
Torta: Generating Mixed-Media GUI and Command-Line App
Tutorials Using Operating-System-Wide Activity Tracing

Alok Mysore
UC San Diego

La Jolla, CA, USA
amysore@eng.ucsd.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
Tutorials are vital for helping people perform complex
software-based tasks in domains such as programming, data
science, system administration, and computational research.
However, it is tedious to create detailed step-by-step tutorials
for tasks that span multiple interrelated GUI and command-
line applications. To address this challenge, we created Torta,
an end-to-end system that automatically generates step-by-
step GUI and command-line app tutorials by demonstration,
provides an editor to trim, organize, and add validation crite-
ria to these tutorials, and provides a web-based viewer that
can validate step-level progress and automatically run cer-
tain steps. The core technical insight that underpins Torta
is that combining operating-system-wide activity tracing and
screencast recording makes it easier to generate mixed-media
(text+video) tutorials that span multiple GUI and command-
line apps. An exploratory study on 10 computer science
teaching assistants (TAs) found that they all preferred the ex-
perience and results of using Torta to record programming
and sysadmin tutorials relevant to classes they teach rather
than manually writing tutorials. A follow-up study on 6 stu-
dents found that they all preferred following the Torta tutori-
als created by those TAs over the manually-written versions.

Author Keywords
tutorial generation; mixed-media tutorials; software tutorials

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Step-by-step tutorials are vital for helping people such as soft-
ware developers, data scientists, researchers, and system ad-
ministrators perform complex software-based tasks. These
tasks often require delicate coordination across multiple app-
lications and depend on intricate operating-system-wide state.
For example, if a programmer wants to start building a mod-
ern full-stack web app, they may need to first install Node.js

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST 2017, October 22–25, 2017, Quebec City, QC, Canada
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4981-9/17/10...$15.00
https://doi.org/10.1145/3126594.3126628

and the npm package manager, run a slew of npm commands
to configure a custom toolchain with a CSS preprocessor and
a JavaScript code bundler, adjust OS environment variables to
detect all required library dependencies and execution paths,
customize their IDE to hook up to that toolchain, install web
browser extensions for debugging, and set up a pipeline to
deploy code to production servers. Since lots of independent
command-line and GUI apps need to be separately configured
and customized for each user, it is rare to find a “one-click in-
staller” that automates this entire process end-to-end. Thus,
many people often rely on online tutorials to figure out how
to set up and debug all of the requisite steps.

Despite the importance of tutorials, we found through for-
mative interviews that it is difficult to manually create step-
by-step tutorials for complex tasks that span multiple GUI
and command-line applications. One can either create a writ-
ten tutorial by painstakingly enumerating all steps, describing
shell commands, expected outputs, and side-effects, and tak-
ing screenshots to illustrate GUI actions. Or one can demon-
strate all of the steps and record a screencast video, but it is
tedious to later fix bugs in videos. Neither approach is ideal
for creators. Also, neither is ideal for people trying to fol-
low these tutorials: manually-written tutorials may skip over
critical details [20], and videos can be difficult to browse and
navigate [17, 24]. Finally, regardless of format, it is hard for
people to know whether they are following each step of the
tutorial properly since tutorials are simply static content (e.g.,
text or video) that cannot give any personalized feedback.

To overcome these limitations, we introduce a new approach
to making tutorials that: a) automatically records a screencast
video along with OS-level events such as filesystem modi-
fications and process invocations, b) generates mixed-media
tutorials [7] with the benefits of both text and video formats,
and c) gives step-by-step feedback to tutorial followers.

The core technical insight that underpins our approach is that
the operating system already keeps track of vital filesystem
and process-level metadata necessary for segmenting tutorial
steps. Thus, combining operating-system-wide activity trac-
ing and screencast video recording makes it easier to generate
tutorials that span multiple GUI and command-line applica-
tions. Our approach is novel due to its application-agnostic
nature, since prior systems for creating mixed-media tutorials
operate either wholly within a single application (e.g., an im-
age editor [7, 11, 12, 21], IDE [4], or web browser [22]) or on
a small fixed set of applications (e.g., Firefox+GIMP [10]).

Figure 1. Torta allows macOS users to create mixed-media tutorials by demonstration, and then edit, view, and run those tutorials in a web browser.

We instantiated our approach in a prototype called Torta1 for
Apple’s macOS (née “OS X”). Figure 1 shows an overview of
how Torta can be used to both create and consume tutorials:

1. The tutorial creator first demonstrates the intended actions
on their computer by running shell commands, launching
GUI applications, and interacting with application win-
dows. Torta automatically records a screencast video of
their desktop along with a timestamped trace of OS-level
activity that includes filesystem modifications, file ver-
sions, shell commands, window positions, and keystrokes.

From this single demonstration, Torta automatically gen-
erates a mixed-media tutorial [7] that hierarchically seg-
ments the screencast video by foreground GUI windows,
executed commands, and versions of saved files. It displays
each segment as an individual step on a tutorial webpage.

2. However, since this initial demonstration likely contains
redundancies or errors due to the difficulty of recording a
pristine and error-free video demo in one take, Torta pro-
vides a novel user interface for editing tutorials prior to
publishing. The tutorial editor uses data from both the
recorded screencast video and OS-level activity traces to
allow creators to compress and summarize portions of the
tutorial, add textual annotations, insert file path templates
that generalize the tutorial’s contents across machines, and
add checkpoints for viewers to validate their progress.

3. Torta-generated tutorials (“Tortorials”) are ordinary web-
pages that mix text and embedded video, so people can
consume them just like any web-based tutorial. Tortorials
are also hierarchical, so users can zoom in to view more de-
tails on demand. If someone wants interactive feedback as
they are following along, they can optionally install a Torta
viewer app on their computer. Doing so enables them to
use an augmented tutorial viewer that provides checkpoints
to validate their progress at each step. The viewer app can
also automatically run certain steps for the user.

1Transparent Operating-system Recording for Tutorial Acquisition

Torta points toward a future where making complex software
tutorials becomes as simple as interacting normally with the
desired applications and adding some annotations afterward.
It is best-suited for creating tutorials in operating-system-
activity-heavy domains such as software development, data
science, system administration, and computational research.

For tutorial creators, Torta aims to provide the best of both
modalities – the fluid ease of demonstrating a set of computer
actions in-situ, and the detailed rigor of writing text-based
tutorials. For tutorial consumers, Torta allows them to browse
hierarchically at the level of detail suitable for their needs and
to get step-by-step feedback on their incremental progress.

To compare Torta with manually-written tutorials, we ran a
pair of exploratory user studies. In the first study, we had 10
computer science teaching assistants (TAs) create software
setup and programming tutorials relevant to the classes that
they teach by both recording with Torta and by manually writ-
ing them in Google Docs. All 10 preferred using Torta due to
its support for in-situ recording with think-aloud and to its au-
tomatic tracking of commands, file changes, and code-related
diffs. They also all self-reported that their Torta-generated
tutorials were better organized and higher quality. To get stu-
dent feedback on those tutorials, we ran a follow-up study
where we had 6 undergraduate students follow both the Torta
and Google Docs versions of the tutorials created by TAs in
the first study. All 6 preferred Torta’s format and pointed to
advantages such as better context, structure, and information-
density, and the ability to validate step-by-step progress.

