
Toward a Domain-Specific Visual Discussion Forum
for Learning Computer Programming:

An Empirical Study of a Popular MOOC Forum

Joyce Zhu, Jeremy Warner, Mitchell Gordon, Jeffery White, Renan Zanelatto, Philip J. Guo
Department of Computer Science

University of Rochester
Rochester, NY 14627

{jzhu29,jwarn10,mgord12}@u.rochester.edu, {jwhite37,rzanelat}@ur.rochester.edu, pg@cs.rochester.edu

Abstract—Online discussion forums are one of the most ubiq-
uitous kinds of resources for people who are learning computer
programming. However, their user interface – a hierarchy of
textual threads – has not changed much in the past four decades.
We argue that generic forum interfaces are cumbersome for
learning programming and that there is a need for a domain-
specific visual discussion forum for programming. We support
this argument with an empirical study of all 5,377 forum threads
in Introduction to Computer Science and Programming Using
Python, a popular edX MOOC. Specifically, we investigated how
forum participants were hampered by its text-based format.
Most notably, people often wanted to discuss questions about
dynamic execution state – what happens “under the hood” as
the computer runs code. We propose that a better forum for
learning programming should be visual and domain-specific,
integrating automatically-generated visualizations of execution
state and enabling inline annotations of source code and output.

Keywords—discussion forums, MOOC, CS education

I. INTRODUCTION

Online discussion forums are one of the most ubiquitous
kinds of resources for people who are learning computer
programming. Both novices and experts search the Web ex-
tensively while they are coding in order to learn the nuances
behind the programming languages, libraries, and frameworks
they are using [1], [2]. Many programming-related Web
searches lead to some sort of discussion forum: The Q&A
forum StackOverflow is one of the most popular [3], [4], but
thousands of niche forums exist for every conceivable piece
of programming technology. In addition, online documentation
pages, technical blog posts, and open-source code repository
websites often embed discussion forums at the bottom of each
webpage to allow people to discuss that page’s contents.

Discussion forums also play a central role in online com-
puting education initiatives such as MOOCs (Massive Open
Online Courses) [5], [6], Codecademy [7], and Khan Academy
CS [8]. Unlike those in traditional classrooms, instructors in
large-scale online settings cannot give high-fidelity, personal-
ized, real-time help to the tens of thousands of learners who
are visiting educational websites. The asynchronous nature of
discussion forums allows learners to post questions and help
one another at their own convenience. Instructors and teaching
assistants also contribute to and moderate forums. Aside from
being a resource for technical answers, forums are crucial for

Fig. 1. A screenshot from the forum of a MOOC on computer program-
ming [11], which looks like a typical online discussion forum consisting of
topics, threads, replies, and mechanisms for voting, searching, and filtering.

fostering a sense of camaraderie and social bonding for online
learners who never meet their classmates face-to-face [5].

Despite the widespread importance and usage of discussion
forums, their user interface has not changed much in the
past four decades since early incarnations such as Usenet
newsgroups [9] and The WELL [10]. Figure 1 shows a forum
from an introductory computer programming MOOC on the
edX platform [11]. This forum is comprised of a tree of
text-based threads; other kinds of programming forums look
almost identical. Some popular sites such as StackOverflow
have incorporated features such as voting, reputation metrics,
category tags, moderation, searching, sorting, filtering, rich-
text formatting, and syntax highlighting for code. But at
their core, most forums are simply a generic tree of textual
discussions. The exact same piece of forum software could be
used for a computer programming class as for a fan discussion
page about the latest celebrity gossip.

In this paper, we argue that this sort of generic discus-
sion forum is cumbersome for discussing common computer
programming topics and that there is a need for a domain-
specific visual discussion forum for learning programming. We
support this argument by presenting an empirical study of all
5,377 forum threads in the Spring 2015 offering of Introduction

Finding Design Recommendation

The majority of discussion forum threads in this course (∼60%) mentioned A forum optimized for learning programming must support inline anchored discussions
execution state, code snippets, output/errors, or autograder complaints. around these topics, eliminating the need to copy-and-paste into disconnected threads.

Generic forums have no built-in way of visualizing execution state, so posters A forum should integrate with a program visualization tool that automatically renders
must resort to indirect textual explanations or manually-drawn diagrams of state. diagrams of code execution state, eliminating the need for manually-drawn diagrams.

Generic forums are not designed for holding rich conversations around source code; A forum should treat code not as blocks of plain text, but rather as first-class objects
they treat code simply as plain text with some optional formatting. that can be annotated, versioned, and linked to code posted by other students.

Generic forums are not linked with a code execution engine, so they cannot A forum should tightly integrate with an IDE (Integrated Development Environment)
effectively capture discussions and experimentation around program output/errors. so that students can execute code, see output/errors, and discuss them within the IDE.

The autograder is a central component of programming courses, but how it works A program visualization tool can visualize how the autograder works; integrating the
is often unclear to students. Thus, some discussions involve complaints about it. forum with these visualizations allows students to more easily discuss grading issues.

TABLE I. SUMMARY OF FINDINGS AND ACCOMPANYING DESIGN RECOMMENDATIONS FROM OUR STUDY OF 5,377 DISCUSSION FORUM POSTS IN A
POPULAR COMPUTER PROGRAMMING MOOC.

to Computer Science and Programming Using Python [11], a
popular MOOC released by MIT on the edX platform.

