
Unfolding State Changes via Live State-First Debugging
Ruanqianqian (Lisa) Huang

r6huang@ucsd.edu
UC San Diego

Philip J. Guo
pg@ucsd.edu
UC San Diego

Sorin Lerner
lerner@cs.ucsd.edu

UC San Diego

ABSTRACT

Common debugging techniques are execution-first, requiring pro-
grammers to probe into execution via print logging or breakpoints
to inspect intermediate program states. To alleviate the tedium
of execution probing, state-first debugging techniques reveal state
changeswithout requiring logs or statement-level breakpoints. Both
techniques, however, remain time-consuming and laborious due
to the need to manually sift through log or debugger outputs, and
even more so when the process must be repeated many times due to
code edits. To overcome these limitations, we propose live state-first
debugging, a live programming paradigm that directly shows pro-
grammers where their program state has changed and how those
state changes relate to code, all without requiring any logging or
breakpoints. We implemented this paradigm for web-based GUI ap-
plications in Unfold, which shows a timeline of changed UI states,
the corresponding code that caused those changes, and automatic
replays of prior user interaction traces after the code edits are saved.
A preliminary user study (N=12) shows that live state-first debug-
ging helps programmers locate some GUI application bugs faster,
and that programmers deem the paradigm usable and helpful.

KEYWORDS

debugging, GUI applications, live programming, event handling

1 INTRODUCTION

Debugging can be time-consuming and frustrating for program-
mers [24, 39, 44]. The most common debugging techniques are log-
ging (i.e., inserting print statements) and single-step debuggers [32].
Both techniques allow programmers to inspect hidden intermediate
states of their program’s run-time data. However, their fundamental
limitation is that they are execution-first: to see these intermediate
states, programmers have to (1) probe into execution by manually
inserting print statements or debugger breakpoints and (2) manu-
ally compare the observed intermediate states to figure out which
ones diverge from their expectations and why. In addition, print
statements or breakpoints must be inserted at exactly the right places
to reveal the critical state change that led to the bug, which could
be easily missed when too few or too many states are observed.

In contrast to the execution-first approaches, state-first tech-
niques such as object-centric debugging [12, 27, 34, 35] and data
breakpoints [43] allow programmers to navigate state changes with-
out repetitive execution probing. While state-first techniques help
programmers navigate state changes, they are still interruptive in
nature: programmers see no connections from the state changes to
the code, are often limited to examining one state change at a time,
and need to repeat navigating to the state change of interest upon
code changes. As debugging is an iterative activity with frequent
edit-run cycles [5], these interruptions slow down this workflow.

To address this limitation, we extend state-first debugging with
liveness. Live programming [17, 41] alleviates the need for frequent

edit-run cycles by continuously providing up-to-date values, typi-
cally in the form of runtime values [25, 42] or traces [26] on each
program change. As such, we propose live state-first debugging, a
novel paradigm that integrates liveness with state-first debugging
to live-update where execution state has changed and how all state
changes relate to code. Adding liveness to state-first debugging
is a technical and interaction design challenge due to the need to
(a) constantly record and replay program inputs on the new code to
obtain up-to-date state-first information and (b) support frequent
context switches between editor and debugger. Beyond liveness,
our paradigm also provides several improvements over prior state-
first systems, namely: (1) visualizing state-to-code correspondences
in situ, and (2) presenting all execution steps causing state changes
and their stack traces at once via such correspondences.

As a proof-of-concept of live state-first debugging, we created
a web-based GUI application debugger Unfold, which shows a
timeline of changed UI states, what code caused those changes,
and automatic replays of prior user interaction traces upon each
code edit. We chose to implement live state-first debugging for GUI
applications because these often involve difficult-to-debug state
changes due to asynchronous event handling and user interactions.
By always showing changed UI states and what code caused those
changes, Unfold eliminates the need to repeatedly probe, pause,
or restart execution or provide user interaction inputs.
Example usage scenario. Alice is a front-end web engineer trying
to debug some faulty code that her colleague wrote. Her team is
building a landing page for a shopping website. When the user
clicks on a particular product description, the web app pops up a
modal dialog box to show a promotion for it, and that pop-up should
disappear when they hit the “close” button. However, there is a
bug somewhere as the pop-up does not disappear when the “close”
button is pressed. Fig. 1 shows how Alice can find and fix this bug
using Unfold by interacting normally with the webpage without
repeating her interactions or probing/restarting the execution.

(A) She clicks on a product on the webpage like a user does.
(B) Immediately she sees a pop-up of the promotion as expected.

The UI States Timeline at the bottom of Unfold shows
the initial page UI state labeled with a (0) circle, then two
intermediate UI states labeled with (1) and (2) showing the
pop-up appearing (1) and the page background darkening
(2). This looks fine to her, so she clicks the “close” button.

(C) On the page the pop-up did not disappear as expected,
which indicates a bug. But in the UI States Timeline, states
labeled (3) and (4) show that the pop-up did disappear and
is no longer visible in the UI, which seems strange to Alice.

(D) Inspecting further, when she scrolls to the right in the UI
States Timeline, it shows that the pop-up did indeed disap-
pear but later came back in the subsequent states labeled (5)
and (6). By examining the code annotated with labels shared
by the unwanted UI states (5) and (6), she realizes that the

https://orcid.org/0000-0002-4242-419X


Ruanqianqian (Lisa) Huang, Philip J. Guo, and Sorin Lerner

Figure 1: Unfold enables users to do live state-first debugging by interacting normally with the app, examining the timeline of

UI states, seeing how buggy UI states connect to code, editing and saving the code, and immediately seeing updated UI states.

