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ABSTRACT
Over the past year (2022–2023), recently-released AI tools such
as ChatGPT and GitHub Copilot have gained significant attention
from computing educators. Both researchers and practitioners have
discovered that these tools can generate correct solutions to a va-
riety of introductory programming assignments and accurately
explain the contents of code. Given their current capabilities and
likely advances in the coming years, how do university instructors
plan to adapt their courses to ensure that students still learn well?
To gather a diverse sample of perspectives, we interviewed 20 in-
troductory programming instructors (9 women + 11 men) across
9 countries (Australia, Botswana, Canada, Chile, China, Rwanda,
Spain, Switzerland, United States) spanning all 6 populated conti-
nents. To our knowledge, this is the first empirical study to gather
instructor perspectives about how they plan to adapt to these AI
coding tools that more students will likely have access to in the
future. We found that, in the short-term, many planned to take
immediate measures to discourage AI-assisted cheating. Then opin-
ions diverged about how to work with AI coding tools longer-term,
with one side wanting to ban them and continue teaching program-
ming fundamentals, and the other side wanting to integrate them
into courses to prepare students for future jobs. Our study findings
capture a rare snapshot in time in early 2023 as computing in-
structors are just starting to form opinions about this fast-growing
phenomenon but have not yet converged to any consensus about
best practices. Using these findings as inspiration, we synthesized
a diverse set of open research questions regarding how to develop,
deploy, and evaluate AI coding tools for computing education.
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1 INTRODUCTION
Although research areas such as neural networks, program syn-
thesis [43], and natural language programming [75] have been
under development for decades, over the past year a series of com-
mercial product launches brought those ideas into wider public
consciousness. For instance, in June 2022 the GitHub Copilot AI
code generation tool [35] launched after a year in private beta. In
late November 2022, the ChatGPT AI chatbot launched [82]. Some
analysts estimated that it reached 100 million users in two months,
the fastest growth of any app on record [47]. Then, less than three
months later, both Microsoft and Google announced ChatGPT-like
conversational AI integration into their web search engines [74, 91].

This recent growth in popularity of AI tools has raised wide-
spread concerns about issues such as bias [21, 63], ethics [17], mis-
information [57], data licensing and privacy [22], energy usage and
climate impacts [100], and centralization of corporate power [114].
One specific concern on the forefront of many educators’ minds is
the fact that these tools can effectively solve homework assignments
and exam problems across a wide variety of school subjects [50].

Within computing education in particular, researchers have
discovered that AI tools can be especially effective for program-
ming due to them being trained on billions of lines of open-source
code [61] and due to code having a more constrained logical struc-
ture than free-form natural language. These tools can generate
solutions to programming assignments and exam questions [32, 38,
39, 111] and explain the contents of code [33, 68, 97]. Given these
current realities and extrapolating to a future where AI capabilities
are likely to improve, how are computing educators planning to
adapt their courses in response to the growing proliferation
of AI code generation and explanation tools?

To gather a diverse set of perspectives on this question, we inter-
viewed 20 introductory programming course instructors (9 women
+ 11 men) in universities across 9 countries (Australia, Botswana,
Canada, Chile, China, Rwanda, Spain, Switzerland, United States)
spanning all 6 populated continents. Our participants ranged from
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Figure 1: Summary of our study findings. We interviewed 20 introductory programming instructors and present both a) their
short-term plans, and their longer-term plans to either b) resist or c) embrace the use of AI coding tools in their classes.

having zero prior experience with AI coding tools to having used
them for personal programming projects.

Figure 1 summarizes our findings: a) In the short-term, all par-
ticipants were concerned about cheating, which led to immediate
reactions such as weighing exam scores more, banning the use
of AI, or showing students the capabilities and limitations of AI
tools. Longer-term, opinions diverged into two groups, with some
wanting to b) resist the use of AI tools and continue teaching pro-
gramming fundamentals, while others wanted to c) embrace AI
tools by integrating them into their classes to help both students
and instructors. Participants brainstormed a range of ideas for both
resisting and embracing AI in future classes, ranging from creating
‘AI-proof’ assignments that may deter AI tools to new kinds of
assignments where students must collaborate with AI.

Over the past academic year (2022–2023) computing educa-
tion researchers have been actively discussing these topics in blog
posts [19, 54, 55], a SIGCSE position paper [14], and workshops [65,
67]. Our paper complements these ongoing discussions by present-
ing the first empirical study of computing instructor perspectives on
AI code generation and explanation tools. The timing of our study is
unique since our interviews occurred in early 2023, which is the
first academic term where large numbers of students have access to
these tools due to ChatGPT’s release in late 2022. Thus, our findings
capture a rare snapshot in time when computing instructors are
recounting their early reactions to this fast-growing phenomenon
but have not worked out any best practices yet.

Since we are still very early in the adoption curve of AI coding
tools, we hope our study findings can spur conversations within
the computing education community about whether to resist or
embrace these tools in the coming years, and how to work with
these tools in ethical and equitable ways. We have a unique and
timely opportunity to develop both policies and social norms that
influence how these toolsmay impact future generations of students.
Thus, we conclude this paper with a set of open research questions
derived from our study findings (Section 7).

In sum, the contributions of this paper are:

• A comprehensive snapshot of the current state of AI coding
tools and the range of human-centered research surrounding
them as of early 2023, less than a year after the public release
of ChatGPT and GitHub Copilot.

• The first study of computing instructors’ perceptions of AI
coding tools, which found that they were most concerned
about cheating in the short term but that longer-term their
sentiments bifurcated into either wanting to resist these tools
or to embrace them by integrating them into future classes.

• A set of open research questions for the computing education
community to consider as AI coding tools potentially grow
more widespread in the coming years.

2 BACKGROUND: THE CURRENT STATE OF
AI CODING TOOLS IN EARLY 2023

Over the past year (2022–2023), AI code generation and explanation
tools have become more widespread with the release of products
like GitHub Copilot (currently free for students and instructors) and
ChatGPT (currently free for the public). These are built upon neural
network models trained on terabytes of textual data scraped from
the public internet (e.g., billions of webpages, billions of lines of
open-source code from GitHub, and the contents of open-licensed
books [24, 85]). Their large-scale architecture enables them to ‘learn’
patterns from data and generate text that a human might plausibly
write, which is why they are commonly called Large Language
Models (LLMs) [24]. And since code is a structured form of text,
these tools can also synthesize code; thus, some refer to AI code
generation as “Large Language Model (LLM)-driven program syn-
thesis” [11, 55]. For brevity, throughout this paper we use the terms
‘AI coding tools’ or simply ‘AI tools’ as shorthand to refer to these
tools. Users interact with these AI tools in three main ways:

1) Standalone: The simplest interface to LLMs is a web application
that shows a text box, such as the OpenAI Playground [84] for
GPT-series LLMs [20, 24, 85] (e.g., GPT-4) and TextSynth for vari-
ous open-source LLMs [36]. The user can input some text (called a
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‘prompt’ [112]) and the tool tries to generate text (or code) that plau-
sibly continues from the user’s input. An example code-generation
prompt might be “Write a Python function that adds two numbers.”

2) Conversational: Chatbots such as ChatGPT [82] improve upon
a standalone interface by enabling users to hold a back-and-forth
multi-turn conversation with the AI. This allows users to refer back
to prior context instead of needing to re-enter their entire prompt
every time. For instance, a user could say “Now rewrite this code
using more descriptive variable names” and ChatGPT knows that the
user is referring to code that was written earlier in the conversation.
3) IDE-integrated: Tools such as GitHub Copilot [35], Replit Ghost-
writer [93], Amazon CodeWhisperer [8], Codeium [2], and Tab-
nine [110] integrate into the user’s IDE (e.g., Visual Studio Code).
This lets them do autocomplete and generate suggestions within
the context of the user’s codebase as they are coding. Another ben-
efit of IDE integration is that these tools can pull in the user’s own
surrounding code (both before and after the cursor, plus in other
open project files [94]) as context, which enables them to generate
personalized code suggestions to fit the user’s current task. Also,
some IDE-integrated AI tools include an embedded chat interface.