Specifically, we investigated how forum participants were
hampered by the limitations of its text-based format. Most
notably, people often wanted to discuss questions about dy-
namic execution state – what happens “under the hood” as the
computer runs a piece of code. This observation corroborates
the fact that one of the fundamental challenges of learning
programming is developing a robust mental model of dy-
namic execution state [12], [13]; without good mental models,
novices are susceptible to hundreds of well-documented mis-
conceptions about how their code works [14] and cannot write
reliable programs of any significant size. But it is hard to talk
about execution state in an ordinary text-based forum since
run-time concepts such as stack frames, variables, pointers,
objects, and data structure shapes are invisible. Students must
now copy-and-paste snippets of code and text output from the
terminal into their posts, and then indirectly talk about run-
time semantics. There is no easy way to visualize this state.

Table I summarizes all of our study’s findings and accom-
panying design recommendations. In sum, we propose that a
better forum for learning programming should be visual and
domain-specific in nature, tightly integrating automatically-
generated visualizations of execution state [15] and enabling
inline annotations of both source code and program output.

Discussion forums are one of the longest-enduring forms
of online knowledge sharing, but a purely text-based format
ignores the rich nuances of each domain and hinders their
potential as an educational tool. There is no one-size-fits-
all solution, though; intuitively, the ideal forum for learning
world history should look very different from the ideal one
for learning computer programming. Our goal in this paper is
to uncover some of the limitations of using generic forums for
computing education in particular.

Our study is the first step toward informing the design
of the next generation of forums for programming, which
can benefit a broad audience due to the growing importance
of computational thinking across many fields of work [16].
As more people of all backgrounds learn programming from
online resources, it is important to provide them with the best
possible medium for seeking help and fostering discussions,
especially about technical topics that are cumbersome to
discuss using generic forum interfaces.

This paper’s contributions are:

• An empirical study of all 5,377 discussion forum
posts in a popular computer programming MOOC,
which shows how a generic text-based forum format is
cumbersome for discussing four topics that were men-
tioned in many threads: execution state, code snippets,
program output/errors, and autograder complaints.

• A proposal for the design of a new kind of domain-
specific visual discussion forum for learning program-
ming, informed by the findings of our study. Our
forum design integrates inline anchored discussions
and program visualizations into a Web-based IDE.

II. BACKGROUND AND RELATED WORK

Online discussion forums have been a staple of Internet cul-
ture for almost four decades, starting with Usenet newsgroups
and bulletin board systems (BBS) in the 1970s [9] and The
WELL [10] in the 1980s. Due to limited computational power
and network bandwidth at the time, these early forums were
all text-based, with conversations grouped into hierarchies
(trees) of threads. When Web forums started in the 1990s,
they simply replicated this text-based threaded format that
has now become ubiquitous. Numerous forums now exist for
topics ranging from parenting [17] to mathematics [18]. In
the 2000s, question-and-answer (Q&A) sites such as Yahoo!
Answers [19], [20], StackOverflow [3], [4], the StackExchange
network [21], [22], and Quora [23] grew popular. These sites
share the same format as traditional forums, except that each
thread starts with a question, followed by a series of answers
that users can vote on so that the best one rises to the top.

Although the majority of forums are purely text-based,
several kinds of niche forums have incorporated domain-
specific interface features. For instance:

• Image-based forums (called imageboards) make it
easy to post images alongside text. One of the most
popular, 4chan, combines a focus on images with
an ephemeral format where posts are usually deleted
within 4 minutes as incoming posts replace them [24].

• StackOverflow [3], [4] and other forums for computer
programming enable posters to write code in indented
blocks with syntax highlighting to improve readability.

• Mathematics forums such as MathOverflow [18] en-
able posters to write math formulas in LaTeX.

One forum interface variant used in education is called
anchored discussions [25], where each piece of course content
(e.g., lecture note, video, assignment) is tightly connected to
its own mini-forum. Guzdial and Turns created the CaMILE
system and found that anchoring improved on-topic discus-
sions and led to better learning in their classes [26]. Zyto et
al. took this idea further with NB [27], a Web-based system
that allows students to annotate and hold discussions directly
in the margins of PDF documents. NB enables students to ask
and answer questions in real-time while they are in the flow of
reading online lecture notes or digital textbooks. Many modern
online learning systems such as Khan Academy and MOOCs
feature a combination of anchored and traditional forums.

Forums are the primary way in which students commu-
nicate with each other and with instructors in MOOCs [5].
Researchers have studied aspects of forums such as collabora-
tive learning [28], reputation systems [6], power-user behav-
ior [5], and read-only (lurking) behavior [29]. However, prior
studies of MOOC forums have not focused on any particular
domain of learning, but rather on general student behavior
irrespective of subject matter. The study in this paper focuses
on computer programming MOOCs, with an eye toward how
to improve the forum’s user interface to support discussions
about programming-related topics.

Researchers in computer-mediated communication have
studied the myriad ways in which people interact with one
another on forums across diverse domains [19], [20], [28],
[17], [3], [4], [21], [23], [18], [22], [5], [6]. Although many
such studies take the forum’s user interface as a given, several
have suggested design improvements. For instance, researchers
who study software bug tracking systems [30], [31], [32] and
product support forums [33] have suggested improvements to
these kinds of interfaces to improve the workflows of software
developers and support specialists, respectively.

