashing, it creates
an NA object and assigns it to all variables involved in the
assertion. The intuition here is that when an assertion fails,
only the data involved in the assertion is invalid, so it is safe
to continue executing as long as they are marked as NA.

Here is the example from Section 2.2 augmented with an
assertion that all computed ratios must be less than 1:

line_number = 1
for line in open(’big_data.txt’):
tokens = line.split(’ ~’
ratio = float (tokens[0]) / float (tokens[1])
assert(ratio < 1.0)
print ratio
line_number += 1

This assertion indicates that the programmer assumes all
ratios in big_data.txt are less than 1. If some records vi-
olate this assumption, then the interpreter assigns ratio to
a new NA object and prints “<NA>” when processing those
records. At the end of execution, the log file shows which
records led to assertion failures, so that the programmer can
either fix the dataset or reconsider his/her assumptions.

2.5 Discussion: Benefits of Precision

The simple example we have shown so far might give the
impression that our technique merely skips over bad records.
A programmer could accomplish this same goal by simply
wrapping the main loop body in a try-catch block and using
a continue statement as the exception handler (to continue
onto the next record). Also, data processing frameworks like
MapReduce [9] can automatically skip over bad records.

Our technique is actually more precise, since it catches ex-
ceptions at the expression level. This means that if a record
contains, say, 30 fields and the script throws an exception
when processing one particular field, then only data from
that field becomes NA, but the remaining 29 fields are suc-
cessfully processed. Thus, our technique can automatically
skip over portions of bad records rather than entire records.
To mimic this level of precision, a programmer would need
to wrap every single program expression in a try-catch block.

3. PYTHON IMPLEMENTATION

We implemented our technique for Python, since it is a
popular language for writing data processing scripts. We
created a prototype open-source interpreter named SLOPPY
(Sloppy Python) [3] by adding 500 lines of C code to the
Python 2.6 interpreter. SLOPPY passes all of the Python
regression tests and works on existing scripts and 3rd-party
libraries without any code modifications. The behavior of
SLoPPY is identical to that of regular Python during normal
(exception-free) execution, so scripts run at the same speed.

We implemented all features in Section 2 in a straight-
forward way by modifying how the Python interpreter han-
dles uncaught exceptions and by defining a new NA type.
We also hacked the interpreter’s handling of iterators and
Python generators [2] (generalized form of iterators) to skip
over NA objects rather than emitting them during iteration.

When SLOPPY encounters an uncaught exception, it un-
winds the stack until it finds the first function not in the
Python standard library and creates the NA object in that
function’s frame. In our experiments, this provided a better
user experience since the user can more easily reason about
exceptions in his/her own code rather than in library code.

SLOPPY produces two warning log files: a human-readable
text log, and a binary log of serialized Python objects that
an incremental recovery script can directly process without
needing to parse the text log (see Section 4.3).

4. PRELIMINARY EVALUATION

To demonstrate some of SLOPPY’s capabilities, we ran
three informal experiments on a 3 GHz Mac Pro with 4
GB of RAM, with regular Python 2.6 and SLOPPY both
compiled as 32-bit binaries for Mac OS X 10.6.

4.1 Supercomputer Event Log Analysis

To show how SLOPPY allows programmers to write simple
scripts without worrying about error handling, we wrote a

script to analyze an event log from the Spirit supercomputer
installed in Sandia National Laboratories [4]. In 2007, Oliner
and Stearley released event logs from 5 supercomputers [12];
for this experiment, we used the log for Spirit since it is the
largest in size (37 GB). This log file contains 272,298,969
lines, where each line documents an event like an incoming
network service request, kernel panic, or hardware failure.

System administrators routinely write ad-hoc scripts to
query supercomputer event logs to monitor system health,
discover aberrations, and diagnose failures. Oliner and Stear-
ley describe how log files contain inconsistent or ill-defined
structure, corrupted records, and duplicated records, all of
which make it harder to write robust log analysis scripts [12].

For this experiment, we emulated a system administrator
and wrote a script to print out the IP address of each ma-
chine that requested services from the Spirit supercomputer
via the UNIX xinetd daemon. A sysadmin might use this
data to plot a histogram and inspect the distribution of re-
quests by IP addresses or corresponding geographic region;
addresses with unusually high activity might indicate either
an internal system malfunction or an intrusion attempt.