“click” event handler that shows the pop-up modal dialog
box was called at a time when she did not expect it to be.

(E) Re-inspecting the structure of the DOM, Alice sees that
this is a bug related to event bubbling [3]. The click event
received on the “close” button bubbled up to the entire
page (a parent DOM node), causing its own click event
handler to execute. Alice quickly fixes this bug by adding
a stopPropagation() call to the beginning of the click
event handler for the “close” button to stop event bubbling.

(F) As soon as Alice saves her changes, Unfold live re-runs
her code with the user interactions from her prior session,
and now the pop-up disappears as she expects. She further
confirms from the auto-refreshed UI states visualization
that the application now behaves exactly as she expects.

Without Unfold, Alice would have needed to insert print log-
ging or breakpoints, edit her code, reload the page, click to interact
with it, inspect the logging or debugger output (which may contain
too little or too much output), and iterate until she finds the bug.
She might put logging or breakpoints in the wrong places at first
and then need to re-run and repeat her page interactions a few
times. A single button click may not seem so tedious, but a realistic
debugging scenario involves a much longer chain of complex user

interactions that need to be manually repeated on each trial. Un-
fold eliminates this tedium by showing UI state changes and live
re-running the edited code with user interactions from prior runs.

We demonstrate the preliminary effectiveness of live state-first
debugging through a comparative within-subjects study where 12
programmers debugged event handlers in GUI applications using
Unfold versus standard browser developer tools. We found that
programmers located some GUI application bugs faster with live
state-first debugging and deemed the paradigm usable and helpful.

This paper’s contributions to live programming research are:
• Live state-first debugging, a new paradigm that shows state

changes and connections to the code that caused those changes
• A prototype of this paradigm in Unfold and a preliminary user

study showing its potential effectiveness in locating GUI bugs.

2 RELATEDWORK

State-First Debugging. We define state-first debuggers as systems
where users see state changes without probing into the execution
via logs or statement-level breakpoints. One example of state-first
debugging are data breakpoints [43], which pause execution when
data in the specified memory location changes. Object-centric de-
bugging [12, 34, 35] extends data breakpoints by pausing execution



Unfolding State Changes via Live State-First Debugging

on changes of object instances. Flow-centric debugging [27] fur-
ther extends object-centric debugging, enabling a view of program
execution that bridges the control- and the object-flow.

Our live state-first debugging approach differs from traditional
state-first debugging in four ways: (1) it enables live feedback on
code edits, which state-first systems to date lack; (2) it provides a
timeline of state changes, while the notion of an execution timeline
is absent in prior work; (3) it shows state-to-code connections in
source code, which visualizes control flow; (4) it supports back-in-
time debugging on the state level, whereas prior work only provides
such support on the execution level [27] or limits traveling back to
specific object events only (e.g., instantiation) [35].

Live Programming. Live programming allows programmers to
modify a program while receiving immediate feedback on the ed-
its [40–42], typically in the form of runtime values [25, 42] or
traces [26]. It has been applied to settings such as general-purpose
languages [25, 31, 33], data science [13, 14, 45] , and physical com-
puting [9, 10, 38]. Literature has found potential benefits of liveness
for program comprehension [10, 13] and debugging [20, 23, 46].
However, rather than just showing changes in the execution state,
prior live programming systems display runtime information for
one or all steps of the execution and impose potential information
overload and distraction on the user [22, 25]. While our work aims
to enhance state-first debugging with liveness, we consider the
state-first visualization a possible remedy to the problem of infor-
mation overload [25] in live programming as well. Leveraging the
benefits of both live programming and state-first debugging, our
work explores how both approaches complement each other and
how live state-first debugging supports locating and fixing bugs.

Debugging Tools for GUI Applications. Although live state-first
debugging is a generic debugging paradigm, we implemented our
first prototype Unfold for GUI applications. There is a rich his-
tory of debugging systems targetting GUI applications. Amulet [29]
is among the first steps towards usable debugging tools for GUI
apps, which supports changing data values at runtime. Timelapse
explains changes of a specified DOM element [8], which, similar
to Unfold, automatically captures user-interactions and replays
execution. Clematis captures application behavior to a timeline of
episodes and shows the event trace, execution trace, and DOM mu-
tations for each [6]. Doppio visualizes high-level correspondences
between callback methods and GUI changes in Android apps [11].
RDE [36] and Lively4 [28] support debugging GUI apps with live-
ness. However, none of these tools provide direct connections from
UI states back to code upon edits, which Unfold implements.

3 FORMATIVE STUDY AND DESIGN GOALS

To establish design goals for Unfold, we ran a formative obser-
vational study with five programmers debugging JavaScript web
event handling code similar to our example from Fig. 1. Specifically,
we had them debug broken versions of a simple todo list app and
a web-based spreadsheet, both of which involve synchronizing UI
state changes with an underlying data model. Here we briefly sum-
marize our observations and the three design goals for Unfold
(D1, D2, D3) that we derived from this study, which can alleviate
problems our participants encountered when using existing tools.