Our study focuses on how students use a text-based
threaded forum to discuss common elements within a computer
programming course and then proposes ways in which the fo-
rum’s user interface could be improved to better accommodate
these discussions. Our study is unique in that it turns a critical
eye on discussion forum interfaces in the domain of online
learning at scale, which prior work has not investigated, and
suggests improvements for computing education in particular.

III. METHODOLOGY

We analyzed discussion forum posts from the Spring 2015
offering of MITx 6.00.1x: Introduction to Computer Science
and Programming Using Python [11], a free MOOC (Massive
Open Online Course) released by MIT on the edX platform.
We chose to study this course because it is an introductory
programming MOOC from one of the major providers (edX),
has been offered four times before, and is based on MIT’s
popular introductory programming course that is taken by both
CS majors and non-majors. This course has no prerequisites
and is targeted at absolute beginners, although it aims to be
just as rigorous as its on-campus MIT counterpart [34].

This course ran for nine weeks, from January 7 to March
11, 2015. Each week, the staff released a new set of lecture

videos and homework assignments that involved programming
in the Python language. There was also a midterm and final
exam. The discussion forum (Figure 1) was the officially-
sanctioned way for students to communicate with one another
and with the course staff. In total, 4,267 people posted mes-
sages to 5,377 threads. The forum was very active, with an
average of 84 new threads being created every day, and each
thread’s initial post receiving an average of 1.8 replies.

Most people posting to the forum were normal students,
but there was also one instructor and 5 assistants called
Community TAs. A Community TA is a current student who has
established a good reputation for being helpful, responsible,
and respectful on the forum, so the instructor has given them
moderation privileges. Unlike normal students, the instructor
and Community TAs can edit and delete anyone’s posts.

Aside from being a standalone section of the course web-
site, the forum is also embedded within all other components
of the course. For instance, when a student is watching a
particular lecture video, they can ask questions about it at the
bottom of the page, and those will automatically be posted to
the forum and tagged with the proper context (e.g., “Week 2:
Lecture 4”). This is an example of anchored discussions [25],
[26], which brings discussions closer to the course content.

A. Manually Labeling Forum Posts

We scraped data from the edX website and wrote scripts to
automatically identify features such as poster identities, thread
lengths, and screenshots. However, it was hard to automatically
categorize the actual content of threads, so we relied on manual
labeling from six experienced Python programmers.

First, two researchers – the first and last author – separately
read a random sample of 200 threads and performed an
open card sort to identify the most salient topics that were
discussed in those threads, especially those that frequently led
to frustrations with the forum’s user interface. They converged
on four topics that were present in many of those threads:

• Execution state: Students often discussed dynamic
properties of run-time state by describing what they
think happens at each step of execution. For instance,
one post tried to explain some exception handling
code: “The else clause will only run if NO error
occurs. In this instance the divide by 0 error occurs,
so the else does not execute. The finally clause ex-
ecutes, then the divide by 0 is thrown to the system
handler.” Confusions stemmed from students’ inability
to visualize what their words were referring to.

• Code snippets: Students wrote or copied-and-pasted
snippets of code into posts. Some knew how to use
proper markup to have code appear in formatted
blocks, but others did not, so their code ended up
looking badly formatted. This led to subtle misunder-
standings since indentation is significant in Python.

• Output/errors: Students copied-and-pasted the tex-
tual output or errors from code execution into their
posts. Again, improper text formatting was a cause of
many frustrations, as was the sheer amount of output
that some programs dumped to the terminal.

a.) Total b.) Not General/Week1 c.) Not General/Week1 and has replies

threads 5,377 4,421 3,619

threads with some topic 3,072 (57%) 2,719 (62%) 2,599 (72%)

threads with Execution state 1,452 (27%) 1,253 (28%) 1,220 (34%)
threads with Code snippets 1,809 (34%) 1,589 (36%) 1,527 (42%)
threads with Output/errors 839 (16%) 772 (17%) 759 (21%)
threads with Autograder complaints 870 (16%) 799 (18%) 763 (21%)

TABLE II. THE NUMBER (AND PERCENT) OF THREADS IN THE DISCUSSION FORUM OF THE EDX MOOC Introduction to Computer Science and
Programming Using Python THAT MENTIONED EACH OF OUR FOUR MANUALLY-LABELED TOPICS.

• Autograder complaints: Finally, students complained
about the autograder – the automatic grading software
that checks the correctness of every programming
assignment. The autograder works by running the
student’s Python code on a collection of test inputs and
comparing the outputs to instructor-created answers.
Complaints often stemmed from the autograder inter-
face being too opaque, simply telling the user whether
each part was right or wrong, but not how or why.

After finalizing the topics, we recruited the remaining
authors (six total) to manually label all 5,377 forum threads ac-
cording to which of the above topics were present in each one.
We split threads into six groups so that each researcher labeled
896 of them. All six were experienced Python programmers.

To determine inter-rater reliability, all six researchers la-
beled the same random sample of 50 threads (1% of total
threads). The Fleiss’ kappa scores amongst six raters were
0.40 for identifying a thread as containing execution state,
0.76 for code snippets, 0.57 for output/errors, and 0.62 for
autograder complaints. 1.0 means perfect agreement, so these
scores indicate moderate agreement. Two factors lowered our
scores: having more raters tends to lower the scores, and
there was subjectivity involved in picking out topics (especially
mentions of execution state) embedded within blocks of text.