From a cursory glance at the log file, we saw that xinetd
events seemed to obey a straightforward format, as shown in
Figure 1. We wrote the simplest possible script to extract
and print the IP addresses: It iterates over all lines of the
log file, splits each into whitespace-separated tokens, finds
lines whose 8th token (0-indexed) starts with “xinetd”, then
extracts the IP address from the 12th token, which should be
formatted like “from=172.30.80.251". To avoid biases due
to duplicated records, our script coalesces all events within
a 5-second interval into one, which Oliner and Stearley also
do in their analyses [12]. Here is our entire script:

cur_time = —99999

for line in open(’spirit.log’):
tokens = line.split(’)
utime = int (tokens[1])
component = tokens [8]

if component.startswith (’xinetd’):
coalesce events within 5—second interval
if (utime — cur_time) <= 5: continue
else: cur_time = utime

ip-addr = tokens[12].split(’=")[1]
ip_lst = ip_addr.split(’.”)

ip_byte0 = int(ip_lst[0])
ip-bytel = int(ip_lst [1])
ip-byte2 = int(ip_lst [2])

ip_byte3 = int(ip_lst[3])
print ip_byteO ,ip_bytel ,ip_byte2 ,ip_byte3

Running our script using SLOPPY took 20 minutes, 4 sec-
onds and printed 39,225 IP addresses. The SLOPPY warn-
ing log showed that it caught 11,076 exceptions, which indi-
cates that our script could not process 11,076 lines (out of
272,298,969 total lines, which is only 0.004%).

Since the SLOPPY warning log contains the context of
each exception (see Section 2.2), the values of the line local
variable at each exception show the contents of all lines our
script could not process. We searched through the line val-
ues and could not find any IP addresses, which means that
our script extracted all of them (100% precision and recall).
The 11,076 exceptions were all due to lines that looked sim-
ilar to a syntactically-correct xinetd request record but did
not contain an IP address. Example lines contained:

- 1104594301 2005.01.01 sadminl Jan 1 07:45:01 sadmini/sadminl xinetd[2228]: START: rsync pid=616 from=172.30.80.251
- 1106166706 2005.01.19 sadminl Jan 19 12:31:46 sadminl/sadminl xinetd[7746]: START: rsync pid=439 from=172.30.73.8
- 1107350922 2005.02.02 sadminl Feb 2 05:28:42 sadminl/sadminl xinetd[7746]: START: tftp pid=8381 from=172.30.72.163

Figure 1: Example records for xinetd sessions in the Spirit supercomputer event log file [4].

e Bizarre numbers that are not valid IP addresses: e.g.,
from=#564#

e Null sentinel value: e.g., from=<no address>

e Various error messages: €.g., xinetd[14743]: warning:
can’t get client address: Connection reset by peer

Since the Spirit event log file was huge, we did not see
these aberrant records when we manually looked through it
to learn the schema in preparation for writing our script.
All the xinetd records we saw followed the format in Fig-
ure 1, so we wrote a simple script that was only sufficient
to process records in that exact format. SLOPPY freed us
from having to think about error handling. In this case, our
script achieved 100% precision and recall when extracting
IP addresses, without requiring any error-handling code.

In contrast, when we run our script with regular Python,
every time it throws an exception, the interpreter crashes
and we need to edit the script to handle that exception and
then re-execute. Depending on when the next exception
occurs, each run can take from seconds to tens of minutes.

4.2 Computational Biology Case Study

To show how SLOPPY can add error tolerance to an exist-
ing script, we used it to run a computational biology script
written by Peter, a Ph.D. student in our department.

When we first told Peter about our project, he immedi-
ately showed us a script where SLOPPY would have saved
him a day of labor. Peter’s 200-line Python script runs the
Viterbi dynamic programming algorithm [6] on human ge-
nomic data and prints out a textual table of results. When
he first ran the script, it computed for 7 hours (overnight);
when he returned to his computer the next morning, he saw
that it had crashed with an exception caused by taking the
logarithm of zero®. He was especially frustrated since the ex-
ception occurred at the very end of the run when the script
was post-processing and printing out the results table. In
other words, all the real 7-hour computation was already
done, but the script crashed while formatting the output.

After seeing that exception, Peter made a simple fix: He
defined a custom log function that returns a sentinel “neg-
ative infinity” value for log(0). When he edited and re-ran
his script, everything worked fine, but he lost a day of pro-
ductivity just because of an unexpected exception.

When we ran the original version of Peter’s script using
SLOPPY (before he patched the log function), it finished in
7.5 hours, printing a results table with 328,879 rows and 16
numeric columns (5.2 million total numbers). The SLOPPY
warning log showed that it caught 35 exceptions, all of which
arose from taking the logarithm of zero. The 35 correspond-
ing NA values appeared in the results table as entries that
printed as an “<NA>” string rather than an actual number.