D1: Non-Interruptive Tracing of UI State Changes. Four out of
our five participants chose not to use the (execution-first) debugger
that comeswith browser devtools [1, 15, 21] to inspect the web app’s
behavior because, as one said, “it is interruptive.” They opted for
print statements instead because execution-first debuggers prevent
users from seeing a bigger picture of the execution without break-
point pauses. The problem is exacerbated in GUI apps as debuggers
interrupt tracing the UI states caused by event handlers, which to
our participants was the most important. Execution-first debuggers
force users to step through long, unrelated UI state changes with
unavoidable pauses, which is interruptive and, as one participant
stated, “does not simulate how the application naturally responds
to a triggered event.” Thus, our first design goal is non-interruptive
tracing of state changes, which liveness precisely supports.

D2: Connecting Output Changes to the Corresponding Code.
All five participants inserted print statements via console.log() to
verify the execution of event handlers and determine the sequence
of code execution, data changes, and UI state changes. However,
they had to switch among the UI, code, and console to obtain such
information. Console logs also could not immediately show the or-
der of code execution and data changes unless carefully constructed
and formatted. Participants wished to see the connection between
code and changes in data and GUI output, especially the order of
these changes, but they currently need to rely on manually sifting
through textual logs to obtain such information indirectly.

D3: Automated Event Triggering. All participants found it te-
dious to manually trigger an event sequence repeatedly (e.g., via
mouse clicks) when debugging event handlers, especially when
the debugging took numerous rounds of editing. Also, changing
one segment of event handling code might unexpectedly affect the
behavior of another segment. When editing code for event handlers,
users yearned for a way to “preview the effect of code changes on
the execution of these handlers before committing to such changes.”
Live programmingwould free users from repeating event inputs and
restarting the execution via its immediate feedback on code edits.

4 DESIGN & IMPLEMENTATION OF UNFOLD

We implemented a prototype of live state-first debugging for web-
based GUI applications in a tool called Unfold, which is an ex-
tension to Visual Studio Code [4] that displays the user’s code, an
iframe containing the live webpage rendered from that code, and a
UI States Timeline. We revisit the components of Fig. 1 and three
design goals (D1, D2, D3) in Sec. 3 to describe Unfold.

Live Feedback on Code Edits. Unfold provides immediate feed-
back on how a code change affects the application’s behavior
whenever that change is saved, which supports both D1: Non-
interruptive Tracing of UI State Changes and D3: Automated
Event Triggering. Liveness is enabled via event recording. Indeed,
the user can interact with their web app’s UI in the iframe through
mouse clicks as usual, and Unfold will automatically record these
clicks and replay them each time the code is changed and saved.
Unfold records and replays one event sequence at a time to visu-
alize the UI states created by that sequence, which is displayed in
the UI States Timeline (next section). To input a new sequence, the
user clicks the “Clear” button above the UI States Timeline (Fig. 2).



Ruanqianqian (Lisa) Huang, Philip J. Guo, and Sorin Lerner

Figure 2: The UI States Timeline shows all UI states created

by each recorded click event. (a) Each state can be expanded

to see details; (b) an arrow connects the starting and ending

states caused by this click event; (c) shows an intermediate

UI state with a label (1), which also appears in the IDE over

the line of code that caused this state change (see Fig. 1).

Our prototype records only click events, but its record-replay
architecture can be extended to other DOM events due to our imple-
mentation. Specifically, when an event is captured, Unfold calcu-
lates the CSS selector of its event target and sets one breakpoint for
that event via the Chrome debugger protocol [15]. It then simulates
the event on the target via a headless Chrome instance and records
related runtime information (next section).
UI States Timeline. Fig. 2 zooms in on the UI States Timeline
from Fig. 1-A, which implements D1. Unfold records snapshots
of UI states by pausing execution at each click handler and single-
stepping with the Chrome debugger protocol to take a full UI screen-
shot of the webpage at each executed line. Then it diffs consecutive
screenshots and discards duplicates (which indicates that this line
of code did not change the UI in a visible way). At the end of the
click handler, all distinct screenshots appear as separate UI states
created by running that handler. If a line of code runs an animation
(e.g., fade-in), then it will record the UI state at the start and end
of that animation. Note that if the click handler runs many lines
of code, then this approach can become slow and we have not yet
optimized for performance; but in practice, developers often write
click handlers to be short-running so that the UI updates quickly
to foster interactivity [30].

Above the sequence of UI states in Fig. 2, an arrow (Fig. 2-b) is
shown for each click event – the arrow spans all UI states that the
UI passes through when that event is handled. In this example it
shows the starting UI state of the webpage (labeled with a (0)), the
pop-up modal dialog appearing (state (1)), and then the background
of the page darkening (state (2)).

Our formative study participants (Sec. 3) all found print state-
ments to be useful. Thus, in addition to inspecting UI states in this
timeline, Unfold allows the user to also use console print logging
for inspecting internal program state. But instead of logging to a
separate console, Unfold embeds the logs in the GUI so that each
log output results in a visible UI state change, thus enabling users
to examine log output directly within the UI States Timeline. This
mechanism enables users to reason about the sequence of internal
data changes along with visible UI changes together in one timeline.
UI-to-Code Connector Labels. The numbered circles shown on
UI states (Fig. 2-c) visually connect those UI states to code execu-
tion, which addresses D2: Connecting Output Changes to the
Corresponding Code. The semantics of these numbered labels is

Figure 3: Applications in our user study, displayed inUnfold:

Memory Game (left) and Calculator (right). Each has ∼90
lines of JavaScript code and contains two bugs we inserted.

defined as follows: Suppose we have a UI state annotated with a
label 𝑖 , and a line of code annotated with the same label. This means
two things: (1) right before the 𝑖-labeled line of code started exe-
cuting, the state of the UI was the one annotated with 𝑖 − 1 in the
UI States Timeline; (2) right after the 𝑖-labeled line of code finished
executing, the state of the UI was the one annotated with 𝑖 in the
timeline. These labels use numerical ordering to visualize control
flow in the source code at a glance and connect them to UI state
changes. Fig. 1 shows more examples of labels next to lines of code.