As an indicator of just how fast things are moving in this space,
many new LLMs and AI coding tools have been announced in the
2.5 months between when this paper was submitted (mid-March
2023) and when the final camera-ready publication was completed
(early June 2023). Examples include new coding-capable LLMs such
as LLaMA [103], GPT-4 [83], Cerebras-GPT [34], CodeGen2 [79],
DIDACT [70], replit-code [5], and StarCoder [61]; LLM-based chat-
bots such as Alpaca [102], Claude [1], Dolly [29], Koala [42], and
Vicuna [26]; and new IDE-integrated AI tools such as Sourcegraph
Cody [7], Google’s Codey LLM (similar name but unrelated tool!)
integrated into Colab and Android Studio IDE [90], and Meta’s
CodeCompose [78]. GitHub also announced new Copilot X [3]
enhancements, which include IDE-embedded AI chat interfaces.

2.1 Current Capabilities AI Coding Tools
To provide context for the early-2023 era when our study’s inter-
views took place, we now summarize the current capabilities of AI
coding tools that are most relevant for educational use cases.

2.1.1 Code generation capabilities. Given natural language and/or
code as input, these tools can generate relevant code:
Specification-to-code: Given a natural language description for
what a piece of code should do (e.g., a function or class specifica-
tion), these tools can generate code to meet that specification. For
example: “Create a function that takes a list of first names and a
list of last names then returns a new list with those names joined.”
Note that many CS1/CS2 programming assignments are phrased as
specifications that students can directly input into tools.
Conversational specification-to-code: The main limitation of
‘specification-to-code’ is that novices are not good at writing precise
specifications, so the generated code may not be what they want.
To overcome this limitation, one can use the ‘flipped interaction
prompt pattern’ [112] to have a back-and-forth conversation with
ChatGPT before it generates the requested code. For instance, the
user could write: “ChatGPT, I want you to write a Python function to

join first and last names. Ask me clarifying questions one at a time
until you have enough information to write this code for me.”1

Code completion: Tools that integrate into the IDE, such as Co-
pilot [35], Ghostwriter [93], CodeWhisperer [8], and Tabnine [110],
enable the user to start typing code and see a list of contextually-
relevant code completions, like an AI-enhanced autocomplete.
Code refactoring: Once the user has written some code, they can
ask the tool to rewrite it in order to improve readability, style, or
maintainability; e.g., “Refactor this function to use smaller helper
functions.” Again, holding a conversation with ChatGPT and an-
swering its follow-up questions can help it to generate better code.
Code simplification: One kind of refactoring that studentsmay try
is to ask the tool to simplify a piece of code. For instance, “Rewrite
this code using only simple Python features that a student in an
introductory programming course would know about.” Students could
use this technique to generate more ‘plausible-looking’ answers to
CS1/CS2 assignments, because otherwise it may look suspicious if
they turn in code that uses too many advanced language features.
Language translation: These tools can also translate code written
in one programming language into another (albeit imperfectly).
They can also translate mentions of human languages within code.
Test generation: Users can also ask AI tools to generate test cases
(e.g., unit/regression tests). For instance, Copilot has a TestPilot
feature [72] that generates tests and interactively refines them based
on user feedback. These tools can often create tests for unusual
edge cases that novices may not think of on their own [113].
Structured test data generation: AI tools can also generate struc-
tured data that users can pass into their software to manually test it.
For instance, one could ask a tool to generate 100 fake user profiles
(with fake names, ages, and locations) in some format, like JSON or
a Python dictionary, in order to test a prototype social media app.

2.1.2 Code explanation capabilities. Given a piece of code and
natural language instructions as input, these tools can explain what
that code does in a way that emulates how a human instructor
might explain it to a student:
Explanations at varying expertise levels: The most straightfor-
ward prompt is to ask the tool to explain what a piece of code does.
One can also use the ‘persona prompt pattern’ [112] to generate
explanations for a given expertise level. For instance, “ChatGPT, I
want you to take on the persona of a university CS1 instructor talking
to a student who has never taken a programming class before. Ex-
plain what this function does: [user’s code].” Users can also ask it to
automatically generate code comments or API documentation.
Debugging help: Users can ask the tool to find possible bugs in
the given code and explain why those may be bugs. Note that
the tool does not run the code or perform rigorous static code
analysis. But in practice, ‘superficial’ bugs in student code (e.g., off-
by-one errors in a loop bound) can be found by the tool matching
against patterns learned from billions of lines of open-source code.
And with ChatGPT, one can ask follow-up clarifying questions
and engage in a back-and-forth debugging conversation, which
simulate some aspects of working with a human tutor [71].
1The prompts in this paper are simplified illustrative examples that may not work
optimally as-is. In practice, it likely takes a fair amount of iteration to craft prompts
that work reliably and effectively. This process is known as prompt engineering [112].
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Conversational bug finding: A more powerful way to do AI-
assisted bug finding is to start a back-and-forth debugging conver-
sation. For instance: “Here is my code and the output I see when I run
it. This output looks wrong because the last two array elements are
duplicated. What should I change in my code to help me find the bug
more easily?" The AI tool might suggest a code edit; then the user
can apply that edit, re-run their modified code, and paste the new
text output or error message into the next round of dialogue. This
conversational technique elegantly bypasses the AI tool’s limitation
that it cannot directly run the user’s code – instead, the user runs
the code on their computer and sends the output to the AI tool.

Code review and critique: AI tools can also serve as a code re-
viewer and give detailed critiques. Again, the ‘persona pattern’ [112]
can be useful here, e.g.,: “I want you to take on the persona of a senior
software engineer at a top technology company. I have submitted this
code to you for a formal code review. Please critique it: [user’s code]”

Conceptual explanations with code examples: The user can
also ask the tool to explain a programming concept just like how
they would ask a human instructor. For instance: “What’s the differ-
ence between checked and unchecked exceptions in Java? Give code
examples for each.” The tool’s ability to generate code examples can
enable some basic level of (albeit imperfect) fact-checking since the
user can run that code and see if it matches the given explanation.

2.2 Notable Limitations of AI Coding Tools
Here are some commonly-known limitations of these tools and
other reasons people have cited for not using them:

• Inaccuracies: The most notable limitation is that these tools
can generate inaccurate outputs with no quality guaran-
tees [81]. This may result in subtly-inaccurate code or incor-
rect explanations which appear believable to novices.

• Code quality: They may generate code that is stylistically
non-ideal, that may not be robust to edge cases, that have
security vulnerabilities [86], or that is not aligned with what
students are learning in a particular class.

• Knowledge cutoff: These tools only ‘know’ what is in their
training data, which is an older snapshot of the web. So they
cannot help with, say, a JavaScript library released last week.
That said, they do get periodically re-trained, and Microsoft
and Google are augmenting them to search the web [74, 91].
Also, tools like Sourcegraph Cody [7] augment an LLM by
retrieving code and text from a user’s own project repository
in order to generate responses about facts that are not on the
public web (a form of retrieval-augmented generation [60]).

• Learning curve: Novices may have a hard time producing
high-quality results with simple prompts [115]. It takes some
level of expertise to craft effective and reliable prompts [112].

• Nondeterminism: AI tools can produce different outputs even
when given the same prompt. There are settings to reduce
randomness of outputs, but whenever the underlying AI
models get updated, results can still end up non-reproducible.

• Offensive content: AI tools can generate outputs that ex-
hibit harmful biases [17, 63]. For instance, AI-generated code
examples may contain offensive stereotypes embedded in
variable names or strings [14, 18, 24].

• Ethical objections: Some people are opposed to using AI
tools due to concerns about their creators disregarding soft-
ware licenses when scraping code repositories for training
data [22], the environmental impact of training and running
LLMs [100], and companies using underpaid human workers
to label and filter training data [89].

3 RELATEDWORK
There are fast-growing lines of research on the technical architec-
ture of LLMs (large languagemodels) that power AI code generation
tools2, applications of LLMs to many specific domains (e.g., cre-
ative writing [77]), and broader societal implications of LLMs [17].
Instead of surveying the entire landscape of research on LLMs, we
focus our discussion on parts of the literature that are the most
relevant to our interview study. This encompasses a range of human-
centered research on how LLM-based code generation tools relate
to the fields of software engineering and computing education.