The contributions of this paper are:

• A new approach to generating mixed-media tutorials by
combining screencast video recording with application-
agnostic operating-system-wide activity tracing.
• Torta, a prototype system that instantiates this approach for

macOS. Torta consists of an operating-system-wide activ-
ity recorder, a tutorial editor, and a tutorial viewer that can
validate step-by-step progress and even run certain steps.

RELATED WORK
Torta builds upon ideas in three prior lines of work: mixed-
media tutorials, generating tutorials by demonstration, and
operating-system-wide user activity tracing. To our knowl-
edge, Torta is the first attempt to combine these ideas to pro-
duce a system that generates mixed-media tutorials from user
demonstrations augmented with OS-wide activity tracing.

Mixed-Media Tutorials that Combine Text and Video
The design of the Torta tutorial format was directly inspired
by prior work on mixed-media tutorials that combine static
(text+image) and video modalities. These tutorials are for-
matted as a series of steps on a webpage with a mix of textual
exposition and embedded mini-videos at each step. Chi et
al. [7] performed a comparative study of static, video, and
mixed-media tutorials for image manipulation tasks and dis-
covered that users found mixed-media tutorials the easiest
to follow and the least error-prone. From this study they
proposed four design guidelines for mixed-media tutorials,
which Torta follows: 1) scannable steps: Torta segments the
creator’s screencast recording into steps based on active GUI
windows, executed commands, and text file edits, which facil-
itates scanning, 2) small but legible videos: Torta crops each
video segment to include only the active GUI window, which
emphasizes the most relevant portions at each step, 3) visu-
alize mouse movement, and 4) give control to the user: Torta
tutorials are hierarchical, so more advanced users can hide
specific steps while novices can expand to see more details.

Inspired by this format, the Video Digests [24] and
VideoDoc [17] systems semi-automatically generate mixed-
media tutorials from existing videos that contain time-aligned
transcripts. Although these were both designed for reformat-
ting lecture and talk videos, they could in principle be repur-
posed for software tutorial videos as well. In contrast to these
projects, which aim to reformat existing video tutorials, Torta
allows users to make mixed-media tutorials from scratch by
recording a demonstration of their actions. Since Torta traces
OS-level metadata during the user demonstration, it can auto-
matically provide more specific details about software tutorial
steps than text transcripts or crowd workers’ annotations can.

Generating Tutorials by User Demonstration
Torta’s approach of generating tutorials via user demonstra-
tion of actions was inspired by prior systems that operated in
a similar way within specific software applications.

Image editing applications have been the most popular
substrates for such demonstration-based tutorial generators.
Grabler et al. built a system that lets users generate photo
editing tutorials by augmenting the GIMP image editor to
record application and UI state [11]. Chronicle [12] similarly
traces a detailed workflow history within Paint.NET, another
image editing application, to facilitate tutorial creation and re-
play. This was later turned into the Autodesk Screencast [1]
product, which records videos, metadata across supported
Autodesk applications, app switching and mouse/keyboard
events, and provides a tutorial editor similar to Torta’s. Lafre-
niere et al. [21] generated tutorials by instrumenting Pixlr,
an online image editing app, to collect usage logs alongside

a screencast video. MixT [7] creates mixed-media tutorials
by capturing screencast videos alongside recorded applica-
tion state and command logs within Adobe Photoshop.

Other tools in this space also operate within specific apps or
preset collections of apps. For instance, ActionShot [22] aug-
ments a web browser to record a rich history consisting of in-
browser actions and form entries, which can be used to make
tutorials for complex web-based tasks. DocWizards [4] in-
struments the Eclipse IDE to let people generate tutorials for
software development within that IDE. InterTwine [10] tracks
user actions in both the Firefox browser and the GIMP image
editor to create tutorials that span those two applications.

Torta differentiates itself by working across arbitrary sets of
macOS applications, whereas these prior tutorial generators
operate either wholly within a single application or on a small
fixed set of apps. Torta’s design trades granularity for gener-
ality – since it aims to be generally applicable across all kinds
of command-line and GUI apps, it cannot do fine-grained
tracing within specific apps like these related projects can do.

Operating-System-Wide Activity Tracing
Torta’s approach of tracing activity at the operating-system
level (rather than within specific applications) was inspired
by related work in OS-level tracing for user-facing tasks.

The most basic form of OS-level tracing consists of recording
low-level mouse, keyboard, and multitouch events. Nguyen
et al. [23] record mouse click and drag events alongside a
screencast video to make it possible for viewers to browse
through the video by clicking on constituent pixels. Demo-
Wiz [8] captures mouse and keyboard events to augment
videos with a visual overlay that aids people in giving live
presentations. EverTutor [26] tracks multitouch events on
Android smartphones to help users create step-by-step app
tutorials. Graphstract [15] tracks mouse and keyboard events
and takes mini-screenshots of the areas around those events to
generate minimalistic static tutorials. While these systems are
lightweight and work across arbitrary desktop applications,
they do not trace higher-level events (e.g., GUI window state,
executed commands, filesystem modifications) necessary for
making the kinds of mixed-media tutorials that Torta makes.

In terms of higher-level OS activity tracing, KarDo [18]
records GUI traces using the Windows Accessibility API and
algorithmically generalizes those traces so that they can be
replayed on other machines to replicate user actions and re-
produce GUI bugs. DejaView [19] augments GUI activity
tracing with fine-grained checkpointing of filesystem and OS
environment state so that a user can browse and “time travel”
back to earlier system states. Burrito [14] traces GUI activ-
ity, shell commands, and filesystem modifications in a similar
way as Torta, but it was designed to help computational sci-
entists manage their own workflows, not to create tutorials.
Thus, Burrito does not include a screencast recorder, video
segmenter, tutorial editor, or tutorial viewer/player. In sum,
while these tools employ similar OS-level tracing techniques
as Torta, they are meant for tasks such as automation, OS state
replication, and scientific workflow management, and thus
lack design affordances for automatic tutorial generation.

FORMATIVE INTERVIEWS AND DESIGN GOALS
To discover the challenges faced by people who manually
create mixed-media software tutorials, we interviewed four
teaching assistants responsible for creating web programming
tutorials for an introductory HCI course [16].

In this course, students build full-stack web applications with
a mix of tools such as Git for version control, Node.js for
server-side development, Handlebars for templating, Boot-
strap for responsive CSS, and Heroku for live deployment to
the web. Students come into the course from a diverse variety
of majors and widely varying levels of prior programming ex-
perience, so the staff teaches weekly programming tutorials to
get everyone acquainted with the mechanics of web develop-
ment (e.g., setup, coding, testing, online deployment). Since
these tutorials must coordinate across multiple command-line
and GUI applications, they are representative of the sorts of
tutorials that we would like Torta to automatically generate.