5 EVALUATION: COMPARATIVE USER STUDY

State-first debugging aims to alleviate the tedium of execution
probing in execution-first debugging, but execution-first debugging
remains the mainstream debugging paradigm as the former fails to
address interruptions in debugging. With liveness, can state-first
information help programmers locate and fix bugs in GUI apps?
How does live state-first debugging compare to execution-first
debugging? To investigate these questions, we ran a within-subjects
study where each participant debugged two GUI applications using
Unfold and Firefox DevTools [1] in a randomized order, and we
collected task performance and user impressions of each tool.
Participants. We recruited 12 adults (6 female) with 1 to 15 years of
JavaScript experience and 5 to 15 years of programming experience
via personal contacts, social media, and our institution.
Tasks. Each participant debugged two GUI applications, Mem-
ory Game (M) and Calculator (C)1, and Fig. 3 illustrates these ap-
plications in Unfold. Each comes with two bugs: one directly
related to event-driven DOM/CSS manipulations, a critical part of
JavaScript event handling [6], and the other caused by data changes.
Here are the bugs by application (M and C) labeled with bug type:
M1. [CSS] A card disappears when trying to flip it over.
M2. [Data] Off-by-one error to flip back a pair of flipped cards.
C1. [DOM] Pressing any value key shows undefined.
C2. [Data] Pressing “=” after an operation makes no calculation.
Conditions. Participants edited code in the VSCode IDE [4] in the
study with two different debugging setups on top: live state-first
(Unfold) and execution-first (Firefox DevTools [1] Control con-
dition). Given two setups and two applications, we randomized the
order of the setups and the applications to reduce learning effects,
so we had four groups. We randomly assigned the 12 participants to
groups while maintaining even group sizes (three participants each).

1Modified from examples found in intermediate-level tutorials on JavaScript event
handling: bit.ly/sfd-memory-game and bit.ly/sfd-calculator, respectively.

https://bit.ly/sfd-memory-game
https://bit.ly/sfd-calculator


Unfolding State Changes via Live State-First Debugging

Procedure. We used video conferencing for the study. At the begin-
ning of each task, we gave a 10-minute tutorial on the debugging
setup using the same tutorial code and allowed participants to ask
clarifying questions. They then had 30 minutes to locate and fix
the two bugs in their desired order. They were allowed to search
for documentation, encouraged to think aloud, and required to tell
us when they located or fixed a bug. We stopped the timer for the
application when they either asked to move on or used up all 30
minutes. After debugging two applications, we spent the final 15
minutes giving them a survey and a semi-structured interview.
Quantitative Data. We recorded screencast videos of each session
and measured (1) duration and (2) success of both locating and
fixing bugs by reviewing the recordings. We measured the time to
locate a bug as the duration from the start of working on an app or
the end of locating/fixing the previous bug until the participant said
they found it or the time was up. Similarly, we measured the time
of fixing a bug as the duration from the end of locating the bug, if
any, until the participant said they fixed it or time was up. Finally,
we marked that a participant succeeded in locating bugs in one
app if both bugs were correctly located, and that they succeeded in
fixing bugs if both bugs were correctly located and fixed.
Qualitative Data. We recorded participant quotes during the study
and interview. We also obtained open-ended responses and Likert-
scale ratings on features of Unfold from the survey we gave right
after the tasks were done. One author coded responses using the-
matic analysis [7] and the other authors reviewed these codes.
Study Limitations. First, the study is limited in its sample size
of 12 participants, who might not be representative enough, and
whose self-reported programming experience might have biased
the study results. Second, there were only two small GUI apps used
in our study, and we only compared Unfold to one execution-first
debugging tool (Firefox DevTools). Thus, we do not know how well
this technique generalizes to larger, more complex web applications
that run in production environments. As such, our study findings
should be viewed as an early step towards evaluating the effects of
live state-first debugging for GUI applications or implementations
of the paradigm for other domains.

5.1 Effectiveness in Debugging

Duration of Locating Bugs. Fig. 4 shows the duration of locating
bugs by application and debugging setup. Since participants were
given 30 minutes to work on each application, including locating
and fixing bugs, the maximum time one could spend locating bugs
was 30 minutes. Using a Wilcoxon signed-rank test on median
values, we found that participants with Unfold located bugs sig-
nificantly faster in Calculator, by 15.7 minutes (𝑝 = .036), but only
marginally faster in Memory Game (𝑝 = .562), by 0.9 minutes.
Duration of Fixing Bugs. Among all participants, we only com-
pared the duration of those who eventually succeeded in fixing the
bugs. Median values show that participants using Unfold spent
3.5 minutes more fixing bugs in Memory Game but 3 minutes less
in Calculator than those with Control. The sample sizes were too
small (all ≤ 3) to conduct statistical tests and conclude any effects.
Success in Locating Bugs. In Memory Game, five out of six par-
ticipants located all bugs in Unfold and six did so in the Control

Figure 4: Duration of locating bugs by application and setup.