3.1 How Software Developers Use AI Code
Generation Tools

Several recent groups of researchers have studied how software
developers use GitHub Copilot in practice, since it is marketed
as a tool to help developers be more productive [52]. Bird et al.
combined forum analysis, a think-aloud study, and a survey to
gather usage patterns such as Copilot enabling faster code-writing
but at the expense of less code understanding [18]. Sarkar et al.
analyzed blog and forum posts to give a similar overview [96].
Cheng et al. studied how developer communities might build trust
in AI tools [25]. Barke et al. found that developers used it in two
ways: to help them explore options and to accelerate their path
toward a known goal [13]. Peng et al. found in a 95-user between-
subjects study that using Copilot helped developers complete a
web development task 56% faster than the control group [87]. But
Vaithilingam et al. found in a 24-user within-subjects study that
although developers liked using Copilot as a starting point, it did
not always improve task completion time or accuracy [106].

More broadly, HCI researchers have done usability studies of AI
code generation tools and proposed improved interface designs. For
instance, Jayagopal/Lubin et al. analyzed the usability of 5 program
synthesis tools (Copilot was one of them) and found that those
which run in the background (without explicit user triggering) can
bemore learnable for novices [49]. Sun et al. discovered users’ needs
for explainability in AI code generation tools [101]. Vaithilingam et
al. prototyped 19 user interface ideas for augmenting IDEs with AI
assistance [105]. Ross et al. augmented an IDEwith a conversational
AI tool (similar to ChatGPT) called the Programmer’s Assistant [95].
McNutt et al. proposed a design space for how to integrate AI
assistance within computational notebooks, which have different
affordances than IDEs [73]. Liu et al. proposed a user experience
enhancement that translates the user’s prompts into code and then
back again to natural language in order to clarify what the tool
intends to do [64].
2Some examples of LLMs specialized for programming include CodeBERT [37],
PyMT5 [28], Codex [24], AlphaCode [62], CodeGen [80], CodeGen2 [79], Parsel [116],
InCoder [40], CodeT [23], StarCoder [61], CodeCompose [78], replit-code [5], and
Codey [90]. Note that modern general-purpose LLMs such as GPT-4 [83] are trained
on large amounts of code as well, so they can also do code generation and explanation.
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Although our study focuses on computing instructors and not
software developers, some of the instructors we interviewed men-
tioned that their goal is to train the next generation of developers.
Thus, instructors have been thinking about how to prepare students
for a future where they might use these AI tools on the job.

3.2 Computing Education Research on AI Tools
When these AI tools first came out, computing education researchers
were curious about whether they could solve programming as-
signments that are typically given in CS1 and CS2. For instance,
Finnie-Ansley et al. found that Codex3 could solve both CS1 [38]
and CS2 [39] exam problems better than most students and also
performed well on variations of the classic Rainfall Problem [98].
Wermelinger followed a similar study protocol but instead used
Copilot within an IDE (instead of standalone Codex) to qualita-
tively understand the user experience of coding with an AI tool
in an IDE [111]. Denny et al. then showed that using prompt engi-
neering (i.e., adjusting the wording of the input prompt to Copilot)
can significantly improve results when prompts are phrased more
like step-by-step pseudocode [32]. Vahid et al. found that Chat-
GPT could solve all of the programming assignments in several
CS1 courses either by directly copying the assignment prompt into
ChatGPT or, if that did not work, by telling it which autograder
test cases failed and having it correct itself [104]. A student copied
all the 2022 ‘AP Computer Science A’ free-response questions into
ChatGPT, and it scored 32 out of 36 points [99].

A complementary line of research uses AI tools to assist instruc-
tors in creating course content: MacNeil et al. used these tools to
generate explanations for CS1-level code [68] and then embedded
them within an interactive e-book to see how students engage with
them [66]. Sarsa et al. used Codex to automatically generate pro-
gramming exercises and code explanations, both of which could be
used to help students to get extra practice and guidance [97]. Denny
et al. extend this idea by combining Codex with learnersourcing
(i.e., crowdsourcing using learners) to generate and validate exer-
cises in a way that is personally motivating to learners [33]. Lastly,
Leinonen et al. use Codex to generate a specialized type of code
explanation: enhanced compiler and run-time error messages [59].

Lastly, an emerging line of work measures the impact of AI tools
on learners. Prather et al. observed how students used Copilot on
CS1 assignments in a lab study and then interviewed them about
their first impressions [92]. And Kazemitabaar et al. ran a controlled
study with 69 pre-college students where half used Codex to learn
Python and the other half did not [53]. They found that the Codex
group could write code better while demonstrating a similar level
of understanding as the control group.

These projects all focus on applying or extending AI coding tools.
Our study complements their findings by reporting the perspectives
of instructors regarding how they plan to prepare for a future where
these tools become more widespread.

3.3 Perspectives of Computing Instructors
In terms of methodology, the closest related studies to ours are
those that uncover the perspectives of computing instructors. For

3Codex is the LLM that GitHub Copilot was originally built on, although newer versions
of Copilot may move to GPT-4 [3] since Codex was discontinued in March 2023.

instance, Mirhosseini et al. interviewed 32 computing instructors
across 5 countries to ask about the day-to-day challenges they face
when running their courses [76]. Although their study did not ask
about AI tools, they found that “having more examples or variety
of assignments could benefit students both as additional resources
as well as a way to prevent plagiarism.” [76] AI tools can potentially
help generate these more varied examples and assignments [67,
97]. Krause-Levy et al. interviewed 21 CS instructors to get their
views on the purpose of prerequisite coursework [56]. Valstar et
al. interviewed 14 faculty [107] then surveyed 249 faculty [108] to
discover how they felt CS programs should be preparing students
for industry jobs. In contrast to these prior studies, to our knowledge
our study is the first to interview computing instructors about their
perspectives on AI code generation and explanation tools.

Of recent note is a SIGCSE position paper that shares similar
motivations as our study. The authors warn that “the sudden via-
bility and ease of access to these [AI] tools suggest educators may
be caught unaware or unprepared for the significant impact on
education practice resulting from AI-generated code. We therefore
urgently need to review our educational practices in the light of
these new technologies.” [14] Although that paper was not an em-
pirical study, it poses relevant questions such as: “What does an
introductory computing course look like when we can assume that
students will be able to easily auto-generate code solutions to their
lab and assignment tasks by merely pasting problem descriptions
into an AI-powered tool?” Our interview protocol (Section 4) shares
some similarities with this question, and some of our findings con-
firm what the authors foresaw as challenges and opportunities
of AI tools (see Section 6 for details). Also, two other events at
SIGCSE 2023 – a workshop on generating course materials using
AI tools [67] and a Birds-of-a-Feather session on the implications of
AI for computing instructors and students [65] – indicate ongoing
community interest in the topics that our paper covers.

4 METHODS
To gather instructors’ perspectives on AI tools, in early 2023 we con-
ducted semi-structured interviews with 20 instructors who teach in-
troductory programming courses at universities across 9 countries.
Each was done by one researcher over Zoom videoconferencing,
lasted 45 minutes to 1 hour, and was video-recorded upon getting
verbal consent from the participant. Our interview protocol was
semi-structured and began with three background questions:

• What is your level of personal experience with AI code gen-
eration and explanation tools?

• How much do you think that students are using these AI
tools right now?

• How much have you heard your colleagues discussing these
AI tools? (And in what settings?)

The purpose of these background questions is to establish a
baseline for each participant’s perceptions of the status quo in early
2023. They also help get the participant into the frame of mind to
discuss our main open-ended question:

Imagine a future where all students had an AI tool
that can: 1) automatically write code to ‘perfectly’
solve any programming problem in your classes and
be undetectable by plagiarism detectors since AI tools
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Table 1: We interviewed 20 introductory programming instructors to elicit their thoughts on the use of AI code generation and
explanation tools in their classes. The ‘Years’ column indicates years of experience as a full-time instructor so far.

