Snap n’ Shop: Visual Search-Based Mobile
Shopping Made a Breeze by Machine and Crowd
Intelligence

Quanzeng You*, Jianbo Yuan*, Jiagi Wang', Philip Guo* and Jiebo Luo*
*Department of Computer Science, University of Rochester, Rochester, NY 14627
Email: {qyou, jyuanlO, pg, jluo} @cs.rochester.edu
TDepartment of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
Email: jwang71@hse.rochester.edu

Abstract—The increasing popularity of smartphones has signif-
icantly changed the way we live. Today’s powerful mobile systems
provide us with all kinds of convenient services. Thanks to the
wide variety of available apps, it has never been so easy for people
to shop, to navigate, and to communicate with others. However,
for some tasks we can further improve the user experience by
employing newly developed algorithms. In this work, we try to
improve visual search based mobile shopping experience by using
machine and crowd intelligence. In particular, our system enables
precise object selection, which would lead to more accurate visual
search results. We also use crowdsourcing to further extend
the system’s prowess. We conduct experiments on user interface
design and retrieval performance, which validate the effectiveness
and ease of use of the proposed system. Meanwhile, components
in the system are quite modular, allowing the flexibility of adding
or improving different modules of the whole system.

I. INTRODUCTION

Today, people are getting used to acquiring information
through mobile platforms due to the popularity of smartphones
and accessibility of wireless networks. For instance, they use
smartphones for shopping, navigation, communication and so
on. Current mobile systems become increasingly powerful in
terms of providing a wide variety of services. Most of the
time, simple installation of several apps will meet people’s
most daily needs.

A large portion of many app’s success can be attributed
to the incorporation of more and more machine intelligence.
Over the past couple decades, machine learning and computer
vision communities have developed more and more robust
features and algorithms for object recognition and detection. In
particular, the recently developed deep learning enables robust
and accurate feature learning, which in turn produces the state
of the art performance on image classification, objects detec-
tion and attribute learning. Both the academia and industry
have invested a huge amount of effort in building powerful
neural networks. Indeed, many companies have deployed deep
neural networks into their products to improve the overall
performance of their current systems. For instance, in June
2013, Baidu launched its image search platform based on deep
learning’.

Thttp://www.wired.com/wiredenterprise/2013/06/baidu-virtual-search/

However, there are still many problems which cannot be
solved effectively using today’s intelligent machines alone [1].
These tasks may be easily solved by human brainpower.
Amazon Mechanical Turk provides a platform to use crowd
intelligence to solve problems. Indeed, more and more people
start to participate in human-based computation, which makes
it feasible to assign tasks to human beings. We focus on a
visual mobile shopping system. To be more specific, we want
to use visual information to find corresponding products in a
precise and easy fashion. This is particular useful when people
do not know how to describe the visual object in terms of text.
Our goal is to exploit both machine and crowd intelligence to
deliver more pertinent visual search results.

Indeed, there are several apps that provide the function of
searching products by images. Several of them are quite pop-
ular and interesting, including Amazon Flow, Ebay Fashion,
CamFind and TapTapSee. We are not aware of any research
systems in academia. However, there are several issues with
these apps: a) Some of them are only concerned about its
own products, for instance Amazon Flow can only recognize
objects which are sold in Amazon. b) Due to limited image
libraries, some of them can only detect objects that belong to
certain categories. For instance, Ebay Fashion can only return
a collection of women dresses. c) None user-friendly interfaces
often lead to confusions when users are trying to figure out
how to use the apps. For example, Amazon Flow only shows
a patch of feature points. Whenever there is no target items,
the app just stops there without giving any hint of its status.
d) Most importantly, all of these apps do not allow users to
specify the potentially interested objects in the query image.
This may lead to unexpected or unwanted retrieval results
if the query image contains multiple objects or background
clutters.

In this work, we propose a user-friendly system, Snap n’
Shop, which can provide the user with superior performance
in terms of both retrieval system performance and integrated
mobile user experience. In particular, we focus on the follow-
ing several aspects of the system and make contributions.

o We provide multiple ways to select the query image,

including directly taking a snapshot, choosing an image

from existing albums and downloading images from the
Internet.

o Our app allows users to select the exact object they are
interested in, which can greatly reduce unwanted retrieval
results by excluding unwanted objects.

o Our system provides the flexibility to retrieve both textual
and visual information of the object.

o« We make use of crowdsourcing to allow workers with
pertinent knowledge to help when the automatic image
search does not yield good results.