The “X”marks represent data points. Two data points overlap

at the upper left corner of the Calculator plot (right). The

center lines show the median values. The dashed horizontal

line represents the time limit (1800 seconds = 30 minutes).

condition. In Calculator, six participants located all bugs in Unfold
and four out of six did so in Control. The differences in results
are not statistically significant according to Fisher’s exact test.
Success in Fixing Bugs. In Memory Game, three out of six par-
ticipants fixed all bugs in Unfold, and three out of six did so in
the Control condition. In Calculator, three out of six participants
fixed all bugs in Unfold, and two out of six did so in Control.
Fisher’s exact test did not show any significant difference caused
by the debugging setup in the success of fixing all bugs.

Takeaway 1: Participants located bugs significantly faster

with Unfold in one application. We observed no difference in

the success of locating or fixing bugs and time spent fixing bugs.

5.2 Users’ Perceptions of Unfold

Unfold Reduces Barriers to Debugging GUI Applications.
The left part of Table 1 shows the ratings on how easy it was
to use/understand Unfold on a 5-point Likert scale. Participants
generally found it easy to use/understand: all ratings have averages
and medians above 4 out of 5 (Strongly Agree). They mentioned
three particular aspects of Unfold that ease debugging GUI apps.
Straightforward Interaction Flow. Participants found the Un-
fold interface to be “very intuitive” (P2, P3). P1 especially liked
“its simplicity,” and P2 appreciated the flat learning curve.
Minimal Configuration Requirement. All participants found
that Unfold was “easy to setup,” required “[few] context shifts”
(P8), and picked up their “existing [work practice] . . . without
[requiring] configuring what events to record” (P2).
Minimal Distraction. Participants considered that features in
Unfold did not distract them much from debugging. Although
the UI-code connector labels could be distracting “when there
[were] too many UI states” (P3, P9, P11), the “ease of resetting”
addressed this problem by clearing the recorded events and states.

Takeaway 2: Participants found Unfold easy to use and un-

derstand through a straightforward interaction flow, minimal

configuration requirement, and reduced information overload.



Ruanqianqian (Lisa) Huang, Philip J. Guo, and Sorin Lerner

Table 1: Likert-scale user perceptions of Unfold features

from 1 - “Strongly Disagree” to 5 - “Strongly Agree”. “Avg.” -

Average, “Mdn.” - Median, “Dist.” - Distribution.

Easy to use/understand Helpful for debugging

Feature Avg. Mdn. Dist. Avg. Mdn. Dist.

Event Recording 4.67 5.0 4.83 5.0
Event Arrows 4.67 5.0 4.25 4.5
Connector Labels 4.25 4.5 4.33 4.0
Logging 4.08 4.0 4.17 5.0
Live Feedback 4.00 4.0 4.42 5.0
Overall 4.42 5.0 4.50 4.5

Unfold Helps Debug GUI Applications. The right part of Ta-
ble 1 shows participants’ ratings for Unfold’s helpfulness, also on a
5-point Likert scale. Broadly speaking, participants found it helpful,
especially “Event Recording” that received an average rating of 4.83
out of 5. Participants deemed Unfold helpful in two specific ways.
UI States-to-Code Connections. 10 out of 12 participants men-
tioned that Unfold helped them reason about the behavior of
the invoked event handlers by visually showing UI states and
connecting the states to code execution. P8 especially appreciated
the ability to “quickly understand the effects of [their] actions.”
Live Feedback via Event Recording. Eight participants said Un-
fold greatly helped them debug by automating recorded events
and providing live feedback upon code changes using these events.
P7 further commented that, when trying to understand the effects
of edits, they were able to “quickly compare the difference in app
behavior between the changes” through the live feedback.

Takeaway 3: Participants deemed Unfold helpful for debug-

ging as it helps understand code execution through UI states-to-

code connections and provides live feedback upon code changes.

Suggestions for Unfold. Participants also suggested possible
improvements to Unfold that allow them to: (1) inspect runtime
data along with the UI states without logging (P2); (2) filter un-
interesting UI states and connector labels (P3, P9, P10, P11); (3)
examine UI components in detail in a UI state (P6); and (4) adjust
the granularity of information shown (P11). The suggestions share
a common theme: control over run-time state inspection.

Takeaway 4: Participants yearned for more control over run-

time state inspection in Unfold.

6 DISCUSSION AND FUTUREWORK

When a Debugger Shows How to Fix Bugs. In our study, P9 and
P12 located the bugs in Memory Game using Unfold but did not
know how to fix them. There are two possible causes: (1) they were
unfamiliar with the API calls that caused the bugs, which could
be addressed via documentation and code examples search but re-
quire more time and context switches; (2) they had an expected UI
state in mind but did not know how to achieve it via code. Indeed,
while live state-first debugging may help understand code behav-
ior and locate bugs, it cannot suggest fixes. We feel that program

synthesis is well-suited for suggesting API usage and code edits.
For example, millions are using GitHub Copilot [2] to obtain code
suggestions within their IDE. Particularly for reaching expected UI
states, synthesis via direct manipulation can also help and has been
explored [18, 19, 37]. Still, an open problem remains in validating

the synthesized code against the programmer’s expectation. Recent
work has observed the potential benefits of liveness for exploring
synthesized code [16]. Live state-first debugging, by showing cor-
respondences between execution state changes and the code on
top of liveness, can provide further help with understanding and
refining the synthesized repair suggestions. Future debuggers could
help programmers not only locate but also fix bugs by integrating

aspects of live state-first debugging and program synthesis.