Each lesson is a webpage containing a mixed-media tuto-
rial interspersing PowerPoint slides, video clips, and com-
mand/code snippets. Everything is created manually: The
staff first makes a PowerPoint deck (usually around 100
slides) containing step-by-step instructions, commands to
run, code to write/modify, and screenshots showing expected
visual outputs. They export the slides as images to embed
within a webpage and then supplement it with screencast
videos and commands/code that students should copy-and-
paste into their terminals. From our interviews with teaching
assistants, we found three main bottlenecks in creating these
tutorials and deploying them during in-class lab sessions:

PowerPoint slides versus screencast videos: Students greatly
preferred reading the PowerPoint slides since those were eas-
ily skimmable, but the staff found them far more tedious to
create since they needed to first demonstrate their actions and
then manually copy-and-paste all commands, code, expected
outputs, and screenshots into the slides. Also, sometimes
the slides did not go into enough detail or skipped steps due
to staff oversight or simply lack of prep time. In contrast,
screencast videos were much easier for staff to record and
contain all necessary details, but were harder for students to
browse. The staff struck a compromise by placing slides and
videos side by side on the webpage, using videos to showcase
dynamic events such as GUI interactions and web animations.

Slides, videos, and code are disconnected: Besides slides and
videos, the staff also embedded snippets of code and com-
mands into tutorial webpages. They did this because students
found it hard to copy-and-paste directly from PowerPoint
slides due to syntax-breaking formatting issues (e.g., bad line
breaks, smart quotes, special characters, incomplete code due
to lack of space on slides), and it is impossible to copy from
videos. Additionally, the staff maintained a GitHub reposi-
tory of skeleton starter code and helper scripts for students
to build upon when following these tutorials. This hetero-
geneous setup meant that when the staff created or updated
each tutorial, they had to manually keep four disparate data
sources all updated and in sync: PowerPoint slides, videos,
command/code snippets, and the GitHub repository of skele-
ton code; these disconnects led to numerous bugs in tutorials.

Hard for students to validate progress: When working
through tutorials in class, students were anxious about
whether they were following certain steps properly since the
PowerPoint slides did not always specify the expected effects
of each step, and videos were not available for all steps. Many
effects were not immediately visible on-screen, such as the
results of running a Heroku configuration command. Even
worse, when a student does not follow a step properly, every-
thing may still appear to work, but subtle errors silently prop-
agate and manifest in later steps with unrelated error mes-
sages. These problems arise because students cannot easily
check their progress. The staff ended up dealing with this by
writing validation scripts for each tutorial. When a student
runs a validation script, it checks that their filesystem state,
environment variables, and current directory are what the tu-
torial expects; otherwise it prints a targeted error message.

These bottlenecks inspired a set of design goals for Torta:

• D1: Creating a tutorial should be as easy as recording a
screencast video, but tutorials should offer advantages of
text-based formats like easy skimming and copy-paste.
• D2: A tutorial should automatically encapsulate videos,

textual exposition, code examples, and terminal commands
together into one package instead of in disconnected silos.
• D3: Users should be able to view the tutorial at varying

levels of detail to accommodate their own expertise level.
• D4: Users should be able to incrementally validate their

progress as they follow each step of the tutorial.

THE DESIGN AND IMPLEMENTATION OF TORTA
Torta consists of three components: a tutorial recorder, editor,
and viewer (Figure 1). We now describe each in turn.

Tutorial Recorder
Torta’s recorder allows the user to record a tutorial just as
easily as recording a screencast video (Design Goal D1).
Our prototype is implemented for macOS using AppleScript,
Python, Bash, and DTrace [6] scripts to perform OS-level ac-
tivity tracing. It should be straightforward to port this OS-
wide tracing-based approach to other operating systems.

When the user wants to start recording a tutorial, they activate
Torta by running a terminal command, which immediately
launches a set of activity tracers. The user then records their
tutorial by simply demonstrating actions on their computer,
and the tracers log the following data in the background:

• Screencast video recorder: Torta uses Apple’s built-in
Quicktime app to record a standard full-screen screencast
video with audio narration and mouse clicks visualized.
• Foreground GUI window monitor: The position and di-

mensions of the user’s current foreground GUI window are
logged once per second, along with the process ID of the
program that owns the current foreground window.
• Keystroke logger: All user keystrokes are logged.
• Shell command logger: The contents of all terminal

commands run in any shell are logged and timestamped.
The current working directory, username, and environment

variables used for running each command are also logged.
Our current logger works for Bash (the default on macOS)
and Zsh, but can be easily extended to other custom shells.

• Filesystem activity tracer: Torta uses DTrace [6] to
record a subset of system calls that access the filesystem.
Specifically, it logs the timestamps, owner process IDs,
and parameters of the following filesystem-related system
calls: open(), write(), close(), rename(), and unlink()

(for opening, writing to, closing, renaming, and deleting
files, respectively). Torta makes a timestamped backup
copy of each affected file after the respective system call
is run. This feature is useful for saving all versions of files
that users edit within interactive applications such as text
editors, IDEs, or Photoshop: Each time the user presses
“Save” within the app, a write() system call occurs, and
Torta saves a backup copy, which lets it later display diffs.

• OS process tree logger: Torta logs the command names,
start/end timestamps, process IDs (PIDs), and parent pro-
cess IDs (PPIDs) of all OS processes launched after
the user activates Torta. This log serves two purposes:
First, it filters the system call trace (see above) to con-
sider only processes that launched after the user activated
Torta, which eliminates the noise from dozens of irrelevant
system-wide processes previously running on the user’s
machine. Second, it is necessary for linking the system call
trace to foreground GUI windows. Here is why: Many in-
teractive apps adopt a multi-process model for robustness.
For instance, Google Chrome launches one OS process per
browser tab, and text editors such as Sublime Text launch
one OS process per text editor tab along with a separate
process for the GUI. Thus, the process that owns the Sub-
lime Text foreground GUI window is not the process that
makes the write() system calls to save the user’s files.
Torta can use the OS process tree of PIDs and PPIDs to
link Sublime Text’s user-initiated file save events with its
GUI window, since they are owned by sibling processes.

After the user finishes recording their demonstration and
shuts down Torta, it automatically creates a mixed-media tuto-
rial by post-processing and combining the recorded data into
self-contained package that contains all traces, segmented
videos, and saved file versions (Design Goal D2). As shown
in Figure 2, a Torta-generated tutorial has a hierarchical struc-
ture that aims to follow the design guidelines of Chi et al. [7]:

Top-level steps – foreground GUI windows: A Torta tu-
torial is an ordered list of top-level steps. Each step spans
the duration of one foreground GUI window. Torta uses
FFmpeg [3] to split the screencast video into one mini-video
per foreground window duration and crops those videos to
show only the foreground window. We felt that foreground
windows were the most natural step boundaries for these
kinds of software tutorials, since users often perform a set
of actions within one window (e.g., an IDE) and then switch
to another window (e.g., Photoshop) to perform the next set.