Therefore, our system can avoid the problems caused by a
limited image library by taking advantage of the retrieval
results from the largest image search providers, such as Baidu
and Google.

II. RELATED WORK

Recent development in mobile technology has changed
the way how people are using multimedia for information
retrieval. In particular, mobile platforms have brought both
challenges and opportunities for both industry and academia
to develop new techniques for better multimedia mining.

It has been several years since Google first released its
newly designed search engine for desktop computers: search
by images. Before that, Google released its product Google
Goggles for mobile visual search. Since then, there have been
several different apps that provide similar service of searching
by images. In general, these apps can be categorized into
three groups. In the first group, the service is simply a natural
extension of their service on desktop computers. For instance,
companies such as Google, Bing and Baidu have released their
own mobile apps. Most of the time, they will integrate many
of their existing services into their apps to provide similar
experience for their mobile users. However, it seems they
do not provide specifically designed UI features to improve
better search experience. In the second group, E-commerce
companies such as Amazon and Ebay, released apps enabling
users to use images for searching products. However, the
problem is that they can only search the items from their own
inventories, which may result in total irrelevant results other-
wise. For example, Ebay can only return pictures that belong
to the clothing category. On the other hand, Amazon Flow
requires the image to include highly distinguishable features
like barcodes and texts. The last group is most encouraging.
Startup companies such as Image Searcher, Inc. developed
apps (CamFind and TapTapSee) that aim at providing better
performance when searching by images. In terms of accuracy,
they perform much better than other similar apps that belong
to the first two groups. However, they have the same issue:
lack of integrated user interface support.

At the same time, there are also several related works on
mobile visual search system. Girod et al. [2][3] proposed a
visual search system in 2011. They developed new features and
data structures for better feature extraction and retrieval. Since
they used the 3G wireless network, one of their objectives
is to reduce transmission delay, which may not be a big
issue today. Meanwhile, the performance of their system relied

on the database they built, which may not be suitable for
arbitrary visual searches. However, their work showed that one
could benefit from assigning some computational tasks on the
phone. Schroth et al. [4] developed an location recognition
system for mobile platforms. They developed novel feature
quantization to overcome the limited computing power of
mobile platforms. The main task is to identify the location
of one picture, which is different from our system. The work
in [5] also proposed a mobile location search system. They
tried to predict the best viewing angle to allow more successful
queries. Shen et al. [6] proposed a framework to implement
automatic object extraction. By employing the top-retrieved
images to accurately localize the object in the query image,
their proposed framework significantly improved the retrieval
performance. Their work also suggested the importance of
extracting the query objects for improving retrieval perfor-
mance. Most of visual retrieval systems are designed for single
object retrieval. To enable multiple object recognition, the
work in [7] employed a bottom up search-based approach.
In this way, graph cuts can be used to solve the multi-object
recognition problem. Meanwhile, in [8], the authors described
an interactive multi-modal visual search system for mobile
platforms. They took advantages of the multi-modal feedback
from the user to retrieve the most matched images.

However, all of these works relied on their own-built
database for objects retrieval. For more general purpose image
retrieval, one has to rely on more complete image databases.
For example, the authors in [9] proposed the Stanford Mo-
bile Search data set for mobile visual search applications.
Even though the data set contains different categories such
as CDs, books, and outdoor landmarks, it is still not rich
enough for general purpose image retrieval. On the other hand,
search engine companies like Google and Baidu have built
the world’s largest general purpose image retrieval systems.
Billions of images have been collected and indexed in their
systems. In addition, they have built systems that adopted the
most advanced algorithms to retrieve most relevant images.
In this work, we make no assumptions on the image data
base. Instead, we rely on the retrieval results from existing
general image retrieval systems and indirectly exploit their
knowledge database. We focus on developing new features
which can generate more informative query images for the
existing knowledge database.