Human-Centered Liveness. Our system Unfold immediately
displays the result of the program logic in situ as it combines live-
ness with the browser core functionality, allowing the programmer
to focus on finding program misbehavior in GUI applications and
thus debug faster in some tasks. We attribute the promising results
to the use of human-centered design for live state-first debugging.
When bringing liveness and state-first debugging to web-based GUI
applications, we grounded the design in results from a formative
study taking into account challenges and user needs in this domain.
As AI programming assistants become increasingly popular, sug-
gesting code within seconds, it is crucial for programming tools
to provide timely feedback on the correctness of code suggestions.
We deem live programming as one possible mechanism to deliver
such timely feedback. As the live programming community pre-
pares for tool advances that support AI-assisted programming, it is
important to also embrace the diversity of programming tasks and
domains.We call for using a human-centered design that accounts

for domain-specific user needs to develop future live programming

systems that are truly effective.

Usable Programming Systems. We developed live state-first de-
bugging out of the need for combining liveness and state exami-
nation in debugging based on prior work and a formative study.
Despite the promising results from the user evaluation, we have yet
to understand why live state-first debugging did not help as much
in certain debugging tasks. Looking back, while the community
has been pushing the boundaries much further for programming
systems — both live programming (e.g., [25, 26, 33, 42]) and state-
first systems (e.g., [12, 27, 34]) — little research has addressed what
makes these systems usable (or not). In the future, we plan to ana-
lyze the qualitative evidence of our user evaluation in more depth to
seek improvements for live programming and state-first debugging.
As a community, we should build future programming systems based

on systematic evaluations of existing ones in the same category.

7 CONCLUSION

We proposed live state-first debugging, a liveness-enabled debug-
ging paradigm that shows where the execution state has changed
and how those state changes relate to code. We implemented the
paradigm in Unfold for debugging GUI applications and found
that live state-first debugging helped programmers locate some GUI
bugs faster and was deemed usable and helpful. Our findings can
inform opportunities for future live programming and debugging
tools in terms of support for fixing bugs, design, and evaluation.



Unfolding State Changes via Live State-First Debugging

REFERENCES

[1] 2022. Firefox DevTools User Docs — Firefox Source Docs Documentation.
https://firefox-source-docs.mozilla.org/devtools-user/.

[2] 2022. GitHub Copilot · Your AI Pair Programmer.
https://github.com/features/copilot.

[3] 2023. Introduction to events - Learn web development. https://developer.mozilla.
org/en-US/docs/Learn/JavaScript/Building_blocks/Events

[4] 2023. Visual Studio Code - Code Editing. https://code.visualstudio.com/
[5] Abdulaziz Alaboudi and Thomas D. LaToza. 2021. Edit - Run Behavior in Program-

ming and Debugging. In 2021 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC). 1–10. https://doi.org/10.1109/VL/HCC51201.2021.
9576170

[6] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. 2014.
Understanding JavaScript Event-Based Interactions. In Proceedings of the 36th

International Conference on Software Engineering. ACM, Hyderabad India, 367–
377. https://doi.org/10.1145/2568225.2568268

[7] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology.
Qualitative Research in Psychology 3, 2 (Jan. 2006), 77–101. https://doi.org/10.
1191/1478088706qp063oa

[8] Brian Burg, Richard Bailey, Amy J. Ko, and Michael D. Ernst. 2013. Interactive
Record/Replay for Web Application Debugging. In Proceedings of the 26th Annual

ACM Symposium on User Interface Software and Technology. ACM, St. Andrews
Scotland, United Kingdom, 473–484. https://doi.org/10.1145/2501988.2502050

[9] Lautaro Cabrera, John H. Maloney, and David Weintrop. 2019. Programs in
the Palm of Your Hand: How Live Programming Shapes Children’s Interactions
with Physical Computing Devices. In Proceedings of the 18th ACM International

Conference on Interaction Design and Children. ACM, Boise, ID, USA, 227–236.
https://doi.org/10.1145/3311927.3323138

[10] Miguel Campusano, Alexandre Bergel, and Johan Fabry. 2016. Does live program-
ming help program comprehension?–A user study with Live Robot Programming.
In Proceedings of the 7th International Workshop on Evaluation and Usability of

Programming Languages and Tools. ACM, Amsterdam, Netherlands, 8 pages.
http://bergel.eu/MyPapers/Camp16-ComprehensionWithLRP.pdf

[11] Pei-Yu (Peggy) Chi, Sen-Po Hu, and Yang Li. 2018. Doppio: Tracking UI Flows and
Code Changes for App Development. In Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems. ACM, Montreal QC Canada, 1–13.
https://doi.org/10.1145/3173574.3174029

[12] Claudio Corrodi. 2016. Towards Efficient Object-Centric Debugging with Declar-
ative Breakpoints.. In SATToSE. 32–39.