Each step is rendered as a mini-video along with a filesystem
tree showing which files were added, deleted, renamed, and
modified by processes associated with the foreground GUI
window during that step (Figure 4). We chose to visualize

Figure 2. Example structure of a mixed-media tutorial generated by
Torta. Each of the three steps represents a foreground GUI window du-
ration. There are three sub-steps within the terminal and IDE windows.

filesystem changes since those represent the persistent effects
of user actions within an application. Regardless of what kind
of app the user is running, if some action has a lasting effect
on their computer, it will likely manifest in the filesystem.

Sub-steps: Torta further splits each top-level step into sub-
steps based on two common kinds of user actions (Figure 2):

• Shell commands: If the user runs multiple shell commands
within the duration of one foreground window (usually
some kind of terminal app), Torta splits that step into one
sub-step for each command. Each sub-step is shown as a
mini-video spanning the duration of only that command,
the text of that command, its current working directory, en-
vironment variables, and a filesystem tree showing what
files that command added, deleted, renamed, and modified.
• File saves: When the foreground window is an interactive

app such as an IDE, web browser, or image editor, the user
may be editing files and periodically saving their progress
to disk. Torta splits each step into sub-steps based on file
save events, treating saves like user-defined checkpoints in
the tutorial. Again, each sub-step gets its own mini-video.
If the saved file is plain text, Torta also shows the diffs
between the current and previously-saved versions, which
is useful for showing edits in code and configuration files.

Tutorial Editor
The mixed-media tutorial that Torta automatically generates
from the user’s demonstration is already complete and ready
to view on the web. One can think of it as a screencast
video that is segmented and enhanced with OS-level trace

Figure 3. Zoomed-in screenshots of Torta’s tutorial editor showing three steps (i.e., foreground windows): iTerm2, Google Chrome, and Sublime Text.
Each step contains: a.) Video player with playback speed adjuster, b.) Text annotation box, c.) Toggle to show/collapse/hide this entire step, d.) Toggle
to show/collapse/hide each sub-step (here the hidden shell command sub-steps are crossed-out), e.) Validation script, f.) Filesystem tree (see Figure 4).

data. However, it can be hard for users to record a pristine,
error-free video in one take. Furthermore, users also want
to augment tutorials with textual annotations and other cus-
tomizations. To fulfill these needs, Torta provides a tutorial
editor, which renders the tutorial just as the viewer would see
it but adds extra controls for the following actions (Figure 3):

Adding text annotations to steps/sub-steps: The user
should already provide audio narration when recording their
demonstration, which will show up in the screencast video.
The editor also lets them add Markdown-based rich-text an-
notations next to the segmented video for each step/sub-step.

Hiding steps/sub-steps: The user can hide any step/sub-step
from the viewer to eliminate mistakes or redundancies (effec-
tively deleting them from the edited tutorial). If the user hides
a step that is in between two steps that belong to the same ap-
plication, then those two surrounding steps get merged into
one. This happens when, say, the user is in an IDE, then
switches to a web browser to look up something quickly, then
switches back to the IDE. If the user hides the web browser
step because they deem it irrelevant for the tutorial, then the
two IDE steps get merged together as one step in the viewer.
Torta does not support post-hoc re-recording of steps in the
editor. A workaround is to record an entire session even with
errors included and then hide erroneous steps using the editor.

Collapsing steps/sub-steps: If the user deems certain steps
or sub-steps to be less important for the tutorial, they can
show them in a collapsed form. The viewer will see those

steps as a collapsed summary but can manually un-collapse
them to dive into details. Torta displays compact summaries
so that viewers can more easily skim step contents (e.g.,
“Photoshop window active for 2 minutes, modified 3 files”).

Torta implements heuristics to automatically collapse certain
steps/sub-steps that are likely to be less important to the tu-
torial. For instance, if a shell command does not make any
changes to the filesystem (e.g., ls or git status), it is col-
lapsed by default since the user was probably checking their
setup before proceeding to the next step. Also, if any GUI
window was in the foreground for less than 5 seconds, had
less than 10 user keystrokes, and did not modify the filesys-
tem, then its step is also collapsed by default. This filters out
“flickers” where the user switches between windows momen-
tarily to quickly check something before the next step.

Collapsing filesystem tree components: Recall that Torta
displays a filesystem tree within each step and sub-step that
modifies the filesystem (Figure 4). However, during pilot test-
ing we noticed that some commands (e.g., git clone) can af-
fect hundreds of files, so their trees are extremely large. To re-
duce visual overload, the user can collapse tree nodes to hide
and summarize their sub-trees. For instance, the user can col-
lapse a .git/ sub-directory to see a summary like “100 files
added and 15 files modified in .git/.” Just as with collapsed
steps, the viewer can un-collapse tree nodes to see more de-
tails on demand. The user can also choose “Hide Globally”
to hide a particular file/directory across all tutorial steps.

Figure 4. Each file-modifying tutorial step displays a filesystem tree of
all files affected by running that step. In the editor UI, the user can
right-click to show/hide files and to mark for validation.

Adding validation: The editor provides two ways to specify
how people (i.e., tutorial consumers) can validate progress at
each step as they are following the tutorial (Design Goal D4):

1. Marking files to validate: The user can mark each file in
the filesystem tree of a step/sub-step as “Validate”, “Validate
Exact,” or “Don’t Validate” (Figure 4). If the user marks a di-
rectory, everything within it also gets marked with that label.
“Validate” means that Torta should check that the consumer’s
file gets altered in the way that this step specifies (e.g., mod-
ified or renamed), and “Validate Exact” means that the new
contents of the file should also exactly match the saved ver-
sion bundled in the tutorial package. For example, in a step
where the consumer is supposed to add their username to a
section within a configuration file, that file should be marked
as “Validate” to check that it has been modified, but not “Val-
idate Exact” since everyone’s username will be different.

2. Writing validation scripts: File-based validation handles
the most common uses, but if tutorial creators want more flex-
ibility, they can write a validation script for each step/sub-step
(Figure 3e). This is a Bash script that will run on the con-
sumer’s machine to check that their OS state is as expected.

This feature is similar in spirit to the step-level validation fea-
tures offered by tutorial systems for other domains [9, 25].

After the user finishes editing the tutorial, they can publish it
as a webpage or send the self-contained package to viewers.

Tutorial Viewer
Since Torta tutorials are ordinary webpages, they can be
viewed in any browser. Each tutorial initially loads with
certain steps/sub-steps collapsed, certain file tree nodes col-
lapsed, and each video playing at the speed pre-set by the
creator. However, the user can adjust any of those settings.
In addition, they can click on any file in the tutorial and
view/download the version of that file present during that re-
spective step (all versions are stored in the package). This
ability to selectively hide and show details was inspired by a
challenge discovered during formative interviews: Students
preferred seeing varying levels of detail depending on their
expertise level (Design Goal D3). It is hard to achieve this
flexibility with raw screencast videos or PowerPoint slides.