The rest of this paper describes our findings and design
recommendations, which are summarized in Table I.

IV. QUANTITATIVE FINDINGS: PREVALENCE OF TOPICS

Before describing specific examples of user frustrations
with the forum’s interface, we first present numbers to show
how prevalent our four labeled topics were throughout the
forum. Establishing prevalence is important because if these
topics comprise only a tiny fraction of forum posts, then it
is not worth trying to redesign future computing education
discussion forums to accommodate them.

Table II shows that the majority of threads contained at
least one of the four topics. The first column – “a.) Total”
– considers all 5,377 threads in the course, where 57%
were labeled with at least one topic. Many threads contained
multiple topics. The three most common co-occurrences were:
70% of execution state threads also showed code snippets (thus
conveying both static and dynamic properties of code), 44%
of autograder complaint threads also showed output/errors, and
22% of execution state threads also showed output/errors.

To see how prevalent these topics were in the most active
and relevant threads, we filtered using two criteria: First, many
threads in Week 1 involved course logistics and software setup

attached images 257
images with some topic 175 (68%)

images with Execution state 12 (5%)†

images with Code snippets 54 (21%)
images with Output/errors 69 (27%)
images with Autograder complaints 40 (15%)

TABLE III. NUMBER OF IMAGES ATTACHED TO FORUM THREADS THAT
DISPLAYED EACH TOPIC. († VERY FEW DISPLAYED EXECUTION STATE

SINCE THE FORUM HAD NO BUILT-IN WAY OF VISUALIZING THIS STATE.)

problems since there was not a programming assignment due
yet; thus, that first week was not representative of the rest of
the course. Also, threads posted to a catch-all “General” area
of the forum were side discussions that had little bearing on
the core course material. We filtered out those posts to create
the second column in Table II – “b.) Not General/Week1” –
where 62% had at least one labeled topic. Next, we saw that
threads with no replies were often badly-worded, off-topic,
or otherwise incomprehensible. Regardless of cause, students
and teaching staff did not try to engage with those threads.
We filtered those out to create the third column in Table II –
“c.) Not General/Week1 and has replies.” These are likely to be
threads that covered core course material and had engagement.
72% of these threads had some labeled topic, and over one-
third showed either execution state or code snippets.

Image attachments: In addition to mentioning these topics
in the text itself, people sometimes attached images to posts
to illustrate them. 5% of total threads included some image
attachment, which renders inline alongside the text.

Table III shows that out of 257 attached images, 68%
illustrated one of our four topics. Many attachments were
screenshots taken of either the edX website or of an external
piece of software. Only 5% showed execution state; this low
proportion was likely due to the forum having no built-in
means for visualizing such state, so posters had to turn to
external tools. For instance, in Figure 2, the poster attached a
screenshot from a Python program visualization tool [15] to
accompany their explanation of execution state.

Images containing code snippets, output/errors, and auto-
grader complaints – which together comprise 63% of images
– were usually screenshots of the online code editor or text
output window on the edX website. The fact that students
resorted to taking screenshots of plain-text content to include
in forum posts indicates that the forum’s user interface for text
entry is inadequate for their needs. One likely reason they took
screenshots rather than simply copying-and-pasting text was to
preserve spacing and indentation; some also drew annotations

Fig. 2. A forum post with an inline image attachment that is a screenshot
taken from an external program visualization tool (Online Python Tutor [15]).
Also, note that the code mentioned in this post is not properly formatted.

atop the screenshots to highlight selected portions.

Summary: The majority of discussion forum threads in this
course (∼60%) mentioned execution state, code snippets,
output/errors, or autograder complaints. Thus, improving
how these topics are rendered could have a noticeable impact
on future forums for computer programming courses.

V. REPRESENTATIVE EXAMPLES OF POST TOPICS

We now describe the most commonly-seen examples of
each topic and summarize user frustrations with each.

A. Execution state

Decades of computing education research have shown that
developing a robust mental model of program execution is a
fundamental skill for becoming a competent programmer [12],
[13], [14]. This finding is supported by the fact that one of the
most common kinds of discussions that occurred in the forum
was about dynamic execution state – i.e., what happens “under
the hood” as the computer executes a piece of code step by
step. However, the plain-text format of the forum is not well-
suited for holding conversations about the two major aspects
of execution state: control flow and data structure values. Here
are two representative posts about control flow:

Fig. 3. A post that shows code, program output, and an inline image
attachment made using an external drawing tool.

Fig. 4. A post with an image attachment that is a hand-drawn diagram.

“Q1-3: I try the code and don’t get an IndexException, therefore it
should run the else clause, shouldn’t it? So why it only prints the
finally statement and then gives an error message? Q2-2: I get it that
when it gets an IndexError it changes the function and run the code
again. But why the answer is not 0, 1, 0 meaning that after changing
the function it printed the finally and then printed the else and finally
again? Q3-3: why don’t I print 1 on the else clause after I pass the
except clause?”

“I wonder if someone would be kind enough to explain the flow
of control with a call to fib(x-1) and fib(x-2) in the same state-
ment(expression?). Does the function call all of the (x-1) first and
return those and then call all of the (x-2) values, or does it call both
of them at the same time for the same value of n?”