III. SYSTEM ARCHITECTURE

Most of the current mobile visual search systems consist of
two main components: client and server. Most of the time, the
server contains a database which includes different categories
of objects to retrieve in the system. The server needs to
both process the request from different mobile clients and
finish the retrieval task based on the database. To achieve
efficient retrieval performance, researchers have provided d-
ifferent features and data structures to improve the retrieval
performance [10][11][12][13]. Fig. 1 shows the architecture
of our system. It has three main components: client, server
and knowledge warehouse. In our implementation, the client

‘ Input Image

‘ Select Image >

‘ Display Results

’ Client

Server

a)

Knowledge Warehouse

b) Crowd c)

Fig. 1: Three components of our system: a) Client: we focus on designing a friendly user interface in smartphones to enable
common gestures and easy selections on the image. b) Server: the server first accepts the request image from the client. It then
sends out the request image to an online image search service. ¢) Knowledge Warehouse and Crowd Intelligence: the server
sends out the request to the knowledge warehouse, which is capable of retrieving the most relevant information from the Web.
If the warehouse fails to respond to our request or if there are no related results, the server will automatically resubmit the

request to crowdsourcing marketplace.

is a mobile app running on the Android platform. We deploy a
web server to receive requests from clients and the server will
also be responsible for receiving the retrieval results from the
knowledge warehouse. In this way, we transfer the retrieval
task to the knowledge warehouse, and increase the overall
throughput of our system. Next, we will discuss the three
components in detail.

A. Client

For mobile platforms and apps, user experience mainly
comes from the design of the user interface. The focus of
the client is to develop a user friendly interface for the app. In
addition, in order to improve effectiveness and efficiency of
the proposed system, we also need to consider providing more
effective input for our knowledge warehouse. In particular, we
rely on computer vision techniques to help improve the user
interface and the system’s overall performance. To target on a
specific object or region in the query image, our app enables
the user to select and extract the interested objects from the
image in a clean fashion. We implemented lazy snapping [14]
to help users to select the objects from an image. Fig. 2 shows
the main steps. First, the user chooses one image that contains
the object of interest. Next, we run a superpixel segmentation
algorithm on the image. We then use the superpixels as the
graph nodes to build the graph for lazy snapping. Simple linear
iterative clustering (SLIC) [15] is employed to extract all the
superpixels from one image. More details and evaluation of
the UI design will be discussed in the next section.

Today, most of the smartphones are configured with pow-
erful CPUs and large memory. Therefore, we can implement
some of the computational tasks in the client side. However,
the bottleneck of today’s smartphones is its battery life. To
use the computational power more efficiently, we use the Java
Native Interface? to implement both SLIC and Lazy Snapping,

Zhttp://docs.oracle.com/javase/6/docs/technotes/guides/jni/

which enables us to precisely and cleanly select the object of
interest from the query image.

B. Server

The server maintains the communication between the client
and the knowledge warehouse as shown in Fig. 1. We use
the Apache web server to receive HTTP requests from the
clients. Since it can be easily configured with threadpools® to
satisfy simultaneous multiple requests from different clients.
For each received request, the server will automatically start
a thread to handle the request. It queries the knowledge
warehouse with the request image. We have no assumption
on the architecture of the knowledge warehouse, thus different
knowledge warehouses may have different result formats. The
server has one independent component, result processor, to
format the results. It is convenient to implement different
result processors for different kinds of knowledge warehouses.
Another main concern about the server is its reliability. It will
severely affect user experience of the app in an undesirable
way if the server fails to respond to the quest without any hints
or responds too slowly to the request. We use Amazon EC2
to deploy our server. The main advantages with EC2 virtual
machine are its reliability and the fact that we can choose to
configure the server with the resources we require.

C. Knowledge Warehouse

Knowledge warehouse is a black-box component in our sys-
tem. It is not important how to build a knowledge warehouse
and we do not intend to build a new knowledge warehouse in
this paper. We are mainly concerned about the programming
interface provided by the knowledge warehouse. As long as the
knowledge warehouse provides the interface to accept query
images and return retrieved information, we can integrate this
knowledge warehouse into our system.

3https://commons.apache.org/dormant/threadpool/

Y

Extracted
Foreground
Object

Client Lazy Snapping
!\ n
ﬁ implementation
Calculate
—— > Superpixels

using SLIC

Fig. 2: Steps to extract the object of interest from one image.