[13] Robert DeLine and Danyel Fisher. 2015. Supporting Exploratory Data Anal-
ysis with Live Programming. In 2015 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). IEEE, Atlanta, GA, 111–119. https:
//doi.org/10.1109/VLHCC.2015.7357205

[14] Robert A DeLine. 2021. Glinda: Supporting Data Science with Live Programming,
GUIs and a Domain-specific Language. In Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems. ACM, Yokohama Japan, 1–11. https:
//doi.org/10.1145/3411764.3445267

[15] Chrome Developers. 2022. Chrome DevTools - Overview. https://developer.
chrome.com/docs/devtools/overview/

[16] Kasra Ferdowsi, Ruanqianqian (Lisa) Huang,Michael B. James, Nadia Polikarpova,
and Sorin Lerner. 2023. Live Exploration of AI-Generated Programs. https:
//doi.org/10.48550/arXiv.2306.09541 arXiv:2306.09541 [cs].

[17] Christopher Michael Hancock. 2003. Real-time programming and the big ideas of

computational literacy. Thesis. Massachusetts Institute of Technology. https:
//dspace.mit.edu/handle/1721.1/61549

[18] Brian Hempel and Ravi Chugh. 2022. Maniposynth: Bimodal Tangible Functional

Programming. Technical Report. https://doi.org/10.4230/LIPIcs.ECOOP.2022.16
arXiv:2206.14992 [cs]

[19] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-

posium on User Interface Software and Technology. 281–292. https://doi.org/10.
1145/3332165.3347925 arXiv:1907.10699 [cs]

[20] Ruanqianqian (Lisa) Huang, Kasra Ferdowsi, Ana Selvaraj, Adalbert Gerald
Soosai Raj, and Sorin Lerner. 2022. Investigating the Impact of Using a Live
Programming Environment in a CS1 Course. In Proceedings of the 53rd ACM

Technical Symposium on Computer Science Education V. 1 (SIGCSE 2022). As-
sociation for Computing Machinery, New York, NY, USA, 495–501. https:
//doi.org/10.1145/3478431.3499305

[21] Apple Inc. 2022. Tools - Safari. https://developer.apple.com/safari/tools/.
[22] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live

Programming Environment with Always-On Run-Time Value Visualizations. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and

Technology (UIST ’17). Association for Computing Machinery, New York, NY,
USA, 737–745. https://doi.org/10.1145/3126594.3126632

[23] J. Kramer, J. Kurz, T. Karrer, and J. Borchers. 2014. How live coding affects
developers’ coding behavior. In 2014 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC). 5–8. https://doi.org/10.1109/VLHCC.2014.

6883013 ISSN: 1943-6106.
[24] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert

Deline, and Gina Venolia. 2013. Debugging Revisited: Toward Understanding the
Debugging Needs of Contemporary Software Developers. In 2013 ACM / IEEE

International Symposium on Empirical Software Engineering and Measurement.
383–392. https://doi.org/10.1109/ESEM.2013.43 ISSN: 1949-3789.

[25] Sorin Lerner. 2020. Projection Boxes: On-the-Fly Reconfigurable Visualization
for Live Programming. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–7. https://doi.org/10.1145/3313831.3376494

[26] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). Association
for Computing Machinery, New York, NY, USA, 2481–2490. https://doi.org/10.
1145/2556288.2557409

[27] Adrian Lienhard, Julien Fierz, and Oscar Nierstrasz. 2009. Flow-Centric, Back-
in-Time Debugging. In Objects, Components, Models and Patterns (Lecture Notes

in Business Information Processing), Manuel Oriol and Bertrand Meyer (Eds.).
Springer, Berlin, Heidelberg, 272–288. https://doi.org/10.1007/978-3-642-02571-
6_16

[28] Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel Taeumel,
and Tim Felgentreff. 2017. Designing a Live Development Experience for Web-
Components. In Proceedings of the 3rd ACM SIGPLAN International Workshop on

Programming Experience. ACM, Vancouver BC Canada, 28–35. https://doi.org/
10.1145/3167109

[29] Brad Myers, Alan Ferrency, Rich McDaniel, and Roger Dannenberg. 1996. Debug-
ging Interactive Applications. (Jan. 1996). https://doi.org/10.1184/R1/6621842.v1

[30] J. Nielsen. 1993. Iterative user-interface design. Computer 26, 11 (Nov. 1993),
32–41. https://doi.org/10.1109/2.241424 Conference Name: Computer.

[31] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live Func-
tional Programming with Typed Holes. Proceedings of the ACM on Programming

Languages 3, POPL (Jan. 2019), 1–32. https://doi.org/10.1145/3290327
[32] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.

2017. Studying the advancement in debugging practice of professional software
developers. Software Quality Journal 25, 1 (March 2017), 83–110. https://doi.
org/10.1007/s11219-015-9294-2

[33] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-Style Programming. The Art, Science, and Engineering of

Programming 3, 3 (Feb. 2019), 9:1–9:39. https://doi.org/10.22152/programming-
journal.org/2019/3/9

[34] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. 2012. Object-centric de-
bugging. In 2012 34th International Conference on Software Engineering (ICSE).
485–495. https://doi.org/10.1109/ICSE.2012.6227167 ISSN: 1558-1225.

[35] Maximilian Ignacio Willembrinck Santander, Steven Costiou, Adrien Vanègue,
and Anne Etien. 2022. Towards Object-centric Time-traveling Debuggers. (2022).