These kinds of posts are typically followed by a series of
confusing replies where students try to articulate what they
think is happening as the code executes. But there is no way
for them to see and discuss what actually happens during
execution, since the forum is not integrated with a debugger.

To discuss run-time values of data structures, students
either tried describing how the data looks in their post or
attached images containing screenshots taken from an auto-
mated program visualization tool (Figure 2), drawings from
an illustration tool (Figure 3), or even pictures taken of hand-
drawn sketches (Figure 4). Again, text is not well-suited for
conveying concepts that are better conveyed as visualizations,
but standard forums have no such visualization capabilities.

Fig. 5. A post showing a block of unformatted (presumably pasted) code.

Summary: Generic forums have no built-in way of visualiz-
ing execution state, so posters must resort to indirect textual
explanations or screenshots from external applications.

B. Code snippets

Students often copied and pasted code snippets into their
posts (Table II), which is expected since this is a programming-
intensive course. Although the forum had a “format-as-a-code-
block” feature, many students did not know how to use it, so
their code ended up looking like an unindented mess, as shown
in Figure 5. Although this issue seems superficial, if someone’s
code is hard to comprehend, then others may be less likely to
respond with useful help, or even to respond at all.

Students also interspersed code with accompanying ex-
planations or questions, again without using special fonts to
demarcate their code. Here is a short example: “Why does
type(varA) or type(varB) == str always evaluate to True?”
Although experienced programmers know how to parse these
sentences, novices unfamiliar with Python syntax can have
trouble telling which parts are code and which are English.

When someone is replying to a post containing code, they
cannot directly point to specific parts like people can do if they
are sitting in front of the same computer debugging together.
So students referred to previously-posted code by copying
and pasting it into their replies, and then making edits or
adding comments. This behavior resulted in threads where the
same code snippet was repeated multiple times with minor
variations, which made it hard to hone in on meaningful diffs.

Presumably to avoid formatting issues, some students took
screenshots of their code editor, drew arrows to highlight
certain parts, and then pasted those images into posts. But
doing so prevents others from copying and pasting the code
into their replies, thus hindering further discussion.

Summary: Generic forums are not designed for holding rich
conversations around source code; they treat code simply as
plain text with some optional formatting.

C. Output/errors

Students often copied and pasted outputs and error mes-
sages from program executions into their posts to ask about
what went wrong. Just like with code snippets, many did not
know how to use the “format-as-a-code-block” feature, which
resulted in threads being littered with unformatted blobs of
text. To avoid formatting problems, some students attached

Fig. 6. A post complaining about output discrepancies with the autograder,
using an attached screenshot with one part underlined in blue.

screenshots of their terminal output and highlighted specific
lines (Figure 6).

Even if formatting were not an issue, the sheer volume of
output and/or error messages dominated some threads. Since
novices did not know which parts were significant, they simply
copied and pasted everything in their terminal, which made it
hard for others to read and refer to specific parts in their replies.

Discussions about output and errors were hampered by
the fact that nobody could reproduce the original executions
that created those outputs or edit the poster’s original code
to debug the underlying issues. All people could do was read
long blobs of text and speculate on what they think happened
in the original code to produce that text. In contrast, if people
were sitting in front of the same computer debugging and
experimenting together, they could directly edit the code and
re-execute to see how their changes affect the output and errors.

Summary: Generic forums are not linked with an underlying
code execution engine, so they cannot effectively capture dis-
cussions and experimentation around program output/errors.

D. Autograder complaints

The final major topic we saw in the forum was complaints
about the autograder software that checks the correctness
of programming assignments. Since it is tedious to manu-
ally grade student assignments, many computer programming
courses use some kind of autograder software. This course
uses a standard type of autograder that compares the output
of the student’s code with known-correct outputs provided by
the staff. However, it provides only a binary right-or-wrong
response and does not give any feedback on why a student’s
answer may be wrong. The rigidity of the autograder led to
many student complaints. These often arose from the student’s
output differing from the expected output in some minor way
such as extra whitespace, misspellings, or punctuation marks.
Since it was hard for students to see the diffs between their
output and the expected output, they often accused the grader
of having a bug since their own output “looks right.” In these
kinds of forum posts, students often copied and pasted large
chunks of autograder output, similar to posting output/errors.

Figure 6 shows a typical complaint where a student posts a
snippet of their output, argues for why it ought to be the correct
output, and then accuses the grader of having a bug. This kind

of complaint was so pervasive that one of the Community TAs
eventually replied: “It’s possible that there could be a problem
with the grader. But so far it’s been the student each time. I
know it can be frustrating when it doesn’t work and you believe
the problem is with the grader. But you have to step back, take
a deep breath, calm down a bit, and then post when you aren’t
angry. It will most likely save you the embarrassment of finding
out that you were wrong, not the grader, after you’ve lost your
patience and accused the grader of being wrong.”

Aside from formatting gripes, a deeper source of frustration
with the autograder was a lack of transparency in how it
operated. Students often did not know which global variables
and functions were pre-defined by the autograder, so they over-
rode those in their own code, which led to mysterious errors.
Also, the runtime environment of the autograder differed from
how students ran code on their own computers (e.g., differing
versions of Python, operating systems, or locales), so code that
worked locally sometimes failed in the autograder.