In our implementation, we tried different versions of knowl-
edge warehouses. In our initial attempt, we build our own
database as a knowledge warehouse containing many different
kinds of handbags. We implement our own data crawler to
download the title, price, and text description of each item.
In this way, we are able to build a database that contains
details of items in many different categories. Meanwhile, for
each item, we also download the images of that item under
different views. After that, we build the index for each image
using CEDD [16] features. Our experiments show that even
for this simple handbag recognition task, the performance of
the system is not always satisfactory. On one hand, the scale
of our database is limited. Therefore, most of the time, the
system could not find the item we are looking for and only
return similar images. On the other hand, CEDD features are
not rich enough to distinguish the slight differences between
different handbags. Therefore, it may be problematic to use
this feature for accurate image retrieval.

Given the above limitations, we turn to existing knowl-
edge warehouses with more accurate and more comprehen-
sive retrieval capabilities. In terms of accuracy and capacity,
search engine companies own the world’s largest knowledge
warehouses that contain all different kinds of information.
Moreover, Baidu image search* has relied on the state of the
art technique, deep learning, for retrieving similar images of
the query image. In our implementation, we chose to use Baidu
image search as the knowledge warehouse for accomplishing
the retrieval task. For each query image, the server will try
to acquire results from Baidu Image. However, if Baidu fails
to respond to our request or if there are no related results,
the server will automatically resubmit the request to Amazon
Mechanical Turk (AMT). Fig. 3 shows the main task for the
server. To be more specific, if the retrieval result for one query
is acceptable, the server will process the retrieved information

“http://images.baidu.com/

(1) Send request

server

Knowledge

‘Warehouse

(4.2) Rerank and
Y es—| reorganize the knowledge
database

No (—)

(4.1) Send a request to

AMT

Client

Fig. 3: Request process of the server.

and send it back to the mobile client. However, when the result
is not acceptable or even there is no returned result, we create
an AMT hit and ask people to manually solve this problem by
using Amazon Mechanical Turk Command Line Tools®. For
each hit, we request the worker to provide at least four or five
kinds of tags including name, brand, category and possible link
to this image. In this way, when the AMT workers finished
the task, we can collect the results from the AMT server and
return the results from the workers.

Even though we use Baidu image search for in this paper,
as discussed above, our system can easily integrate with other
knowledge warehouses. All we need to do is to implement the
corresponding request processor and result processor accord-
ing to their programming interface.

IV. UI DESIGN SUPPORTED BY COMPUTER VISION

The main goal of our system is to retrieve knowledge for
image objects. The main panel of the app provides different
ways to choose the images. We offer three ways to choose the
images that contain the object of interest: 1) Directly taking
a snapshot. This is the most natural approach for people to
find the information of one object. It is convenient for people
to open the app and take a picture whenever they need to
know detailed knowledge about one object as they see it. 2)
Selecting the image from an image gallery. People may have
taken many images on a trip of things they are interested in
and later need to find out details on some of the objects from
images in the image gallery. 3) Downloading images from a
given URL. Users may notice some interesting images when
browsing their Facebook pages, Twitter or some news articles
from their smartphones. In this case, it is convenient to copy
the URL of that image and paste it in our app. Next, the

Shttp://aws.amazon.com/developertools/Amazon-Mechanical-Turk/694

app will download the image and use that image as the query
image automatically.

The design of organizing the three different approaches
on the main panel allows the user to have a convenient and
effective way to specify what they are looking for. In addition,
we design the user interface for object selection along with
different gesture support.

« Scribbles
Our app provides gesture support for background and
foreground object segmentation. In particular, we allow
users to give hints on the two classes. We use different
colors to represent the background and the foreground ob-
jects. Users can select two different colors to label areas
for the background and foreground objects respectively to
provide the supervision information. Moreover we allow
multi-area labeling which is convenient for the users to
select as many areas using as many scribbles as they wish.
o Lazy Snapping

Based on the labeled areas, we use lazy snapping for ex-
tracting objects from the image. This is a semi-supervised
way of extracting objects. The algorithm can incorporate
the prior knowledge provided by users through scribbles
to infer the foreground object. Users can provide knowl-
edge of both the foreground and background objects. It is
natural on smartphones to acquire such kind of supervised
information through user-interface interaction due to the
rich gestures on these mobile platforms. The objective
for lazy snapping is to assign labels (foreground and
background) for each pixel in one image with respect to
minimizing a Gibbs energy E(X). X is the label matrix
for each pixel in the image. The Gibbs energy contains
two components: likelihood energy and prior energy and
is defined in Eqn.(1), where C refers to the set of pixel
pairs that are connected.