[36] Christopher Schuster and Cormac Flanagan. 2015. Live Programming for Event-
Based Languages. In Proceedings of the 2015 Reactive and Event-based Languages

and Systems Workshop, REBLS, Vol. 15. https://users.soe.ucsc.edu/~cormac/
papers/15rebls.pdf

[37] Christopher Schuster and Cormac Flanagan. 2016. Live programming by example:
using direct manipulation for live program synthesis. In LIVE Workshop. https:
//chris-schuster.net/live16/live16-lpbe.pdf

[38] Emmanuel Senft, Michael Hagenow, Robert Radwin, Michael Zinn, Michael
Gleicher, and Bilge Mutlu. 2021. Situated Live Programming for Human-Robot
Collaboration. In The 34th Annual ACM Symposium on User Interface Software

and Technology. ACM, Virtual Event USA, 613–625. https://doi.org/10.1145/
3472749.3474773

[39] Diomidis Spinellis. 2018. Modern debugging: the art of finding a needle in a
haystack. Commun. ACM 61, 11 (Oct. 2018), 124–134. https://doi.org/10.1145/
3186278

[40] Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing.
Journal of Visual Languages & Computing 1, 2 (June 1990), 127–139. https:
//doi.org/10.1016/S1045-926X(05)80012-6

[41] Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live Programming.
In 2013 1st International Workshop on Live Programming (LIVE). 31–34. https:
//doi.org/10.1109/LIVE.2013.6617346

[42] Bret Victor. 2012. Learnable Programming.
http://worrydream.com/LearnableProgramming/.

[43] Robert Wahbe, Steven Lucco, and Susan L Graham. 1993. Practical data break-
points: Design and implementation. ACM SIGPLAN Notices 28, 6 (1993), 1–12.

[44] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (Aug. 2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368 Conference
Name: IEEE Transactions on Software Engineering.

[45] Xiong Zhang and Philip J. Guo. 2017. DS.Js: Turn Any Webpage into an Example-
Centric Live Programming Environment for Learning Data Science. In Proceed-

ings of the 30th Annual ACM Symposium on User Interface Software and Technol-

ogy. ACM, Québec City QC Canada, 691–702. https://doi.org/10.1145/3126594.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events
https://code.visualstudio.com/
https://doi.org/10.1109/VL/HCC51201.2021.9576170
https://doi.org/10.1109/VL/HCC51201.2021.9576170
https://doi.org/10.1145/2568225.2568268
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/3311927.3323138
http://bergel.eu/MyPapers/Camp16-ComprehensionWithLRP.pdf
https://doi.org/10.1145/3173574.3174029
https://doi.org/10.1109/VLHCC.2015.7357205
https://doi.org/10.1109/VLHCC.2015.7357205
https://doi.org/10.1145/3411764.3445267
https://doi.org/10.1145/3411764.3445267
https://developer.chrome.com/docs/devtools/overview/
https://developer.chrome.com/docs/devtools/overview/
https://doi.org/10.48550/arXiv.2306.09541
https://doi.org/10.48550/arXiv.2306.09541
https://dspace.mit.edu/handle/1721.1/61549
https://dspace.mit.edu/handle/1721.1/61549
https://doi.org/10.4230/LIPIcs.ECOOP.2022.16
https://arxiv.org/abs/2206.14992
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://arxiv.org/abs/1907.10699
https://doi.org/10.1145/3478431.3499305
https://doi.org/10.1145/3478431.3499305
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1007/978-3-642-02571-6_16
https://doi.org/10.1007/978-3-642-02571-6_16
https://doi.org/10.1145/3167109
https://doi.org/10.1145/3167109
https://doi.org/10.1184/R1/6621842.v1
https://doi.org/10.1109/2.241424
https://doi.org/10.1145/3290327
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1109/ICSE.2012.6227167
https://users.soe.ucsc.edu/~cormac/papers/15rebls.pdf
https://users.soe.ucsc.edu/~cormac/papers/15rebls.pdf
https://chris-schuster.net/live16/live16-lpbe.pdf
https://chris-schuster.net/live16/live16-lpbe.pdf
https://doi.org/10.1145/3472749.3474773
https://doi.org/10.1145/3472749.3474773
https://doi.org/10.1145/3186278
https://doi.org/10.1145/3186278
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/3126594.3126663
https://doi.org/10.1145/3126594.3126663


Ruanqianqian (Lisa) Huang, Philip J. Guo, and Sorin Lerner

3126663
[46] Chunqi Zhao, I-Chao Shen, Tsukasa Fukusato, Jun Kato, and Takeo Igarashi.

2022. ODEN: Live Programming for Neural Network Architecture Editing. In

27th International Conference on Intelligent User Interfaces (IUI ’22). Association
for Computing Machinery, New York, NY, USA, 392–404. https://doi.org/10.
1145/3490099.3511120

https://doi.org/10.1145/3126594.3126663
https://doi.org/10.1145/3490099.3511120
https://doi.org/10.1145/3490099.3511120

	Abstract
	1 Introduction
	2 Related Work
	3 Formative Study and Design Goals
	4 Design & Implementation of Unfold
	5 Evaluation: Comparative User Study
	5.1 Effectiveness in Debugging
	5.2 Users' Perceptions of Unfold

	6 Discussion and Future Work
	7 Conclusion
	References