Since the exceptions occurred at the end of execution af-
ter the input data had been transformed and mixed across
several matrices, there were no individual “bad records” to
blame for the crashes. It just happened that in 35 rare cases,

2The Python math library throws an exception for 1og(0)

running the Viterbi algorithm and post-processing on some
combination of fields within input records led to 1Log(0) be-
ing performed. Peter developed and tested his script on a
small dataset so that each run only took a few seconds. He
never saw the log(0) exception during testing; it only oc-
curred after running for 7 hours on the full dataset.

If Peter had run his script using SLOPPY rather than regu-
lar Python, he would be able to see full results after the first
run. Even though the results table contains 35 NA values
(out of 5.2 million total values), he knows that all NA values
represent 1og(0), so he does not lose any information.

4.3 Incremental Recovery for HTML Parsing

To show how SLOPPY enables incremental error recovery,
we wrote a simple script to compute a reverse webpage link
graph from a corpus of HTML files. When we ran the script,
it failed to parse 1% of the files, but we were able to process
the SLOPPY warning log to recover some data from those
unparsable files and merge them into the original graph.

A reverse web-link graph associates each HTML webpage
with a set of webpages that link to it. A search engine can
use this graph to compute reputation metrics like PageRank.
We took this example from the MapReduce paper [9].

For simplicity, we wrote a sequential script to compute
the reverse web-link graph, but SLOPPY should provide the
same benefits for a MapReduce-style Python script. Our
script iterates over 71,768 HTML files we downloaded from a
1.3GB public corpus [5], parses each using the HTML parser
from the Python standard library, finds all outgoing links,
and builds a graph mapping target URLs to source URLs.

Our script takes 10 minutes, 19 seconds to run to com-
pletion with SLOPPY and generates a graph with 246,932
nodes and 1,256,808 edges. The warning log showed that
the standard Python HTML parser threw an exception on
736 out of the 71,768 HTML files in our corpus (1%). HTML
files often do not conform to W3C standards, so they crash
parsers with messages like these that appeared in our log:

Error: unexpected ’\\xa9’ char in declaration
Error: expected name token at \’<!:iB;@ i39#.60;H8g" \’

SLopPy allows our script to tolerate these parse errors
and continue processing rather than crashing; in the end,
99% of the files were properly processed in the initial run.

The warning log contains the values of local variables at
the time each exception was thrown: One of the variables
contains the string contents of the unparsable HTML file,
and another contains its filename. Thus, a script could
directly process that log to access the contents of the 736
HTML files (1%) that our original script could not parse.

We modified our script to not use an HTML parser (since
that would just crash again) but instead to use a regular
expression to extract outgoing links. The reason why we
did not originally use a regular expression was because it is
less accurate than a real parser, so it might miss some links.
However, a regular expression is more robust, since it does
not care whether the HTML conforms to W3C standards.

We ran our modified script on the warning log and merged
the newly-found links into the existing reverse web-link graph.

This recovery run completed in 6 seconds and added 1116
new nodes and 4987 new edges to the graph, which only
made it 0.4% larger. We call this run incremental because
it did not re-process the entire corpus, which would have
taken the full 10 minutes. Although 10 minutes is not too
long to wait, if we had access to a larger HTML corpus, then
a full run could have taken hours, even when parallelized.

S. RELATED WORK

Failure-oblivious computing: Our technique was inspired
by failure-oblivious computing, a technique that makes C

programs immune to memory errors by ignoring out-of-bounds

writes and returning fake values for out-of-bounds reads [15].
Failure-oblivious computing returns ordinary small integer
values for erroneous memory reads, whereas our technique
creates and propagates a special NA object and snapshots
execution context, to aid in debugging and incremental error
recovery. Also, since failure-oblivious computing works on C
code, it requires re-compiling the target program and incurs
a slowdown due to memory bounds checking, whereas we can
transparently deploy our technique by replacing the Python
interpreter with SLOPPY and incurring no slowdown.

Error tolerance in data processing systems: Google’s
MapReduce [9] and the open-source Hadoop [1] both have a
mode that skips over bad records (i.e., those that throw ex-
ceptions when processed). Our technique is similar in spirit
but is finer-grained, enabling it to skip over portions of bad
records (see Section 2.5). The Sawzall domain-specific data
processing language (built on top of MapReduce) can also
skip over portions of bad records [14], but it lacks the gen-
erality of a language like Python. Also, unlike the above
systems, SLOPPY stores exception contexts (i.e., values of
local variables), which aids debugging and allows the pro-
grammer to incrementally re-process only the bad records
and then merge with the original results (see Section 2.2).