E(X)=)Y Ei(z)+a Y BEfv,z;) (1)
i i,jEC

As shown in Fig. 2, we first employ a superpixel al-
gorithm to segment the whole images into different
superpixels. After that we use the mean color value in
each superpixel as the color for that superpixel to run the
lazy snapping algorithm. Since the procedure is running
on smartphones, the algorithm can be implemented as
an iterative interaction between the app and the users.
Each time, after the user select some background and
foreground pixels though scribbles, the algorithm will try
to find the object. If there is some imperfection in the
extracted object, the user can give further hints for both
the foreground and background objects. Our system can
then return more accurate object extraction results. Fig. 4
shows one example of our app. We design three menu
buttons, where the red pen and blue pen allow the users to
select the foreground and background, respectively. The
click on the checkmark button will call the lazy snapping
algorithm to extract the targeted object. Fig. 4b is the
extracted handbag from a test image. When users are

(a) BG and FG selection

(b) Result of Lazy Snapping

Fig. 4: Users can select any area in the image as background
(BG) and foreground (FG) with different colors. The right
figure is the results in our mobile platform based on the
scribbles in the left figure. Note that the scribble directions
do not matter.

satisfied with the extraction, they can submit the object
to the server. Otherwise, they can press on the cancel
button and continue to provide additional hints for both
the background and foreground.

V. RETRIEVAL PERFORMANCE STUDY

In this section, we study the retrieval performance of
requesting with the extracted objects from the image. By
extracting the object from the image, we can obtain more
robust retrieval results since we eliminate the noise back-
ground from the image. We conduct experiments to compare
the performance of different systems by using the whole
image and using only the extracted object from that image.
In particular, we compare the retrieval results on two of the
largest image search service providers, Google Image Search
and Baidu Image Search.

Fig. 5 shows one retrieval example. The first column con-
tains three different query images. The other two columns
are the retrieval results from Google and Baidu, respectively.
We have three different query images: the original image,
the cropped object using bounding box and the cropped the
object using lazy snapping. In general, we can observe that
the retrieval results are most satisfactory when we preprocess
the query image using lazy snapping. For the original image,
Google prefers to return articles having the exact query image,
while on the other hand Baidu tends to focus on the people in
that image instead of the handbag. It is difficult to determine
which one is better if we do not know what exactly the users
are looking for. However, it seems that both of the retrieval re-
sults become worse when we query with the cropped handbag
using a bounding box. In this case, both of them are trying

ShAARINE R BB

Pages that include matching images

reese vilherspoon | Splash | Page 2

y Los ol
okt

. d! |
|
Reese Wllnerspeon pampers hersem I»!’ =
g g 1
y seifas s X A 1 !
i ,
: 12 <]
| § |3

(a) Original Image (b) Google (c) Baidu
f Visually similar images ShIELE A
ﬂ\

Iﬂ

(d) Bounding Box (e) Google

Visually similar images

(h) Google

(f) Baidu

ShMARIIE A

"W

®d

ﬂﬁ

(i) Baidu

(g) Snapping

Fig. 5: Retrieval results from Google and Baidu image search
respectively based on different query images of the object of
interest. Note that our app is the only one that produces the
exact match of the handbag.

to find out images that have similar colors with the query
image. Besides, the images returned seem to be semantically
different from the query images. However, if we further crop
out the bag using lazy snapping, it seems helpful for both of
the service providers. In the last row, we see that Baidu image
search can find exactly the same handbag that we are looking
for. Meanwhile, Google can retrieve objects containing similar
categories and colors with the query image.

In general, it is difficult to know exactly what an individual
user is looking for by the images provided. In particular, when
there are multiple objects in the image, it becomes much
more difficult for the system to determine the most desired
object and to correctly return the most related information
accordingly. However, the results in Fig. 5 suggest that we can
exclude irrelevant retrieval results by providing more target-
object centric images. Furthermore, the retrieval results from
Baidu are more accurate than Google in most cases. There-
fore, we use Baidu Image Search service as our knowledge
warehouse in the following experiments.