Figure 5. Each step and sub-step contains “Validate” and “Run” buttons
on the upper right. Here when the user clicks on “Run” for a shell com-
mand sub-step, Torta runs that commands in a new terminal window.

To make tutorials more readable, Torta canonicalizes all file
paths within command invocations and filesystem trees. For
instance, when Alice creates a tutorial, many of her file paths
will contain /home/alice if they are within her home direc-
tory. But when Bob is viewing the tutorial, he would prefer
to see paths starting with /home/bob instead of /home/alice.
Torta canonicalizes paths by replacing the creator’s home di-
rectory with the $HOME variable. Additionally, the creator
can use the tutorial editor to specify other path variables to
replace. One use case is specifying a $PROJECT ROOT di-
rectory where all files within a project should live. The tuto-
rial viewer prompts the user to enter their own preferred val-
ues for all of these variables and rewrites all paths within the
webpage accordingly. Note that $HOME and other environ-
ment variables are automatically set if the tutorial is loaded
from the user’s machine rather than viewed on the web.

If the user downloads the tutorial to their macOS machine and
loads it via the Torta viewer web app on localhost, then they
can access two additional features as shown in Figure 5:

1. Validating step-by-step progress: After manually perform-
ing the actions specified by a particular step/sub-step, the user
can click the “validate” button alongside its video. Torta will
check that the affected files on the user’s local filesystem have
been modified in the ways that the creator originally expected
(i.e., specified via “validate” and “validate exact” labels in the
filesystem tree) and also run the validation script if it exists.
Then it prompts the user if there are errors and offers to over-
write any mismatched files with the versions from the tutorial
package if the user wishes. This capability lets the user check
that they are properly following along with each step of the
tutorial and to catch bugs earlier (Design Goal D4).

2. Automatically running steps: The user can click the “run”
button next to each step/sub-step to have Torta automatically
run that step for them. For a shell command, Torta launches
a terminal app on the user’s machine and runs the command
from that terminal after setting the proper working directory
and environment variables. For a step involving a GUI ap-
plication, Torta does not try to replay GUI actions but rather
simply mutates the user’s filesystem in the way that has been
prescribed by that step. Although this approach is not always
guaranteed to be fully faithful to that step’s actions, in prac-
tice it works well in some cases since the persistent effects
of a GUI application usually manifest in the filesystem. For
instance, if someone demonstrates how to use a GUI to cus-
tomize the configuration of a complex interactive application,
the effects of that customization may show up as changes to
some config file. When the user hits “run” on that step, Torta
simply copies over the updated version of that config file.

First Tutorial Topic GUI Apps Command-line
Apps

Torta Time
(recorder+editor)

Torta Steps
(before edits)

GDocs
Time

GDocs
Steps

S1 GDoc HTML and CSS web design Finder, Sublime Text,
iTerm2, Google Chrome

node, touch 14m (8+6) 8 (11) 30m 7

S2 GDoc Node.js server setup and API
endpoint creation

Finder, Sublime, iTerm2,
Chrome, Postman

npm, express,
node, touch

15m (7+8) 12 (14) 24m †

S3 GDoc JavaScript frontend web dev Finder, Sublime,
iTerm2,Chrome

python 17m (12+5) 12 (16) 32m 8

S4 GDoc Data science: neural nets w/
Keras and TensorFlow

Finder, Sublime, iTerm2 python, pip 19m (11+8) 3 (8) 38m 3

S5 GDoc Data science: linear
regression w/ scikit-learn

Finder, Sublime, iTerm2,
Chrome

python, pip,
brew

15m (12+3) 5 (8) 43m 5

S6 Torta Go language toolchain install
and setup

Finder, Sublime, iTerm2 gcc, make, cat,
golang, brew

31m (21+10) 13 (18) 32m 10

S7 Torta Java singly-linked list Finder, Netbeans, iTerm2 javac, java 25m (15+10) 6 (7) 28m 5
S8 Torta C doubly-linked list Finder, iTerm2, Chrome gcc, vim 27m (22+5) 6 (10) 24m 4
S9 Torta Python list comprehensions Finder, PyCharm, iTerm2 python 16m (10+6) 4 (7) 23m 5
S10 Torta C binary search tree Finder, iTerm2, Chrome gcc, vim 29m (21+8) 10 (15) 30m 10
Table 1. Tutorial creator study results, showing subject IDs, which tool they used first, summary of their tutorial, time in each tool, and the numbers of
steps in Torta and GDoc tutorials († did not explicitly denote steps in GDocs). All times reported in minutes, with Torta split into recorder+editor times.

EXPLORATORY USER STUDIES
As a first pass at illustrating Torta’s capabilities, we compared
users’ experiences of both creating and consuming Torta tuto-
rials to doing so with manually-written tutorials. We chose to
initially compare Torta to manually-written text+screenshot
tutorials since those are now ubiquitous on the web in the
form of technical blog posts, documentation websites, Power-
Point presentations, course lecture notes, Q&A and forum
posts, and (electronic+paper) books. Note that although we
compared with written tutorials for this exploratory study, a
more rigorous controlled study would have also compared
Torta to recording and editing screencast videos, since that
is a closely-related and also-ubiquitous format for tutorials.

To cover the two target audiences for Torta, we ran two ex-
ploratory user studies: 1) A study on tutorial creators, which
tests Torta’s recorder and editor components, and 2) a study
on tutorial consumers, which tests Torta’s viewer app.

Tutorial Creator User Study
First we compared the user experience of creating a tutorial
with Torta versus manually writing a tutorial in Google Docs.
We chose Google Docs since it is a convenient way for some-
one to quickly create a written tutorial; it supports rich text
formatting, copy-and-paste of screenshot images, and does
not require specialized knowledge of HTML or other markup
languages. (Microsoft Word would have worked just as well.)

Procedure: We recruited 10 graduate students who have
served as teaching assistants (TAs) for computer science
courses to each perform a 1.5-hour lab study using both Torta
and Google Docs on a 21.5” iMac. We told each subject to
create a multi-application software tutorial for a relevant topic
from a class that they have TA’ed. To counterbalance tool or-
der, we had five subjects first spend up to 40 minutes creating
their tutorial in Google Docs, then try to re-create that same
tutorial in Torta. We had the other five subjects use Torta first,
and then re-create the same tutorial in Google Docs.

Right before each subject used Google Docs, we encouraged
them to design a well-structured step-by-step tutorial with a
mix of text, screenshots, and formatted code/command snip-
pets in monospaced font to emulate a technical blog. Right

before each subject used Torta, we gave them a five-minute
tutorial (a “Tortorial”) on Torta’s recorder and editor UIs.

We spent the final 10–20 minutes of each session conducting
a semi-structured interview where we had the subject com-
pare their experiences using Torta and Google Docs then self-
assess the quality of the tutorials they created in both tools.