ID Gender Age Country Years Type of university Prior experience with AI coding tools
P1 F 35-44 U.S. 9 Private PhD-granting experimented with ChatGPT in her class
P2 F 35-44 U.S. 8 Public PhD-granting no usage
P3 M 35-44 Chile 8 Private PhD-granting minimal usage (ChatGPT)
P4 M 45-54 U.S. 16 Private PhD-granting minimal usage (Copilot)
P5 M 65-74 Switzerland 35 Public PhD-granting no usage
P6 F 55-64 U.S. 23 Private liberal arts minimal usage (ChatGPT)
P7 M 35-44 U.S. 8 Public PhD-granting used for programming and in his class
P8 F 35-44 Botswana 3 Public PhD-granting no usage
P9 F 35-44 U.S. 14 Public PhD-granting no usage, purposely avoiding AI tools for now
P10 M 45-54 Rwanda 15 Private PhD-granting no usage
P11 M 55-64 U.S. 25 Private liberal arts minimal usage (ChatGPT)
P12 F 35-44 U.S. 6 Private liberal arts no usage
P13 M 25-34 China 2 Public PhD-granting minimal usage (ChatGPT)
P14 M 45-54 Canada 23 Public undergrad-only lots of usage for programming
P15 F 35-44 U.S. 2 Public PhD-granting used for programming
P16 F 25-34 U.S. 4 Public PhD-granting lots of experience using AI tools in her class
P17 F 45-54 U.S. 14 Private liberal arts minimal usage (ChatGPT)
P18 M 45-54 Spain 20 Public PhD-granting no usage
P19 M 55-64 Australia 33 Public PhD-granting no usage, but has AI research experience
P20 M 25-34 U.S. 3 Public undergrad-only experimented with ChatGPT, AI researcher

generate diverse code variants (not exact copies), and
2) explain what any piece of code does in English so
that it can answer free-response homework questions
for students too.
Walk me through your CS1/CS2 course materials and
let’s brainstorm how you would help students to learn
effectively given this possible future. What might you
do in both the short-term and longer-term?

We displayed this question on-screen via Zoom screen-share and
spent the majority of each interview focused on it.

4.1 Rationale for Our Interview Protocol
The design of our interview protocol was guided by several theo-
retical considerations: First, we framed the interview session as a
speculative futures brainstorming exercise [46] where we encour-
aged the participant to imagine a possible future where these AI
tools are ubiquitous (“Imagine a future where all students had an AI
tool that can ...” ). This methodology comes from the field of specula-
tive design [10], where the goal is to propose new designs without
being bound by present-day constraints. In our context it means
that we are not doing a usability study of ChatGPT, Copilot, or any
specific AI tool; rather, we are assessing how instructors respond
to hypothetical future tools in that vein. Aside from our main guid-
ing question, we fostered a sense of idea exploration throughout
the interview, reassuring participants that there are no ‘right’ or
‘wrong’ answers in the curriculum ideas they were proposing to us.

Next, we grounded each conversation in concrete artifacts that
the participant presented to us via Zoom screen-share (“Walk me
through your CS1/CS2 course materials ...” ). This technique was
inspired by the cognitive walkthrough [69] methodology in HCI,

where having an artifact to discuss (such as course materials) can
help more substantive ideas come out of brainstorming sessions.
One risk here is that participants might get fixated on low-level
details, so we also gave them time to do higher-level reflections
before and after walking through their course materials.

To reduce cognitive biases such as priming [12] or anchoring [41]
effects, we purposely did not mention specific tools such as Chat-
GPT or Copilot in our interview protocol. Everything was worded
generically as ‘AI tools.’ However, if participants started talking
about specific tools, then we let the conversation naturally turn to
discussing the details of those tools.

4.2 Interview Participant Backgrounds
Table 1 summarizes the backgrounds of the 20 computing instruc-
tors we interviewed. We recruited participants from amongst our
professional networks and using personal referrals from colleagues.
We sought out instructors who taught programming-based uni-
versity CS1 or CS2 courses since those are many students’ entry
points into computing. Also, AI tools may have more immediately-
visible effects on CS1/CS2 since recent research has shown that
they can already solve many kinds of CS1/CS2 programming as-
signments [32, 38, 39, 111].

Table 1 shows that we aimed for diversity across multiple di-
mensions such as gender (9 female + 11 male), age (ranging from
20s to 70s), years of full-time experience as an instructor (from
2 to 35 years, mean=13.5 years), type of university, and country.
Most notably, our participants worked in universities across 9 coun-
tries (Australia, Botswana, Canada, Chile, China, Rwanda, Spain,
Switzerland, United States) spanning all 6 populated continents.
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4.3 Data Overview and Analysis
One researcher conducted each interview via Zoom and took times-
tamped notes during the interview. Then a second researcher inde-
pendently watched each Zoom video recording and took their own
set of notes. Both researchers met regularly to discuss their notes
and watch excerpts of videos together. Throughout this process,
we iteratively came up with a set of themes using an inductive ap-
proach [30]. We made several iterations together as a team before
finalizing on our split into short-term and long-term curriculum
ideas that participants mentioned in their interviews, with long-
term itself then split into two groups (Section 5.3 and Section 5.4,
respectively). We originally positioned sets of ideas as ‘dimensions’
along a continuous spectrum like a design space diagram [45, 58].
However, we realized that the ideas that participants proposed
were more discrete in nature (e.g., using paper exams vs. computer-
based exams) rather than falling along a spectrum, so we ended up
grouping our findings using the format summarized by Figure 1.

4.4 Study Scope and Limitations
We scoped our study to CS1 and CS2 university instructors since, at
this time, most prior research on AI coding tools focus on these in-
troductory courses [32, 33, 38, 39, 68, 97, 111]. Thus, upper-division
university courses, K-12 settings, and informal learning environ-
ments outside of schools are beyond the scope of our study, so our
findings may not generalize to them.

Next, we designed our interview study as a speculative futures
brainstorming exercise. Thus, if that future does not materialize
(e.g., if AI tools stop being developed or are made less accessible)
then the findings from our study may not be as applicable for future
researchers or practitioners. Relatedly, while we asked participants
to brainstorm how they might adapt their courses around a hypo-
thetical future AI tool, in practice they often talked about a specific
present-day tool such as ChatGPT or Copilot because those tools
are what they have heard about or tried firsthand. Although we
encouraged participants to generalize beyond current tools, some
of our findings may still be tied to what participants think about the
present-day capabilities of AI tools rather than what future tools
might look like.

Lastly, even though our participants came from 9 countries across
6 continents, the majority were still from universities in the United
States. Thus, despite our efforts to recruit globally, our findings
are not as globally-representative as we would ideally like [16].
And since we conducted all the interviews in English, we are likely
missing out on the diverse experiences of instructors worldwide
who teach programming in other natural languages [44].

5 FINDINGS: COMPUTING INSTRUCTORS’
PERCEPTIONS OF AI CODING TOOLS

Although our 20 interview participants teach courses in a wide
range of institution types and locations (see Table 1), everyone felt
that their learning environments would likely change in response
to the growing presence of AI coding tools. To organize the themes
that surfaced from our interviews, this section begins with what
instructors have heard so far about these tools (Section 5.1) and
any short-term changes they are now making to their courses
(Section 5.2). Then we present the ways they envision their courses

changing longer-term in response to AI, which fall into two possible
futures: one where students are discouraged from using AI tools
in introductory programming courses (Section 5.3), and another
where these courses embrace AI tools (Section 5.4).