Just like how program visualizations expose the way ex-
ecution state looks “under the hood,” future forum designers
could create similar visualizations to show how the grading
process works step by step, so that students can see exactly
how their work is being assessed. It can be aggravating to
work for dozens of hours on a programming assignment only
to have the grader simply print out a single word: “Wrong.”

Summary: The autograder is a central component of many
programming courses, but how it works is opaque to students.
Generic forums provide no affordances to see how the
autograder operates or to annotate its output.

VI. LIMITATIONS OF STUDY

We studied only one forum in one particular course,
so replicating on additional courses would improve external
validity. Note that this course is one of the largest and most
popular MOOCs for introductory computer programming [11],
and other programming MOOCs and even residential courses
use the same kind of generic text-based forum as this one.
Thus, hopefully our findings generalize to those settings.

Also, we did not personally interview students to see if
they were truly frustrated with features of the forum’s user
interface. Rather, we inferred feelings of frustration based on
our own judgment of the tone and content of student posts.

Our inter-rater reliability scores were only moderate. More
iterative rounds of coding would have likely improved those
scores, but the focus of this study was on qualitative aspects
of forum limitations, so the accuracy of the exact numbers of
posts in each topic does not change our main findings.

Finally, we did not perform any controlled experiments of
different user interface conditions. This paper presents a purely
retrospective study of a MOOC that has already completed.
Thus, we cannot make any claims that features of the forum
improve or hinder student learning in specific ways, since we
did not formally test students’ knowledge.

VII. TOWARD A DOMAIN-SPECIFIC VISUAL DISCUSSION
FORUM FOR LEARNING COMPUTER PROGRAMMING

Our study has shown the ways in which the user interface
of a generic forum is not ideal for topics that are commonly-
discussed in introductory computer programming courses. We
believe that a more effective forum should be domain-specific –
catering to the needs of programming students – and also visual
rather than purely text-based. We now propose one possible
design for such a forum, based upon our study’s findings.

Extreme anchoring: Our main idea is that all discussions
should take place within the Web-based IDE (Integrated Devel-
opment Environment) where students work on programming
assignments. The IDE should contain these panes, which cover
the most common student tasks and discussion topics:

• Code editor: standard editor with syntax highlighting

• Output display: emulates standard terminal output

• Visual debugger: single-step debugger that visualizes
execution state such as stack frames, variables, data
structures, and pointers (see Figure 7 for an example)

• Autograder visualizations: for more transparency,
use the aforementioned visual debugger to also visu-
alize the test environment in which the student’s code
is being run, including which functions and data are
pre-defined, and how the grader executes their code to
produce the final verdict of “right” or “wrong”

Educators have found anchored discussions [25], [26], [27]
to be effective since discussions take place near the respective
course content instead of in a separate forum. For our proposed
design, we take anchoring to the extreme: students should be
able to start discussions by selecting any element of the IDE
and popping up a mini-discussion thread directly on top of it.
Thus, students can annotate any line of code or output, and
any data structure in the visual debugger. That way, students
no longer need to copy-and-paste code, output, and autograder
messages into a separate disconnected forum and deal with the
ensuing formatting gripes and lack of context (e.g., Figure 5).

Also, this IDE must fulfill all of a student’s programming
needs throughout the course, so that they do not need to install
software or run code on their own computer. By providing a
single run-time environment, we eliminate all forum questions
about outputs being different on different students’ computers.

Synchronizing with a traditional forum: Students spend
most of their time in the edit-run cycle: editing code in the code
editor, executing that code, studying the output and errors in
the output display, and then re-editing. Let’s say that a student
Bob has a question about some portion of his code or output
while he is working. Instead of copying-and-pasting into a
traditional forum, Bob simply highlights the relevant snippet
and starts an anchored discussion thread right on top of it.

How can anyone else see Bob’s new thread, though? Every
student is working in their own independent IDE on their
own assignments, so they are not actively monitoring Bob’s
IDE for changes. To solve this problem, we propose to still
keep a traditional forum in the course, but to have the IDE
automatically post threads to that forum on the student’s
behalf. In the above example, when Bob highlights the code

Fig. 7. A program visualization tool such as Online Python Tutor [15] enables the user to: a.) write code, b.) execute it and then single-step forwards and
backwards through execution points, and see a visualization of c.) stack frames and d.) data structures at each step. We propose to augment this tool with
annotation bubbles (shown in blue in this mock-up) so that users can click on any element in the code or visualization and start an anchored discussion about it.

snippet to start a discussion, the IDE posts a new thread for
him, tagged with the current assignment he is working on and
with the post’s contents set to his question and code snippet.

It is important to keep the familiar format of a traditional
forum since nearly 40% of topics in our course were not
about code, execution, output, or the autograder (see Table II).
We still want to allow students to discuss higher-level or
miscellaneous topics on the forum. However, since the IDE
makes it easy to start anchored discussions and auto-posts them
to the main forum, we hope that students never need to copy-
and-paste code or output, thus avoiding the mess of Figure 5.

Code snapshots, versioning, and diffs: After Bob highlights
a snippet and starts an anchored discussion, the IDE posts it to
the main forum. Now say that Alice is browsing the course’s
main forum and sees that new post from Bob. When she opens
it, the forum redirects her to a snapshot of Bob’s IDE that
contains the exact version of code he posted, along with the
anchored discussion thread within it. Note that this snapshot is
probably not Bob’s current code, since he has probably edited
it since posting his question several minutes or hours earlier.