Results: Table 1 summarizes the generated tutorials. All in-
volved multiple GUI and command-line apps such as IDEs,
compilers, build tools, package managers, and webservers.
All subjects used the Torta editor to eliminate a few steps that
arose from errors in their recording (the “before edits” entries
in Table 1). They also collapsed “boring-looking” steps such
as restarting the Node.js server repeatedly. However, they did
not write many textual annotations due to lack of time and
because they had already recorded voice narration in videos.

During the post-study interviews, all 10 subjects self-reported
that they preferred using Torta over Google Docs (GDocs).
They also all self-reported that they felt their Torta-generated
tutorials were better organized and higher quality. Multiple
subjects mentioned the following points of contrast:

• Torta eliminates context switching: When using GDocs,
subjects often had to perform a step, pause, switch to write
their instructions and paste screenshots in the doc, then
switch back and forth; they felt this process was inefficient.
In contrast, Torta recorded seamlessly without interruption.
• No need to manually write/paste commands, code diffs,

and file changes in Torta: In GDocs, users had to manually
write (or copy-and-paste) the commands, code changes,
and file changes for each step, whereas Torta automatically
captures all of those details. Torta users also liked how
each change was also captured in a short video snippet.
• Taking/organizing screenshots is cumbersome in GDocs:

All 10 subjects took screenshots of their computer activity
when creating their GDocs tutorial. They found it awk-
ward to manage a stockpile of similarly-named screenshot
image files on their desktop. And they had to often browse
through a pile of files, crop them properly, and copy them
into the doc. With Torta, they could demonstrate their ac-
tions and have the screencast video recorded automatically.

• Demonstrating GUI actions was much easier on video:
Subjects who heavily used GUI tools such as the Post-
man [2] API tester app (S2) found it much easier to demon-
strate how to use the tool in a video rather than taking static
screenshots and writing about user flow on GDocs.
• Think-aloud in Torta felt more natural than writing text in

GDocs: All subjects preferred to vocalize their thought
process as they demonstrated actions within Torta. They
could use more casual, extemporaneous language rather
than feeling obligated to write more formally in a GDoc.
• Torta allows highlighting code and commands to verbally

explain them: Several subjects found it intuitive to high-
light parts of code and commands while verbally explain-
ing them in Torta. To do the same thing in GDocs, they
needed to paste a snippet into the doc and then describe it.

Note that all these limitations of written tutorials are not spe-
cific to Google Docs; related tools likely face similar issues.

Although we did not directly compare Torta to screencast
videos for this study, several creators mentioned the similar-
ities between Torta and screencast recording. For instance,
S5 said, “This [Torta] isn’t any different from recording a
screencast and I can also do editing, annotation and vali-
dation.” And S2 mentioned, “I think I would use this over
recording a screencast despite the additional processing time
since the editor allows easier basic editing, like dropping
steps, which is easier than using a full video editor.”

Subjects also conveyed perceived shortcomings of Torta’s
creation workflow: It took some a while to get used to Torta
segmenting videos based on OS events such as GUI window
switches, so they had to learn to finish a full sentence of nar-
ration before switching in order to avoid awkward audio cuts.
They wanted to have more diverse format choices than the
step-by-step GUI-window-delimited structure that Torta im-
poses. They also felt written tutorials were more flexible and
less constraining, though they take much more work to make.

Finally, Table 1 shows that 9 out of 10 subjects created tuto-
rials faster using Torta than Google Docs. For the five who
used Torta first, they took around 1.1 times longer to create
the GDocs version (the harmonic mean of their time differ-
ences); for the five who used GDocs first, they took an av-
erage of 2 times longer in GDocs. This speed difference is
likely due to them needing to spend time planning out their tu-
torial’s structure during their first attempt, regardless of tool.
This phenomenon likely resulted in a significant learning ef-
fect since by the time they tried the second condition, they al-
ready knew exactly what tutorial they wanted to create. How-
ever, even when using Torta first, subjects still found it to be
slightly faster. But we do not want to overemphasize these
timing numbers because the primary design goal of Torta was
not to optimize for tutorial creation speed.

Tutorial Consumer Pilot Study
Although in the prior study we had creators self-assess the
quality of their own Torta and GDocs tutorials, we also
wanted to get an assessment from the actual target audience:
students. Thus, we ran a follow-up pilot study where students
followed the tutorials created by the TAs in the prior study

and compared their perceptions of Torta vs. GDocs from their
perspectives as tutorial consumers.

Procedure: We recruited 6 undergraduate computer science
students each for a one-hour lab study. We had 3 subjects
try to follow a Torta-generated tutorial; then we showed them
the Google Docs version of the same tutorial and had them
compare and contrast the two formats. We had the other 3
subjects try to follow a Google Docs tutorial, and then had
them compare it to its Torta counterpart. We did not have each
subject try to follow both tutorials since they would already
know how to perform the task after following the first one.

For this study, we picked the Node.js web programming tuto-
rial created by S2 since it was the most complex one. How-
ever, two subjects did not have enough technical background
to understand it, so instead we gave them the singly-linked
list tutorial created by S7 (one used Torta, one used GDocs).

Results: All 6 subjects successfully completed the tutorial
tasks in their given format. Both sets of 3 subjects (i.e., those
who tried to follow the Torta tutorial then saw the Google
Docs version, and vice versa) preferred consuming Torta tu-
torials over Google Docs for a variety of reasons, including:

• Torta tutorials were better-structured: Once subjects got
used to Torta’s structure, they appreciated its predictability
and could skip over parts that did not interest them. In
contrast, GDocs does not impose any structure, so tutorials
created within it felt more uneven in pace. Subjects also
commented that the consistency in Torta’s format would be
good for a series of related tutorials across an entire course.

• Torta tutorials more information-dense: Most subjects
commented that Torta tutorials were more information-
dense than GDocs since they were narrated by voice and in-
cluded automatically-traced filesystem and command info.
The GDocs versions could not include many details due to
lack of time for creators to write out everything explicitly.

• GUI apps better explained with mini-videos: All subjects
felt that video was a much better way to demonstrate GUI
applications such as Postman rather than seeing a series of
screenshots in GDocs. They also appreciated each video
being short and focused on only one window.

• Torta provides context behind file diffs: When using GDocs
to create tutorials involving code, most creators ended up
simply pasting the new bits of code written in each step
into the doc without adequate surrounding context. Thus,
subjects were confused about where those pieces of code
were supposed to be placed. In contrast, Torta automati-
cally generates file diffs and shows the original file contents
along with mini-videos to give students the proper context.

• Torta’s Validate and Run buttons were popular: All Torta-
using subjects tried the Validate and Run buttons and com-
mented that they seemed very useful. They liked using Val-
idate to avoid minor errors compounding in later steps.

However, one student (who had the most web dev experience)
preferred skimming a well-written GDocs tutorial rather than

having to play the Torta mini-videos and listen to audio nar-
ration at each step. Torta also lets creators write HTML an-
notations for each step, but due to our user study’s short time
limit, creators did not write much text in their Torta tutorials.