5.1 What do instructors currently know about
AI coding tools in early 2023?

We began each interview with questions about each participant’s
personal experience with AI coding tools, how much they think
students are now using them, and how much their colleagues are
discussing this topic. Their responses represent a baseline as of
early 2023, a few months after ChatGPT launched on Nov 30, 2022.
Personal experience so far: Although programming assistance
tools have existed for many years (e.g., code autocomplete in IDEs),
participants mentioned that AI-based tools only came to the fore-
front of their attention over the past year. A fewwere early adopters
of trying GitHub Copilot for personal programming in 2022 (e.g.,
P7, P14, P15), but the majority started being aware of AI coding
tools after the release of ChatGPT at the end of 2022. The rightmost
column of Table 1 shows that roughly half tried out ChatGPT to
varying degrees, ranging from casual personal use to experiment-
ing with integrating it into their classes already. Eight participants
reported never having used these tools yet (‘no usage’ in Table 1),
but all had heard of them being discussed by others. P9 purposely
avoided using AI tools for ethical reasons since she told her students
not to use them so she wants to follow the same rules herself.
How much do they think students are using AI coding tools?
Since for many instructors this is their first full teaching termwhere
ChatGPT is available, nearly everyone we interviewed responded
with some variant of “I don’t know.” The general sentiment was
that as instructors it was hard for them to get a sense of whether
students were using AI tools because students would likely not tell
the professor about it. P7 asked one of his undergraduate TAs about
whether she had witnessed students using it, and the TA responded
that it almost felt like a taboo topic. The TA said she was afraid to
be seen in the computer lab with ChatGPT open in her web browser
(even for innocuous use cases) out of fear that she may be setting a
bad example for her students; she said that it felt like being caught
browsing a website that offered cheating services. P14 was the only
one who saw direct evidence of students using AI tools. For some
assignments he requires students to submit screenshots of their
computer, and he has seen screenshots with the ChatGPT website
open in a browser tab with the start of the assignment prompt
clearly visible. He told us that “they don’t even try to hide it.”
How much are their colleagues discussing AI tools? How-
ever, despite not having a clear sense of how much students were
using AI coding tools, all participants had heard their colleagues
discussing these tools in recent months. These discussions ranged
from informal hallway chats to faculty mailing list threads all the
way to official department committees formed to investigate poli-
cies around AI tools. For instance, P6 said that over 20 faculty across
her university contributed to a 57-message-long email thread re-
acting to the implications of AI tools for teaching. P9 said that
her department formed a committee to investigate and eventually
make policy decisions about AI usage in computing courses. P13
was the only one who reported their university issuing an official
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policy decision; he showed us a policy document banning the use
of ChatGPT and other AI tools in all classes across the university.

5.2 Short-term concerns about cheating lead to
immediate course adjustments

Although our interview questions encouraged participants to think
longer-term about future uses of AI tools in their classes, everyone
started their conversation by bringing up the topic of cheating as
an immediate short-term concern that is on their minds. Note that
all 20 participants brought up the topic of AI-assisted cheating near
the start of their interviews even though we did not mention cheating
as a topic in our interview questions.

A common concern was that students who relied on AI code gen-
eration tools to get the answers would not be learning the material.
For example, a student who used an AI tool to complete an entire
assignment could receive a good grade without meeting the learn-
ing objectives. P12 and P15 both independently pointed out that
since future AI tools may become more seamlessly integrated into
IDEs, some students might be unintentionally using them without
realizing they are activated, thus hindering their learning.

Even though students already have access to outside resources
such as Stack Overflow, assignment solutions leaked on the web,
and peers who can help them, instructors were especially concerned
about AI tools because these tools generate variations of code that
are not exact copies and are thus less detectable by plagiarism
detectors. Instructors with more prior AI experience, such as P14,
said that oneway to detect the use of these tools is if students submit
assignments containing more advanced programming constructs
(e.g., Python list comprehensions or lambdas) that have not yet
been taught in an introductory course.

This concern was compounded by the pervasive belief among
instructors that AI tools had inherent limitations – even though
these tools could get “95%” of the problem correct, they would never
be able to produce correct code in all scenarios, as P15 described:
“In the real world, programming is all about edge cases, so you get 95%
there and that other 5% is the tricky part. Copilot is pretty good with
the 95%.” Similarly, P15 noted how “a lot of times the code it [GitHub
Copilot] creates is fairly subtly incorrect because your situation is just
slightly different from where it learned from, so you usually have to
tweak one or two things.” Thus, she perceived that not only would
students using AI tools be cheating, but they would be “cheating
badly” since their code would be incorrect in subtle ways that they
would not be able to understand.
Short-term adjustments to courses: In response to concerns
about academic integrity, the majority of participants (14 out of
20) were already making adjustments now during the current term.
Some common examples include:

• Weigh exam scoresmore heavily: P3, P5, P7, P12, P15, P17,
and P18 adapted by weighing exam scores more in students’
final grades, which involved no changes to course content.
The rationale for doing so is that exams are taken under
controlled environments so it is presumably harder to use
AI tools to cheat on them. But P14 noted that exams are not
cheat-proof: He witnessed a recent cheating case where a
student had a smartphone hidden in their lap, took photos
of their paper exam pages, sent those photos to friends in a

WhatsApp group, and then those friends used ChatGPT to
generate the solutions and message it back to them.

• Ban AI tools in class: P2, P4, P9, and P13 added bans of
AI tools into their syllabuses this term. They showed us
their syllabus and described how they wrote the bans using
language that equatedAIwith other forms of code plagiarism.
A few others, such as P6 and P17, referred students to their
university’s honor code when they had questions about AI,
but they did not issue a course-wide ban since they wanted
to deal with usage on a case-by-case basis. P17, P19, and
P20 argued against such bans, with P19 remarking that “it
would be impossible to enforce, so why bother?” Similarly,
both P17 and P20 said that an official ban would only arouse
students’ curiosity since a ban could be interpreted as the
school admitting that AI tools were effective.

• Expose students to the capabilities and limitations of
AI tools: P1, P7, and P16 took the opposite approach by
showing students what AI tools can and cannot do. P1 added
an optional exercise where students use ChatGPT to solve
a programming problem and turn in a chat transcript anno-
tated with their reflections. P7 showed a live coding demo in
class where he copied in homework questions from a prior
term into ChatGPT and asked his class to critique the AI-
generated code to assess its strengths and weaknesses. P16
did something similar by annotating how ChatGPT solved
her class’s prior homeworks. Then she let students use any
AI tool they wanted on a take-home coding exam and reflect
on their experiences. Note that these activities were easy to
add to their current courses because they did not involve
creating brand-new assignments. The rationale here was
to show students that these tools were imperfect so if they
wanted to use them then they had to carefully scrutinize the
generated code, which may itself be a learning opportunity.

Participants remarked that these imperfect short-term patches were
the best they could do right now given time constraints. The sudden
appearance of ChatGPT at the end of 2022 meant that when they
started teaching in January 2023, it was the first term when lots
of students got access to a tool that could potentially solve their
programming assignments. The last time they taught their current
class, which was usually 6 to 12 months ago, AI tools were not
nearly as widespread or easily accessible to students.

5.3 Longer-term ideas (1 of 2): Resisting AI tools
may improve programming pedagogy

While everyone started their interviews by discussing cheating
as a short-term concern (Section 5.2), eventually the conversation
turned to brainstorming longer-term ideas that they could poten-
tially implement over the next year or few years. These ideas were
either about 1) resisting the use of AI tools in introductory program-
ming courses (this section), or 2) embracing AI tools and integrating
them into new curriculum (Section 5.4).
Why resist? Participants wanted to resist using AI tools in intro-
ductory programming courses due to:

• Importance of learning programming fundamentals:
The most common reason given here is that participants felt
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it is still important to learn the fundamentals of program-
ming, even if AI tools will be doing a lot of the coding in the
future. Several made the oft-repeated analogy to math educa-
tion after the introduction of calculators: Students still learn
the fundamentals of arithmetic and algebra even though cal-
culators can do all of those routine operations. P1 said that
using AI coding tools is like “giving kids a calculator and
they can play around with a calculator, but if they don’t know
what a decimal point means, what do they really learn or do
with it? They may not know how to plug in the right thing,
or they don’t know how to interpret the answer.” P1 and P5
both made an analogy to power tools versus hand tools for
performing physical labor. P5 said that AI is like a power
tool that professionals use but novices should start with the
equivalent of hand tools (i.e., writing code themselves) to
understand the fundamental principles before graduating to
power tools. P1 said that “it feels a bit weird to give them [CS1
students] this power so early.” P8 brought up the concept of
fragile knowledge [88] and how she was concerned that if
students use code that they did not write themselves, then
the mental models they build about that code may not be
robust; she likened it to how she currently sees students
copying code from Stack Overflow into their projects and
using that code without trying to understanding it first.