Unlike a normal forum post, this snapshot is not a static
block of text; it is a live instance of the Web-based IDE. Thus,
Alice can not only see Bob’s code, but she can also execute
it to see outputs and step through it with the visual debugger.
Most importantly, she can edit Bob’s code to try out different
variations. If she modifies Bob’s code and then posts a reply to
his thread, the IDE saves a new version and records that it was
derived (“forked”) from Bob’s original version. The IDE then
automatically posts Alice’s reply under Bob’s original thread
and shows a compact diff of her code versus Bob’s to show
what she has changed. Anyone can click on that diff to expand
it and see a side-by-side view of Alice’s versus Bob’s code.

This snapshotting and auto-versioning feature makes it
easy for people to comment on and modify each other’s code
without cluttering up forum threads by copying-and-pasting
nearly-identical pieces of code. Instead, people can simply edit
code in their IDE and have the system automatically create new
snapshots that are linked to their respective posts. Finally, the
IDE keeps track of the lineage (provenance) of code edits by all
posters, so that Bob (the OP) can learn from how respondents
have changed his code while trying to answer his question.

Automatically-generated program visualizations: Finally,
recall that one of the most common kinds of discussions was
about dynamic execution state, but the plain-text forum format
makes it hard to converse about control flow and data structure
values. As a workaround, some students have pasted images
into their posts. To ease such discussions, we can integrate
automatically-generated program visualizations into the forum.

Figure 7 shows a Web-based program visualization system
called Online Python Tutor [15], which enables the user to:
a.) write code, b.) execute it and then single-step forwards and
backwards through execution points, and see a visualization of
c.) stack frames and d.) data structures at each step. This tool
can be integrated into the IDE so that students can use it as
a visual debugger to diagnose what is wrong with their code.
Also, it can serve as an autograder visualization to display
how the autograder sets up the test environment and then steps
through the student’s code to produce the final grade.

While visualizing execution, the user can click on any line
of code, stack frame, or data structure and start an anchored
discussion on top of it (see blue pop-up bubbles in Figure 7).
Using this mechanism, students can directly talk about each
step of the visualization instead of attaching diagrams to
regular forum posts (e.g., Figure 2). Thus, instead of trying
to describe execution state in words, students can see their
code’s actual execution state and ask questions about it.

VIII. CONCLUSION

We presented an empirical study of 5,377 discussion forum
threads from a popular MOOC, Introduction to Computer Sci-
ence and Programming Using Python, and found that around
60% of threads were about execution state, code, output/errors,
or autograder complaints. We showed representative examples
of such threads, which indicate how a generic text-based forum
is cumbersome for discussing topics that are ubiquitous in
computer programming classes. To ease such discussions, we
proposed a new kind of domain-specific visual forum that inte-
grates anchored discussions and program visualizations into a
Web-based IDE. In future work, we hope to implement, deploy,
and evaluate the pedagogical efficacy of our proposed design.
Reducing friction in the user interface will hopefully enable
programming students to hold more engaging discussions.

REFERENCES

[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’09. New York,
NY, USA: ACM, 2009, pp. 1589–1598.

[2] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: Integrating web search into the development
environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York, NY, USA:
ACM, 2010, pp. 513–522.

[3] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Discov-
ering value from community activity on focused question answering
sites: A case study of stack overflow,” in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’12. New York, NY, USA: ACM, 2012, pp. 850–858.

[4] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’11. New York, NY, USA: ACM, 2011, pp. 2857–2866.

[5] J. Huang, A. Dasgupta, A. Ghosh, J. Manning, and M. Sanders,
“Superposter behavior in MOOC forums,” in Proceedings of the First
ACM Conference on Learning @ Scale Conference, ser. L@S ’14. New
York, NY, USA: ACM, 2014, pp. 117–126.

[6] D. Coetzee, A. Fox, M. A. Hearst, and B. Hartmann, “Should your
MOOC forum use a reputation system?” in Proceedings of the 17th
ACM Conference on Computer Supported Cooperative Work & Social
Computing, ser. CSCW ’14. New York, NY, USA: ACM, 2014, pp.
1176–1187.

[7] “Codecademy: Learn to code,” http://www.codecademy.com/, accessed:
April 2015.

[8] “Khan Academy: Computer programming,” https://www.khanacademy.
org/computing/computer-programming, accessed: April 2015.

[9] S. L. Emerson, “Usenet: A Bulletin Board for Unix Users,” Byte
magazine, vol. 8, no. 10, pp. 219–236, October 1983.

[10] H. Rheingold, The virtual community : homesteading on the electronic
frontier. Reading, Massachusetts: Addison Wesley, 1993.

[11] “edX course: Introduction to Computer Science and
Programming Using Python,” https://www.edx.org/course/
introduction-computer-science-mitx-6-00-1x-0, accessed: March
2015.

[12] B. Du Boulay, “Some difficulties of learning to program,” Jour. Edu-
cational Computing Research, vol. 2, no. 1, 1986.