VI. ANALYSIS OF USER EXPERIENCE AND PERFORMANCE

In our experiments, we compare the proposed Snap n” Shop
(SNS) system with Amazon Flow, which is a well-known
visual feature based retrieval system. Moreover, we also im-
plement SNS Lite system, where we replace the lazy snapping
component with a simple bounding-box based object selection
component. The proposed systems described above have been
evaluated in a controlled experiment. We evaluate the system

mainly on two aspects: usability and user experience. In terms
of usability we consider both retrieval result evaluation and
user feedbacks. In terms of user experience, we evaluate user
experience primarily on Ul design, learnability, and overall rat-
ing comments. Moreover, we analyze the specific advantages
and drawbacks of each system.

In the following subsections, we first describe our evalua-
tion methodology and then report and discuss the results of
usability and user experience evaluation.

A. Evaluation Methodology

In terms of usability, we conducted retrieval result e-
valuation by testing the proposed systems on a randomly
chosen subset of ImageNet [17]. Moreover, in terms of both
usability and user experience, we have conducted a controlled
experiment with 10 participants (7 males, 3 females) from
different academic backgrounds such as engineering, finance,
and science. Each single-user session had a duration of 20
minutes for testing the three apps. Users are asked to test each
system by querying randomly picked items under these three
categories: daily use, clothing & shoes, electronic products.
Evaluation process is completed by requiring a questionnaire
containing 10 questions from our users, each of which covers
one aspect of our evaluation tasks. Our questionnaire is
presented in TABLE 1.

1) Usability:

a) Test on Image Net: We test both of our proposed
system and Amazon Flow on a subset of ImageNet. The
subset contains 54 images and is randomly chosen from three
categories including clothing & shoes, daily use (cosmetics,
food) and electronic products. These images are used as
queries and are fed into both systems to obtain retrieval results.
In terms of performance evaluation, we assigned three well-
trained judges to manually label each result. Manual labels are
accepted if and only of all these three judges agree with each
other.

b) User feedback: We evaluate user feedbacks on the
retrieval results returned by all the platforms using collected
answers from our questionnaire. Questions are shown in
TABLE 1.

2) User Experience: In terms of user experience, we
evaluate our system by focusing on learnability and user
satisfaction. Learnability is measured as how easy it is to
use the app for the first time. User satisfaction is measured
by overall rating of the app and UI design in terms of both
aesthetical functionality perspectives and user feedbacks. We
set up the experiments as discussed in Section VI-Al.

B. Results

In this section, we analyze the results the three apps using
the experiments designed in Section VI-A.
1) Usability:

a) Retrieval Result Evaluation: TABLE II shows the
overall retrieval performance tested on a randomly chosen
subset of ImageNet. The HIT column shows the percentage
of queries that receive the exact information about the query

TABLE I: User Interface Study Questions using the Likert scale.

How are you satisfied with the retrieval results?(rating 1-5, 5 mean totally satisfied)

Usability Contains any features that others do not have? (yes/no)
Do you like to use these new features? (rating 1-5, 5 mean loved it)
Any instructions for you to learn how to use different functions? (yes/no)
e 7
Learnability Do you find it is easy to use? (yes/no)

Did you make any mistakes in the process of usage? (yes/no)

How often do these mistakes happen? (rating 1-5, 5 means too many times)

Do you like the aesthetic design of this product? (rating 1-5, 5 means love it)

User Satisfaction

Overall rating for this app (rating 1-5, 5 is the highest)