• Ethical objections to AI: P9 brought up the lawsuit filed
against GitHub [22] for potentially violating the software
licenses of open-source code repositories they used to train
the Codex model that powers Copilot. She said that since the
legal ramifications of these AI tools have not been clarified
yet, it may be unethical for her to even teach her students
how to use them: “What if my students use AI at their job and
their company gets sued, that’s not good!” She does not want
to risk teaching her students to do something that may turn
out to be illegal. Similarly, P17 brought up how these models
ingest not only open-source code but terabytes of written
and image content created by people who did not consent
to have their work used in AI tools without attribution.

• Potential lack of equity and access: P6 raised questions
about who is providing the data for training these AI sys-
tems, whether that data is representative of certain groups
of people, and whether users may unknowingly reinforce
biases by programming using AI tools trained on such data.
P9 was concerned that students who are more ‘in the know’
about technology trends will learn how to use AI tools from
peers while those without much prior technology exposure
will not (i.e., an AI digital divide [31]). Thus, even though she
is currently banning AI tools in her class, she may consider
teaching with them in the future in order to share this knowl-
edge with students in a more equitable way so that everyone
starts off with access to this same baseline knowledge.

How to resist? Participants proposed the following ways to resist
AI tools in their courses, operating under the assumption that more
and more students will gain access to these tools in the future. They
cannot stop students from using AI since even an official ban in the

syllabus cannot always be enforced, so they want to redesign their
curricula to mitigate its effects.

• Designing AI-proof assignments: One set of ideas for re-
sisting AI tools involved designing assignments to be more
‘AI-proof.’ Several participants mentioned how traditional
CS1/CS2 assignments consisting of self-contained program-
ming tasks that are autograded with a test suite are no longer
viable since AI can solve them [32, 104]. One way to improve
upon them is by adding more local context. For instance, P7
walked us through a Java CS1 assignment that used thou-
sands of lines of starter code to wrap around the Twitter
API, which he and his TAs had written just for this class. He
tried putting in his assignment questions into ChatGPT and,
unsurprisingly, it could not generate good solutions since
it lacked the context of his starter code. P4 and P6 showed
us similar setups involving locally-written libraries of code,
with P6 walking us through an assignment that uses a cus-
tom graphics library she developed for her class. These in-
structors felt that creating context-specific assignments with
bespoke starter code may be a good way to stay ahead of AI
tools’ capabilities.4 P3 (from Chile) and P8 (from Botswana)
described a different form of local context: cultural and lan-
guage context. They both wanted to incorporate local slang
and cultural references from their home regions into pro-
gramming assignments because their hunch is that AI tools
trained on U.S./English-centric web data would likely not be
knowledgeable about those nuances and would not be able
to produce code to solve those assignments.

• Bringing back paper exams: P1, P4, P6, and P10 proposed
going back to paper-based exams to assess learning since
it would be harder to cheat using AI in this format. In re-
cent years, especially during remote-only classes due to the
global pandemic, there has been more of a trend toward
computer-based exams in CS1/CS2, with the benefits being
that students can run, test, and debug their code. However,
students need to install special software that locks down their
browser or records their session or even webcam, which can
feel invasive [9]. Paper exams eliminate the need for such
software and make it harder (but not impossible) for stu-
dents to use devices to cheat since proctors can scan the
room to make sure that only pencil and paper are present. P1
supported this idea but acknowledged that exams can feel
too high-stakes and stress-inducing. So she proposed giving
more frequent lower-stakes quizzes throughout the semester
and letting students drop their 3 lowest quiz scores.

• Oral, video, and image-based assessments: Aside from
paper exams, some participants also brainstormed other
forms of assessment that could both 1) prevent the use of
AI tools and 2) assess student learning in more meaningful
ways. P7 and P10 brought up using oral exams where a TA
would question students live one-on-one, though they ac-
knowledged the challenges of scaling to large classes. To
scale better, P7, P9, and P13 wanted students to video-record

4A few weeks after these interviews, Sourcegraph announced Cody [7], which uses
retrieval-augmented generation [60] to take in the context of a user’s entire custom
codebase. Future AI tools will likely be able to ingest large bespoke codebases as well.
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themselves tracing through code execution or explaining
code that they just wrote. P3 brought up the fact that since
AI tools can take only text instructions as input, he wanted
to create assignments where the inputs are images, such as
sketching out what he wants the student’s code to do.5

• Process-based assessments: P9 mentioned that in soft-
ware engineering courses, students are already graded in
part based on the process of engineering (e.g., making feature
branches and pull requests on GitHub, doing code reviews for
teammates), not just on the final output. Can we adapt some-
thing similar for CS1/CS2? This may discourage students
from using AI tools since they will not be able to explain
their design process in depth. (But future AI tools might be
able to come up with convincing process explanations too!)

Some participants predicted that their ideas for resisting AI tools
may actually improve pedagogy in introductory courses. For in-
stance, oral- and video-based assessments can get students to think
more deeply about why code works the way that it does rather than
simply writing code to obtain a known answer. And contextualized
programming assignments can be more motivating to students than
the generic questions that AI tools can now solve.

5.4 Longer-term ideas (2 of 2): Embracing AI
tools for forward-looking CS curricula

The second set of longer-term ideas involved why and how to
embrace AI coding tools in the coming years. Note that some of
these ideas came from the same people who raised objections in the
prior section, which indicates that participants were not universally
pro- or anti-AI. Notably, several such as P2 who had put short-term
bans on AI tools in their current classes were open to the idea of
allowing AI in the future if they had time to adapt their curricula.
P2 mentioned: “I feel like the class would have to change a lot because
almost all the questions we ask students could be solved by this thing
[ChatGPT]. We’re gonna have to change what we’re asking of them.”

Why embrace? Participants gave four main reasons why they
wanted to integrate AI tools into their curricula.

• Preparing students for future jobs: The most common
reason instructors gave for integrating AI tools into CS1/CS2
was that they felt responsible for preparing students for a
future where they will likely be programming using AI. P2,
P12, and P18 argued that learning computing should not be
about programming but should rather be about how to use
software tools to solve real problems; up until now writing
code has been the most expressive way to do so, but if using
AI to generate code becomes the industry norm, then that is
what we should be teaching. P17 stated how “it’s inevitable”
that AI tools will pervade future workplaces, so the sooner
her students learn to evaluate the output of those tools, the
more prepared they will be for industry. This heavy focus on
job preparation was also emphasized by P20, who teaches
at a public undergraduate-only school designated as a U.S.
minority-serving institution (over 70% of students belonging
to a minority ethnic group): P20 mentioned that many of his

5The week after we interviewed P3, OpenAI announced a new GPT-4 LLM, which can
now take images as input and analyze those images to generate relevant code [83].

students are looking for focused vocational job training, so
it was his responsibility to keep on top of AI coding trends
to help his students remain competitive for jobs.

• Making one’s institution more competitive: A related
motivation for embracing AI was several instructors’ desires
to make their institution stand out among their peers, which
could help attract future students. P11 predicted that many
universities will be slow to change in response to AI – if
his CS department can be among the first to integrate AI
coding tools into its curriculum, then it can emerge as a
leader in this field. P16 mentioned that the rise of AI tools
is a fun opportunity to update her curriculum and that it is
generating excitement amongst others in her department.
Thus, if more colleagues adopt these tools, then that might
elevate her department’s reputation as a leader in pedagogy.