[13] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm,
R. McCartney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon,
and L. Thomas, “A multi-national study of reading and tracing skills
in novice programmers,” in Working Group Reports from ITiCSE
on Innovation and Technology in Computer Science Education, ser.
ITiCSE-WGR ’04. New York, NY, USA: ACM, 2004, pp. 119–150.

[14] J. Sorva, “Visual program simulation in introductory programming
education,” Ph.D. Dissertation, Aalto University, 2012.

[15] P. J. Guo, “Online Python Tutor: Embeddable Web-based Program
Visualization for CS Education,” ser. SIGCSE ’13. ACM, 2013, pp.
579–584.

[16] D. Rushkoff, Program or Be Programmed: Ten Commands for a Digital
Age. Soft Skull Press, 2011.

[17] S. Y. Schoenebeck, “The secret life of online moms: Anonymity and
disinhibition on youbemom.com.” in ICWSM, E. Kiciman, N. B. Ellison,
B. Hogan, P. Resnick, and I. Soboroff, Eds. The AAAI Press, 2013.

[18] Y. R. Tausczik, A. Kittur, and R. E. Kraut, “Collaborative problem
solving: A study of mathoverflow,” in Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work & Social Com-
puting, ser. CSCW ’14. New York, NY, USA: ACM, 2014, pp. 355–
367.

[19] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman, “Knowledge
sharing and yahoo answers: Everyone knows something,” in Proceed-
ings of the 17th International Conference on World Wide Web, ser.
WWW ’08. New York, NY, USA: ACM, 2008, pp. 665–674.

[20] F. M. Harper, D. Raban, S. Rafaeli, and J. A. Konstan, “Predictors
of answer quality in online q&a sites,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’08.
New York, NY, USA: ACM, 2008, pp. 865–874.

[21] S. Ahmed, S. Yang, and A. Johri, “Does online q&a activity vary based
on topic: A comparison of technical and non-technical stack exchange
forums,” in Proceedings of the Second (2015) ACM Conference on
Learning @ Scale, ser. L@S ’15. New York, NY, USA: ACM, 2015,
pp. 393–398.

[22] A. Furtado, N. Andrade, N. Oliveira, and F. Brasileiro, “Contributor
profiles, their dynamics, and their importance in five q&a sites,” in
Proceedings of the 2013 Conference on Computer Supported Cooper-
ative Work, ser. CSCW ’13. New York, NY, USA: ACM, 2013, pp.
1237–1252.

[23] G. Wang, K. Gill, M. Mohanlal, H. Zheng, and B. Y. Zhao, “Wisdom
in the social crowd: An analysis of Quora,” in Proceedings of the
22Nd International Conference on World Wide Web, ser. WWW ’13.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2013, pp. 1341–1352.

[24] M. S. Bernstein, A. Monroy-Hernández, D. Harry, P. André,
K. Panovich, and G. G. Vargas, “4chan and/b: An analysis of anonymity
and ephemerality in a large online community.” in ICWSM, 2011.

[25] A. J. B. Brush, D. Bargeron, J. Grudin, A. Borning, and A. Gupta,
“Supporting interaction outside of class: Anchored discussions vs. dis-
cussion boards,” in Proceedings of the Conference on Computer Support
for Collaborative Learning: Foundations for a CSCL Community, ser.
CSCL ’02. International Society of the Learning Sciences, 2002, pp.
425–434.

[26] M. Guzdial and J. Turns, “Effective discussion through a computer-
mediated anchored forum,” Journal of the Learning Sciences, vol. 9,
no. 4, pp. 437–469, 2000.

[27] S. Zyto, D. Karger, M. Ackerman, and S. Mahajan, “Successful class-
room deployment of a social document annotation system,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’12. New York, NY, USA: ACM, 2012, pp. 1883–
1892.

[28] S. Dewiyanti, S. Brand-Gruwel, W. Jochems, and N. J. Broers,
“Students experiences with collaborative learning in asynchronous
computer-supported collaborative learning environments,” Computers in
Human Behavior, vol. 23, no. 1, pp. 496 – 514, 2007.

[29] V. P. Dennen, “Pedagogical lurking: Student engagement in non-posting
discussion behavior,” Comput. Hum. Behav., vol. 24, no. 4, pp. 1624–
1633, Jul. 2008.

[30] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information
needs in bug reports: Improving cooperation between developers
and users,” in Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, ser. CSCW ’10. New
York, NY, USA: ACM, 2010, pp. 301–310. [Online]. Available:
http://doi.acm.org/10.1145/1718918.1718973

[31] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open
bug reports,” in Proceedings of the 2011 iConference, ser. iConference
’11. New York, NY, USA: ACM, 2011, pp. 106–113. [Online].
Available: http://doi.acm.org/10.1145/1940761.1940776

[32] O. Baysal, R. Holmes, and M. W. Godfrey, “No issue left
behind: Reducing information overload in issue tracking,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 666–677. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635887

[33] P. K. Chilana, T. Grossman, and G. Fitzmaurice, “Modern software
product support processes and the usage of multimedia formats,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’11. New York, NY, USA: ACM,
2011, pp. 3093–3102. [Online]. Available: http://doi.acm.org/10.1145/
1978942.1979400

[34] “Course Philosophy (PDF): Introduction to Computer Science and Pro-
gramming Using Python,” https://courses.edx.org/c4x/MITx/6.00.1x 5/
asset/6001x course philosophy.pdf, accessed: March 2015.