TABLE II: Retrieval performance tested on a subset of Ima-
geNet

HIT Relevance | Success
Amazon Flow | 0.148148 | 0.185195 0.296296
Snap n’ Shop | 0.351852 | 0.814815 1

image. The relevance column shows the percentage of queries
that receive same category items. The success column is the
percentage of queries which can receive responses from the
tested app. Amazon Flow can only return results for very
few queried samples. About 15% of them are the exact hits
and the remaining returned results are actually detected based
on texts in the query image. To be more specific, if one
query image has textual information such as brands and titles,
Amazon Flow can recognize the textual contents in nearly
real time and use these detected features as queries. In our
experiment, 6 out of 16 times it recognized the textual content
and returned results based on these textual features. Among
all the accepted queries, 50% of which are not what we are
looking for or even not under the same category and 62.5%
are labeled as relevant by our researchers. On the other hand,
our system can provide results for each query image due to
the nature of our knowledge warehouse. Overall we achieved
about 81.5% relevant results and 35.2% are the exact hits.
Note that both of our proposed systems are implemented with
the same knowledge warehouse. Therefore the retrieval results
performance for both systems are consistent with each other
and we only show the result for SNS here. We can see that
Amazon Flow can be easily distracted by the background. On
the other hand, our results are more general and more robust
against background distractions.

b) User Feedback: For usability study, we mainly focus
on the overall retrieval results and each app’s unique features.
Fig. 6 shows the average user satisfaction scores of the
the three apps. It seems that subjects prefer the retrieval
result from Baidu. Even though we use the same knowledge
warehouse (Baidu image search) for both SNS Lite and
SNS, subjects still have higher satisfaction scores with the
retrieval results from SNS compared with SNS Lite. This
strongly validates our assumption that using the extracted
exact object can improve retrieval performance. Meanwhile,
different apps have different ways to capture the targeted
objects. We denote these unique features as new features for

Amazon Flow Bound n’ Shop Snap n’ Shop

(a) Retrieval result

Amazon Flow Bound n’ Shop Snap n’ Shop

(b) New features

Fig. 6: Usability scores from user feedback in terms of retrieval
results and new features respectively. Note that the confidence
intervals are also indicated.

each of them respectively. In Fig. 6b, we show the average
scores for these new features. Compared with the way of
using feature points for object detection (Amazon Flow), the
subjects prefer to use the proposed interactive lazy snapping
to extract the object. Analysis of the user study shows that
people are used to using different gestures to interact with an
app. Unfortunately, Amazon Flow does not allow these kinds

of interaction, making the users feel frustrated.

C. User Experience

User experience is another significant aspect when evalu-
ating a mobile app. We evaluate our proposed system and
Amazon Flow in terms of learnability and user satisfaction.

TABLE III: User experience ratings for Amazon Flow, SNS
Lite and SNS. The first three questions are ”yes/no” questions.
Note that 8/10 refers to 8 out of 10 users. Note that higher
ratings are better except for error proneness.

Questions Amazon Flow | SNS Lite | SNS

Instructions | 5/10 4/10 8/10

Easy to use | 1/10 6/10 6/10

Error prone | 10/10 0/10 5/10
Learnability.

To measure learnability, we focus on the following aspects:
how easy it is to use the app to complete a task without
any external instructions and how often, if any, errors occur
when users are conducting normal operations on the systems.
TABLE III shows statistical results collected from questions
in the learnability category in TABLE I. Even through all
three systems provide tutorials when the app is launched for
the first time, Amazon Flow is reported as not easy to use
and all of the participants reported to run into errors. On the
other hand, SNS Lite and SNS are rated as easier to use with
lower error occurrence. Due to its simple functionality, SNS
Lite has the lowest error occurrence. However, the overall
mistake ratings for SNS Lite and SNS are comparable and
both of them are much lower than Amazon Flow.

User Satisfaction.

In this subsection, we evaluate our proposed systems and
Amazon Flow in terms of focusing on user satisfaction in-
cluding general UI design, overall rating and user feedbacks.
According to our results, all of these three systems have
distinctive functionality from each other. Amazon Flow is rated
as the best in terms of aesthetical Ul design, our users are
mostly attracted by its real time feature points that are shown
on the screen, which also results in a high average rating as
a distinctive feature. However, in terms of functionality UI
design Amazon Flow is rated relatively lower due to its non-
interactive design that often leads to confusions as indicated in
its low learnability. On the other hand, SNS is rated relatively
high in terms of aesthetics design and distinctive feature.

VII. CONCLUSIONS

Mobile visual search is an challenging and interesting area
of research and development. In this paper, we employ both
machine and crowd intelligence to improve the performance of
mobile visual search. Indeed, the user experience and the usage
of machine and crowd intelligence can complement each other.
The experimental results suggest that by integrating machine
and crowd intelligence into a user friendly app, we are able

to not only improve the retrieval results, but also provide
better user experience. We hope our work will encourage
the community to employ new techniques to improve user
experience.