• Covering more advanced material in CS1/CS2: P2, P11,
P12, P16, and P19 discussed how if students can code using
the help of AI tools, then that will enable instructors to cover
more advanced material in CS1/CS2. Currently, significant
amounts of time are spent teaching the rote mechanics of
programming. But if AI tools can automate away those me-
chanics, then CS1/CS2 can be more about software design,
which is usually reserved for more advanced courses. P16
said “I could imagine having a lot more fun talking about
concepts rather than syntax” and how she felt that AI would
allow her to cover a lot more ground in CS1. P19 proposed to
get rid of what we now think of as CS1/CS2 and instead have
students jump straight into software development courses
since AI may be able to take care of the more mundane cod-
ing details in the future. He made an analogy to the invention
of compilers a few decades ago: “We don’t need to look at
1’s and 0’s anymore, and nobody ever says, ‘Wow what a big
problem, we don’t write machine language anymore!’ Com-
pilers are already like AI in that they can outperform the best
humans in generating code.”

• AI may improve equity and access: In contrast to Sec-
tion 5.3 where participants mentioned objections related to
equity and access, others felt that AI could be beneficial here.
For instance, P12 works at a liberal arts college and teaches
introductory programming using Arduino to provide a moti-
vating context for students from art and design backgrounds.
She felt that the mechanics of coding was discouraging for
many of her students who just wanted to create interest-
ing projects. She mentioned that if AI could generate this
low-level Arduino code then students can be more moti-
vated to do more creative design and problem-solving in
class. P15 similarly mentioned how writing English prompts
for AI tools can be far less intimidating than writing code
and having to get all the syntax right, so that could make
programming more accessible to a wider range of student
backgrounds. P19 was excited by how AI code generation
can potentially improve diversity in the software industry
by encouraging more diverse types of students to learn com-
puting, including those who are currently discouraged by
having to manually write code. He felt that future computing
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curricula will be more about fostering good communication
(i.e., communicating with AI via natural language prompts
and back-and-forth dialogue) rather than the obscure details
of programming language syntax and semantics.

Integrating AI tools into current courses: Some participants
brainstormed ways that AI tools could integrate into their current
courses without requiring any major structural changes.

• Giving personalized help to students: P12, P15, and P17
were excited that by doing some prompt engineering [112]
one could use AI tools to explain step-by-step how code
works, teach relevant concepts on-demand within the con-
text of each student’s code, and create extra exercises for
students who want more practice. P12 reported that after
students complete assignments or labs in her class they never
go back to reflect on why they might have gotten the an-
swers right or wrong. She tries to provide these explanations
during office hours and hopes that AI can help do this for
students in the future: “Imagine you hover over a line of code
in your IDE and it explains it to you, that could be great for
learners.” P17, who teaches at a liberal arts college, described
how she purposely does not use a textbook for CS1 so that
she can customize the curriculum for their liberal arts con-
text. However, she finds that students sometimes come to her
office hours asking for more examples of a specific concept
they are learning. So she wants an AI tool that can generate
these additional examples and explanations in response to
student questions without needing her to be present.

• Helping instructors with time-consuming tasks: P14
has already been using AI tools to generate new variants of
his programming assignments. He is doing this so that he
can create fresh new variants each term to prevent students
from copying the answers from friends who took his course
in prior terms. In the past he created variants manually, and
it was very time-consuming. But this is something that AI
is well-suited to do since it can generate a lot of candidate
variants and he can pick the most suitable ones to use. Sim-
ilarly, P17 currently creates small drills for her students to
practice basic programming, akin to basic math drills; she
wants to use AI to help her generate lots of these drills to
give students more practice. P15 and P18 said that their TAs
hand-grade hundreds of programming assignments using
rubrics to check for code style best-practices and felt that AI
could be trained to do this sort of stylistic grading, which is
akin to doing a code review. Lastly, P17 wanted to use AI as
a helper at her office hours since her CS1 students often ask
the same types of basic questions, so she can let the AI take
a first pass at answering those while she spends time on the
harder questions.

Designing new AI-embedded course materials: In contrast to
the ideas above, which can be retrofitted into existing courses, the
following ideas aim to redesign courses with AI tools in mind.

• Focusing more on code reading and critique: P9, P14,
and P15 propose to shift introductory computing courses
more toward reading and critiquing code rather than simply
writing code. P9 raised this question during her interview:

“If these tools are the norm moving forward, the emphasis
in intro courses might move from code writing to code
reading, code comprehension, and testing. How do you
validate what comes out of an AI tool? Does it really meet
the expectations that you have? [...] Code comprehension
and code reading are going to be super important, like can
you trust what code you get out of an AI tool?”

Similarly, P14 describes how he wants his introductory pro-
gramming course to turn more into an English or literature
class where the emphasis turns to reading, critically analyz-
ing, and editing code that may be produced by AI tools. He
made the analogy to teaching students to become good edi-
tors rather than just writers. Note that this skill of code review
(i.e., critiquing others’ code) is useful even when collaborat-
ing with other humans in the workplace, as P15 noted: “Yeah
I think [code review] is generally going to be a skill for a while,
even if someone isn’t using Copilot, it’s a skill you’re going to
need when working with others in software engineering.”

• Creating open-ended design assignments: P2, P3, P11,
P12, P15, and P19 were excited about the prospect of mak-
ing more open-ended design-based assignments as early as
CS1/CS2 rather than waiting until more advanced courses.
This can be possible because future students will not be as
hindered by the mechanics of writing code if AI can help
do it. For instance, P2 mentioned giving data science prob-
lems where students can find realistic data sets and analyze
them in more creative ways, with AI helping them write
code using the Python pandas data analysis library [4]. P15
and P19 wanted a portfolio-based approach to assignments
like what occurs in art and design schools: Students could
design their own projects and use AI to help them code up a
prototype. P3 mentioned that open-ended project grading
could be done by probing how well each student understood
the process of working with AI, including its strengths and
weaknesses: “Tell me what things you tried to do with the AI
and failed, and why. If you just press a button and the AI does
it all for you, then you won’t have a good story to tell about
what challenges and setbacks you faced while doing this.”

• Having students work collaboratively with AI: Going
one step beyond open-ended assignments, P8, P11, P12, and
P19 wanted to design assignments where students have to
work collaboratively with AI. For instance, P11 and P12
both proposed algorithm design problems where the stu-
dent would assume the role of a ‘client’ and specify what
they wanted to make in English. Then the AI would generate
code, and the student would test and critique it and pass it
back to the AI for the next round of iteration. P19 proposed
this sort of collaboration even during exams: AI could gen-
erate problems for the student to solve and then help the
student along when prompted with clarifying questions. P8
proposed a variation of the think-pair-share [51] classroom
activity where a pair of students would try to solve a pro-
gramming task (e.g., reversing a string) and then prompt
an AI to solve it. Then each pair would discuss how their
human solutions compare to the AI solution.



ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA Sam Lau and Philip J. Guo

These sets of ideas reflect the sentiment that it is inevitable that
AI tools will become more widespread, so it is futile to resist [6].
Recall that P11 mentioned how computing departments that adapt
fastest to this change will emerge as leaders in the coming decade;
he recalled a similar moment in the 1990s when many students
first gained widespread internet access. Similar to today, instructors
were concerned that students could simply look up all the answers
online. But eventually, all schools had no choice but to adapt to the
internet, and the departments that first embraced students using the
internet had an advantage because they adapted early. P11 believed
that a similar outcome could happen for AI tools.

6 REFLECTION AND DISCUSSION
The most unique aspect of our interviews was their timeliness. We
conducted them in early 2023, during the first full academic term
after ChatGPT’s release in late 2022, which was likely the first time
that many CS1/CS2 instructors started thinking about what to do
with their courses in light of the growing prevalence of AI tools.
Thus, our study captures a unique moment in time when instructors
have started brainstorming but have not solidified their plans yet.

Due to this timing, participants seemed enthusiastic to talk about
this topic because it was already on their minds, regardless of
whether they had used AI coding tools. Note that we did not pur-
posely recruit instructors who had experience with these tools; we
tried to get a diverse sample of CS1/CS2 instructors around the
world. As Table 1 shows, many had little experience with AI tools.

During the end of their interviews, several mentioned how our
conversation helped them to clarify their own thinking about AI
coding tools and that they were curious about the ideas that other
study participants came up with. For instance, at the end of his
interview, P3 asked unprompted, “One more thing, when you write
the paper, can you email it to me since I am very interested in seeing
[what other instructors said]?” We emailed a draft of the accepted
paper to all participants to get any additional feedback they had
before finalizing the camera-ready.