Finally, although we did not directly compare Torta to raw
screencast videos for this study, several subjects implicitly
compared Torta with their prior experiences of watching
screencasts. For instance, S11 said, “A lot of times when I’m
watching coding videos on YouTube, I wish I would have had
a way to copy code and commands. This [Torta] makes that
way easier.” S13 said: “I think cropping videos to the front-
most window is great since it narrows focus to just that win-
dow. Many screencasts I watch record the entire screen.” S13
also mentioned: “I liked Torta breaking the video into steps.
On YouTube, video descriptions sometimes have links to dif-
ferent parts of the video but using this [Torta] is much easier
because I see the parts of the video already split up.”

DISCUSSION OF DESIGN SPACE AND LIMITATIONS
Torta carves out a new point in the design space of tools for
generating step-by-step records of app actions (Figure 6). In
contrast to prior systems that operate within a single applica-
tion, Torta is designed to be as application-agnostic as possi-
ble so that it can work across arbitrary desktop applications.
This design decision means giving up granularity for gen-
erality: Torta cannot perform fine-grained domain-specific
tracking within any particular application, but rather operates
at the level of GUI windows, shell commands, system calls,
and filesystem mutations. One future way to bridge this gap is
to implement a plug-in system similar to Burrito’s [14] where
users write application-specific tracers to hook into Torta.

On the spectrum of manual to automated running of steps,
Torta lies mostly at the manual end. Its primary goal is to gen-
erate mixed-media tutorials for people to consume by manu-
ally following the steps and customizing based on their needs.
In contrast, fully-automated scripting engines serve a differ-
ent purpose than tutorials: Their goal is to automate a set of
repetitive actions, not to show people how to manually per-
form those actions with accompanying pedagogical context.
In sum, Torta’s output should primarily be thought of as a
rich form of documentation to help people figure out how to
perform tasks for themselves, not as a fully-automated script.

Torta is situated at a point in the design space that makes
it well-suited for a range of filesystem-modifying and
command-line-heavy software tasks. Even though our origi-
nal motivation was full-stack web development, Torta is also
useful for other complex software development tasks involv-
ing more than simply an IDE. For instance, game program-
ming tutorials use an IDE, a 3D level editor, various multime-
dia editors for assets, and project management tools all tied
together by command-line scripts. Low-level systems pro-
gramming tutorials involve a mix of command-line and GUI
tools for introspection, debugging, and performance profil-
ing. Sysadmin (system administration) and DevOps tutorials
touch many corners of the operating system at once. Data sci-
ence tutorials combine multiple programming languages with
GUI-based data acquisition/wrangling tools. Finally, scien-
tific researchers hack up ad-hoc workflows that span multiple

Figure 6. The design space of tools for generating step-by-step records of
application actions, ranging from those that automatic run (i.e., scripts)
to those meant for users to manually follow their steps (i.e., tutorials).

scripting languages, scientific libraries, and legacy research
tools [13], so they can use Torta to generate documentation
that can help colleagues reproduce and build upon their com-
putational experiments. However, Torta is less well-suited for
information-foraging-heavy computing tasks such as schol-
arly research and CSCW-types of communication workflows,
since those involve fewer filesystem modifications and shell
commands. For those kinds of tasks, Torta simply acts like a
screencast recorder with window-based segmentation.

One of Torta’s current limitations is that it supports record-
ing and editing only one user demonstration at a time. A fu-
ture version of the editor could support intelligent merging of
multiple demonstrations based on OS activity traces. Another
limitation is that Torta does not try to generalize the tutorial’s
contents: All recorded steps are specific to the creator’s sin-
gle demonstration. Thus, it is up to the creator to manually
describe how each step could potentially be generalized or
customized by consumers. Again, a more intelligent editor
could take multiple demonstrations and semi-automatically
infer possible generalizations to make tutorials more robust.

Finally, even though automatically running certain steps can
be convenient, we have purposely not designed the Torta
viewer as an fully-automated tutorial runner. Differences be-
tween users’ OS setups and properties of specific applications
make it impossible to automatically run all steps with full ac-
curacy. Thus, we still intend for users to manually follow tu-
torial steps and only use automatic running as a supplement.

CONCLUSION
We presented Torta, an end-to-end system for recording, edit-
ing, and consuming mixed-media tutorials that span multiple
GUI and command-line applications. The core technical in-
sight that underpins Torta is that the operating system already
keeps track of vital filesystem and process-level metadata
necessary for segmenting tutorial steps. Thus, combining
operating-system-wide activity tracing with screencast video
recording makes it possible to quickly create complex GUI
and command-line app tutorials by demonstration. Torta’s
application-agnostic design makes it well-suited for creating
tutorials in domains such as software development, data sci-
ence, system administration, and computational research. We
hope that it will inspire the design of future tutorial systems
that bridge the gap between video- and text-based formats.

ACKNOWLEDGMENTS
Thanks to the UCSD Design Lab for feedback on early drafts
and to the anonymous reviewers for their insightful feedback.

REFERENCES
1. 2017. Autodesk Screencast: A simple way to share what

you know. https:
//knowledge.autodesk.com/community/screencast.
(2017).

2. 2017. Developing APIs is hard. Postman makes it easy.
https://www.getpostman.com/. (2017).

3. 2017. FFmpeg: A complete, cross-platform solution to
record, convert and stream audio and video.
https://ffmpeg.org/. (2017).

4. Lawrence Bergman, Vittorio Castelli, Tessa Lau, and
Daniel Oblinger. 2005. DocWizards: A System for
Authoring Follow-me Documentation Wizards. In
Proceedings of the 18th Annual ACM Symposium on
User Interface Software and Technology (UIST ’05).
ACM, New York, NY, USA, 191–200. DOI:
http://dx.doi.org/10.1145/1095034.1095067

5. Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C. Miller. 2005. Automation and
Customization of Rendered Web Pages. In Proceedings
of the 18th Annual ACM Symposium on User Interface
Software and Technology (UIST ’05). ACM, New York,
NY, USA, 163–172. DOI:
http://dx.doi.org/10.1145/1095034.1095062

6. Bryan M. Cantrill, Michael W. Shapiro, and Adam H.
Leventhal. 2004. Dynamic Instrumentation of
Production Systems. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference
(ATEC ’04). USENIX Association, Berkeley, CA, USA.
http:
//dl.acm.org/citation.cfm?id=1247415.1247417

7. Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva,
Wilmot Li, and Björn Hartmann. 2012. MixT:
Automatic Generation of Step-by-step Mixed Media
Tutorials. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 93–102. DOI:
http://dx.doi.org/10.1145/2380116.2380130

8. Pei-Yu Chi, Bongshin Lee, and Steven M. Drucker.
2014. DemoWiz: Re-performing Software
Demonstrations for a Live Presentation. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 1581–1590. DOI:
http://dx.doi.org/10.1145/2556288.2557254

9. Jennifer Fernquist, Tovi Grossman, and George
Fitzmaurice. 2011. Sketch-sketch Revolution: An
Engaging Tutorial System for Guided Sketching and
Application Learning. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’11). ACM, New York, NY, USA,