REFERENCES

[1] L. Von Ahn, “Human computation,” in Design Automation Conference,
2009. DAC’09. 46th ACM/IEEE. 1EEE, 2009, pp. 418-419.

[2] B. Girod, V. Chandrasekhar, R. Grzeszczuk, and Y. A. Reznik, “Mobile
visual search: Architectures, technologies, and the emerging mpeg
standard,” MultiMedia, IEEE, vol. 18, no. 3, pp. 86-94, 2011.

[3] S. S. Tsai, D. Chen, V. Chandrasekhar, G. Takacs, N.-M. Cheung,
R. Vedantham, R. Grzeszczuk, and B. Girod, “Mobile product recog-
nition,” in Proceedings of the international conference on Multimedia.
ACM, 2010, pp. 1587-1590.

[4] G. Schroth, A. Al-Nuaimi, R. Huitl, F. Schweiger, and E. Steinbach,
“Rapid image retrieval for mobile location recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on. 1EEE, 2011, pp. 2320-2323.

[5] R. Ji, F. X. Yu, T. Zhang, and S.-F. Chang, “Active query sensing:
Suggesting the best query view for mobile visual search,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMCCAP), vol. 8, no. 3s, p. 40, 2012.

[6] X. Shen, Z. Lin, J. Brandt, and Y. Wu, “Mobile product image search
by automatic query object extraction,” in Computer Vision—-ECCV 2012.
Springer, 2012, pp. 114-127.

[71 C.-C. Wu, Y.-H. Kuo, and W. Hsu, “Large-scale simultaneous
multi-object recognition and localization via bottom up search-based
approach,” in Proceedings of the 20th ACM International Conference on
Multimedia, ser. MM *12. New York, NY, USA: ACM, 2012, pp. 969—
972. [Online]. Available: http://doi.acm.org/10.1145/2393347.2396359

[8] H. Li, Y. Wang, T. Mei, J. Wang, and S. Li, “Interactive multimodal
visual search on mobile device,” Multimedia, IEEE Transactions on,
vol. 15, no. 3, pp. 594-607, 2013.

[9] V. R. Chandrasekhar, D. M. Chen, S. S. Tsai, N.-M. Cheung, H. Chen,
G. Takacs, Y. Reznik, R. Vedantham, R. Grzeszczuk, J. Bach, and
B. Girod, “The stanford mobile visual search data set,” in Proceedings
of the Second Annual ACM Conference on Multimedia Systems, ser.
MMSys ’11. New York, NY, USA: ACM, 2011, pp. 117-122.
[Online]. Available: http://doi.acm.org/10.1145/1943552.1943568

[10] L.-Y. Duan, F. Gao, J. Chen, J. Lin, and T. Huang, “Compact descriptors
for mobile visual search and mpeg cdvs standardization,” in Circuits and
Systems (ISCAS), 2013 IEEE International Symposium on, May 2013,
pp. 885-888.
H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Computer
Vision-ECCV 2008. Springer, 2008, pp. 304-317.
[12] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization: Improving particular object retrieval in large scale image
databases,” in Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on. 1EEE, 2008, pp. 1-8.
O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total
recall: Automatic query expansion with a generative feature model for
object retrieval,” in Computer Vision, 2007. ICCV 2007. IEEE 1l1th
International Conference on. IEEE, 2007, pp. 1-8.
Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, “Lazy snapping,” in ACM
Transactions on Graphics (ToG), vol. 23, no. 3. ACM, 2004, pp. 303—
308.
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“Slic superpixels compared to state-of-the-art superpixel methods,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34,
no. 11, pp. 2274-2282, 2012.
S. A. Chatzichristofis and Y. S. Boutalis, “Cedd: Color and
edge directivity descriptor: A compact descriptor for image
indexing and retrieval,” in Proceedings of the 6th International
Conference on Computer Vision Systems, ser. ICVS’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 312-322. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1788524.1788559
[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 1EEE,
2009, pp. 248-255.

(1]

[13]

[14]

[15]

[16]