Silent errors in programming languages: Some pro-
gramming languages, most notably Perl, are designed to si-
lence errors as much as possible to avoid crashing scripts [7].
For example, Perl and PHP automatically convert between
strings and integers rather than throwing a run-time type
error, which seems convenient but can produce unexpected
results. Although SLOPPY shares the same goal of making
scripts robust to crashes, it does mot silently hide errors.
Instead, SLOPPY taints erroneous values as NA, logs warn-
ing messages, and propagates NA so that the programmer
knows which portions of results are derived from N A values.

6. DISCUSSION AND FUTURE WORK

Our design philosophy underlying SLOPPY is that pro-
grammers doing ad-hoc data processing tasks can be more
productive if the run-time system allows their imperfect,
buggy programs to run to completion and produce partial
results rather than mercilessly crashing them. We want pro-
grammers to be able to rapidly hack on ad-hoc scripts and
discover insights about their data without worrying about
the mundane details of error handling. This project is still in
its early stages, so here are some directions for future work:

Since SLOPPY allows incorrect programs to keep running,
it is vital to have their partial results be accompanied by a
precise explanation of what went wrong. The warning log file
that SLOPPY produces is a first step towards this goal, but

there is still plenty of room for improvement. We would like
to accurately track both control- and data-flow dependencies
of NA values and report this provenance data in such a
way that the programmer can easily find out what went
wrong, why, and how it can be fixed. We would also like the
programmer to get a realistic sense of how much he/she can
“trust” particular components of the output, and perhaps
even get probabilistic bounds on how badly a particular NA
value might corrupt indirectly-affected numerical results.

Also, we might want to explore more principled ways of
isolating the buggy parts of execution from the correct parts,
in order to preserve the validity of partial results. For exam-
ple, if NA-tainted execution were about to delete previously-
computed results, then it might be better to actually termi-
nate execution rather than continuing to execute.

Finally, since more and more data processing is being
done in the cloud (e.g., via Amazon EC2 and MapReduce),
could ideas from SLOPPY be generalized to work on parallel
and distributed data processing systems? One unique chal-
lenge in this space is that these systems are often comprised
of multiple layers implemented in different languages (e.g.,
SQL, Hive, Pig, Java, Python), so error handling, propaga-
tion, and reporting must cross language boundaries.

Acknowledgments: Thanks to Dawson Engler, Kathleen
Fisher, Robert Ikeda, and Jean Yang for feedback on drafts,
to Martin Rinard and an anonymous reviewer for some of
the future work ideas, and to the NSF fellowship for funding.

7. REFERENCES

[1] Apache Hadoop home page http://hadoop.apache.org/.

[2] Python home page: PEP 255 — Simple Generators

http://www.python.org/dev/peps/pep-0255/.

[3] SlopPy home page: source code and documentation

http://www.stanford.edu/ pgbovine/SlopPy.html.

[4] Supercomputer Event Logs

http://www.cs.sandia.gov/~ jrstear/logs/.

[5] The Phoenix System for MapReduce Programming

http://mapreduce.stanford.edu/.

Viterbi algorithm

http://en.wikipedia.org/wiki/Viterbi_algorithm.

Stopping silent errors with exceptions

http://perltraining.com.au/tips/2005-04-12.html. Perl

training Australia, 2005.

[8] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,

K. Elmeleegy, and R. Sears. MapReduce online. In NSDI
’10. USENIX Association, 2010.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI ’04. USENIX
Association, 2004.

[10] K. Fisher and R. Gruber. PADS: a domain-specific
language for processing ad hoc data. In PLDI 05, pages
295-304. ACM, 2005.

[11] N. Gehani. Exceptional C or C with exceptions. Software -
Practice and Experience, 22(10):827-848, 1992.

[12] A. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. In DSN ’07, pages 575-584,
Washington, DC, USA, 2007. IEEE Computer Society.

[13] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD ’08, pages 1099-1110. ACM, 2008.

[14] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programmang, 13(4):277-298, 2005.

[15] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu,
and W. S. Beebee, Jr. Enhancing server availability and
security through failure-oblivious computing. In OSDI *04.
USENIX Association, 2004.

6

[7