373–382. DOI:
http://dx.doi.org/10.1145/2047196.2047245

10. Adam Fourney, Ben Lafreniere, Parmit Chilana, and
Michael Terry. 2014. InterTwine: Creating
Interapplication Information Scent to Support
Coordinated Use of Software. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’14). ACM, New York, NY, USA,
429–438. DOI:
http://dx.doi.org/10.1145/2642918.2647420

11. Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. 2009. Generating Photo
Manipulation Tutorials by Demonstration. In ACM
SIGGRAPH 2009 Papers (SIGGRAPH ’09). ACM, New
York, NY, USA, Article 66, 9 pages. DOI:
http://dx.doi.org/10.1145/1576246.1531372

12. Tovi Grossman, Justin Matejka, and George
Fitzmaurice. 2010. Chronicle: Capture, Exploration, and
Playback of Document Workflow Histories. In
Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology (UIST ’10).
ACM, New York, NY, USA, 143–152. DOI:
http://dx.doi.org/10.1145/1866029.1866054

13. Philip J. Guo. 2012. Software Tools to Facilitate
Research Programming. Ph.D. Dissertation. Stanford
University.

14. Philip J. Guo and Margo Seltzer. 2012. BURRITO:
Wrapping Your Lab Notebook in Computational
Infrastructure. In Proceedings of the 4th USENIX
Workshop on the Theory and Practice of Provenance
(TaPP’12). USENIX Association, Berkeley, CA, USA.
http:
//dl.acm.org/citation.cfm?id=2342875.2342882

15. Jeff Huang and Michael B. Twidale. 2007. Graphstract:
Minimal Graphical Help for Computers. In Proceedings
of the 20th Annual ACM Symposium on User Interface
Software and Technology (UIST ’07). ACM, New York,
NY, USA, 203–212. DOI:
http://dx.doi.org/10.1145/1294211.1294248

16. Scott Klemmer. 2017. UCSD Interaction Design
COGS120/CSE170 - Winter 2017.
http://ixd.ucsd.edu/home/w17/index.php. (2017).

17. Rebecca P. Krosnick. 2014. VideoDoc: Combining
Videos and Lecture Notes for a Better Learning
Experience. Master’s thesis. MIT Department of
Electrical Engineering and Computer Science,
Cambridge, MA.

18. Nate Kushman and Dina Katabi. 2010. Enabling
Configuration-independent Automation by Non-expert
Users. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation
(OSDI’10). USENIX Association, Berkeley, CA, USA,
223–236. http:
//dl.acm.org/citation.cfm?id=1924943.1924959

https://knowledge.autodesk.com/community/screencast
https://knowledge.autodesk.com/community/screencast
https://www.getpostman.com/
https://ffmpeg.org/
http://dx.doi.org/10.1145/1095034.1095067
http://dx.doi.org/10.1145/1095034.1095062
http://dl.acm.org/citation.cfm?id=1247415.1247417
http://dl.acm.org/citation.cfm?id=1247415.1247417
http://dx.doi.org/10.1145/2380116.2380130
http://dx.doi.org/10.1145/2556288.2557254
http://dx.doi.org/10.1145/2047196.2047245
http://dx.doi.org/10.1145/2642918.2647420
http://dx.doi.org/10.1145/1576246.1531372
http://dx.doi.org/10.1145/1866029.1866054
http://dl.acm.org/citation.cfm?id=2342875.2342882
http://dl.acm.org/citation.cfm?id=2342875.2342882
http://dx.doi.org/10.1145/1294211.1294248
http://ixd.ucsd.edu/home/w17/index.php
http://dl.acm.org/citation.cfm?id=1924943.1924959
http://dl.acm.org/citation.cfm?id=1924943.1924959

19. Oren Laadan, Ricardo A. Baratto, Dan B. Phung, Shaya
Potter, and Jason Nieh. 2007. DejaView: A Personal
Virtual Computer Recorder. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles (SOSP ’07). ACM, New York, NY,
USA, 279–292. DOI:
http://dx.doi.org/10.1145/1294261.1294289

20. Benjamin Lafreniere, Tovi Grossman, and George
Fitzmaurice. 2013. Community Enhanced Tutorials:
Improving Tutorials with Multiple Demonstrations. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 1779–1788. DOI:
http://dx.doi.org/10.1145/2470654.2466235

21. Ben Lafreniere, Tovi Grossman, Justin Matejka, and
George Fitzmaurice. 2014. Investigating the Feasibility
of Extracting Tool Demonstrations from In-situ Video
Content. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’14). ACM,
New York, NY, USA, 4007–4016. DOI:
http://dx.doi.org/10.1145/2556288.2557142

22. Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and
Allen Cypher. 2010. Here’s What I Did: Sharing and
Reusing Web Activity with ActionShot. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY,
USA, 723–732. DOI:
http://dx.doi.org/10.1145/1753326.1753432

23. Cuong Nguyen and Feng Liu. 2015. Making Software
Tutorial Video Responsive. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 1565–1568. DOI:
http://dx.doi.org/10.1145/2702123.2702209

24. Amy Pavel, Colorado Reed, Björn Hartmann, and
Maneesh Agrawala. 2014. Video Digests: A Browsable,
Skimmable Format for Informational Lecture Videos. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14).
ACM, New York, NY, USA, 573–582. DOI:
http://dx.doi.org/10.1145/2642918.2647400

25. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue
Wang, Lubomir Bourdev, Shai Avidan, and Michael F.
Cohen. 2011. Pause-and-play: Automatically Linking
Screencast Video Tutorials with Applications. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology (UIST ’11).
ACM, New York, NY, USA, 135–144. DOI:
http://dx.doi.org/10.1145/2047196.2047213

26. Cheng-Yao Wang, Wei-Chen Chu, Hou-Ren Chen,
Chun-Yen Hsu, and Mike Y. Chen. 2014. EverTutor:
Automatically Creating Interactive Guided Tutorials on
Smartphones by User Demonstration. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 4027–4036. DOI:
http://dx.doi.org/10.1145/2556288.2557407

http://dx.doi.org/10.1145/1294261.1294289
http://dx.doi.org/10.1145/2470654.2466235
http://dx.doi.org/10.1145/2556288.2557142
http://dx.doi.org/10.1145/1753326.1753432
http://dx.doi.org/10.1145/2702123.2702209
http://dx.doi.org/10.1145/2642918.2647400
http://dx.doi.org/10.1145/2047196.2047213
http://dx.doi.org/10.1145/2556288.2557407

	Introduction
	Related Work
	Mixed-Media Tutorials that Combine Text and Video
	Generating Tutorials by User Demonstration
	Operating-System-Wide Activity Tracing

	Formative Interviews and Design Goals
	The Design and Implementation of Torta
	Tutorial Recorder
	Tutorial Editor
	Tutorial Viewer

	Exploratory User Studies
	Tutorial Creator User Study
	Tutorial Consumer Pilot Study

	Discussion of Design Space and Limitations
	Conclusion
	Acknowledgments
	REFERENCES