A limitation of our participants being personally invested in this
topic was that we felt there were anchoring effects [41] in their pro-
posed ideas. Despite us designing our interview prompt to encour-
age open-ended speculative futures brainstorming (Section 4), all
participants anchored their responses to their knowledge of present-
day tools such as ChatGPT and Copilot, either obtained through
personal experience or from what they hear from colleagues. Thus,
some of their ideas about longer-term course changes felt like direct
reactions to these tools rather than radically-new notions of what
computing education ought to be like in the future.

Relating to ideas fromother computing education researchers:
In the midst of our interviews, we were made aware of several blog
posts and a position paper written by computing education re-
searchers in early 2023. To avoid biasing our interviews and data
analyses, we waited until after completing our analyses to read
these articles in-depth. Here we reflect on some points of common-
ality between our study and what they wrote: Our participants’
ideas about re-orienting programming education toward critiquing
code produced by AI resonates with the Bootstrap Project’s blog
post [19], which posits that meaningful learning happens when
one can verify (or refute) someone else’s solution (whether that

someone is another human or a machine). Some of our findings also
resonate with Ko’s pair of blog posts [54, 55], such as participants’
concerns about students overrelying on AI tools as shortcuts to
bypass learning (Section 5.2) and the opportunity to focus more on
specifying requirements for software rather than the mechanics of
coding (Section 5.4). Lastly, our study findings add empirical detail
to several of the high-level themes that Becker et al. proposed in
their position paper [14], such as using AI to give personalized
tutoring, to help instructors with time-consuming tasks such as
creating exercises, and to re-orient courses more toward code read-
ing, along with concerns about academic integrity (Section 5.2) and
ethical objections to AI tools. In addition, we present new ideas
such as instructors’ varied motivations behind why they wanted to
either resist or embrace AI tools, along with specific proposed ways
to make assignments and exams more ‘AI-proof’ (Section 5.3).

7 OPEN RESEARCH QUESTIONS
Since we are still early in the adoption curve of AI coding tools, as
a community we now have a rare window of opportunity to guide
their future usage in effective, equitable, and ethical ways. To work
toward this goal, we hope that researchers can investigate some of
the relevant open questions that our study findings raised:

• Theory-building – Our participants (even those who want to
embrace AI tools) worry that students will become overre-
liant on AI tools without knowing how they work. Thus, we
feel that it is important to build theories about how people
believe these tools work. For instance, what mental models
do novices currently form both about the code that AI gen-
erates and about how the AI works to produce that code?
How do those novice mental models compare to experts’
mental models? And what strategies (if any) do novices and
experts currently use to try to validate AI tool outputs for
themselves? These questions will be critical for designing
techniques to guide novices to form viable mental models
so that they can learn to use AI tools effectively.

• Scaffolding novice understanding – Related to above, how
can we add pedagogical scaffolds to the outputs of AI tools to
help novices understand how they are coming up with their
code suggestions or explanations? Having the AI “show its
work” can potentially help novices to better understand both
its capabilities and limitations. Recent lines of research from
the HCI and XAI (Explainable AI) communities could pro-
vide some inspiration. For instance, the grounded abstraction
matching technique [64] may be one starting point.

• Tailoring AI coding tools for pedagogy – Current AI coding
tools are meant to directly help a programmer write code as
quickly and efficiently as possible. However, such directness
may not be the best for pedagogy since it gives away the
(possibly-right, possibly-wrong) answer without making the
learner think deeply. How canwe tailor these tools to become
better at teaching rather than doing, perhaps integrating
pedagogical content knowledge [48] about programming?

• Adapting IDEs for AI-aware pedagogy – Today’s IDEs are
optimized to streamline code writing, but if future AI-aware
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curricula move toward emphasizing skills like code compre-
hension and critique, how should we redesign IDEs to align
with these goals? For instance, how can we design IDEs to
discourage students from developing harmful habits, such
as overreliance on AI-generated code? And how can peda-
gogical IDEs nudge students to engage in activities such as
reading and critically analyzing AI-generated code?

• Equity and access – Participants brought up how AI tools
can both be beneficial and detrimental to these goals. So
how can we design curricula that use these AI tools in such
a way to work toward greater equity and access? On one
hand, current AI systems are criticized for their negative
impacts on equity [17, 63]. But if these systems become more
widespread then perhaps it is necessary to teach everyone
to use them or else a new digital divide [31] may open up
between those with and without access to modern AI tools.
As P9 shared at the end of her interview: “My concern would
be from an equity perspective, the students who don’t know
about AI tools would be disadvantaged. So how would you
make it so that everyone has the opportunity to use them, from
an equitable perspective?”

• Efficacy studies – How can we tell whether AI tools in in-
troductory courses make students more effective? Can we
design controlled experiments where cohorts of CS1/CS2
students receive either AI-enriched or AI-free curricula and
track their progress throughout the major? How can we de-
sign and sustain these longitudinal studies in an ethical way
if it turns out that one condition is significantly better or
worse for students? And will it even be possible to enforce a
control condition if AI tools become so pervasive that most
students are regularly accessing them outside of class?

• Evaluating AI-aware assessments – Can we effectively assess
student knowledge if future students collaborate with AI
tools on their assignments (and perhaps even on exams)? Our
participants suggested a variety of alternative assessment
methods such as having students record video explanations.
How can we evaluate whether these methods are effective?

• Upper-division computing courses – Our study focused on
introductory programming courses, but what about uses of
AI tools in upper-division courses where the learning objec-
tives differ? Five of our interview participants mentioned
how even though they were opposed to AI in introductory
courses, they actually wanted to use them in upper-division
courses such as software engineering labs.

• (programming != computing) – Related to above, our pa-
per focuses on introductory programming education, but
computing education encompasses a much broader set of top-
ics and learning objectives. Howwill AI tools like current and
future LLMs [24] affect the many facets of computing educa-
tion that are not just about writing and running code? What
about using AI to teach computing concepts to students who
do not necessarily want to become programmers [27, 109]?

• Scaling instruction – It seems plausible for AI tools to help
scale instructors’ human expertise. For example, in large

classes it is impractical for any one instructor to provide
in-depth feedback on hundreds of code submissions. If AI
could be tailored using an instructor’s past feedback, these
tools could enable consistent, personalized instruction at
scale. How might we enable instructors to tailor AI tools to
their own context and desires, and what impact might this
have on the way instructors design and deliver their classes?

• Beyond autograded programming assignments – Related to
above, currently CS1/CS2 assignments often consist of pro-
gramming prompts that are graded by autograder software.
This is the status quo not necessarily because it is ideal but
simply due to how well it scales to large classes. It is hard
to scale up open-ended free-response questions that need to
be hand-graded by humans. However, modern LLMs show
promise in natural language reasoning, so perhaps they can
help to both design and assess more interesting assignments
that go beyond writing code to pass autograder test cases.
But that raises concerns about the ethics of having AI do
grading of student assignments, so any such interventions
may need to be carefully vetted by instructors.

• Rethinking CS1/CS2 in light of AI tools – Lastly, what if we
could redesign CS1/CS2 without following the traditions of
the past 50+ years [15] of research and practice in our field?
If AI coding tools become more pervasive in the future, what
timeless pedagogical themes should still remain the same,
and what aspects need to be radically reconsidered? How
can we prepare our students for the next 50 years? And what
will programmers need to know in the year 2073?

8 CONCLUSION
We presented the perspectives of 20 introductory programming in-
structors across 9 countries on how they plan to adapt their courses
in light of the growing prevalence of AI coding tools. Our study
captures a rare moment in time during the first full academic term
(early 2023) when these AI tools started becoming widely accessible.
We found that in the short-term many planned to take immediate
measures to discourage cheating. Then opinions diverged about
how to work with these AI tools longer-term, with one side wanting
to ban them and continue teaching programming fundamentals,
and the other side wanting to integrate them into courses to prepare
students for future jobs. We hope these findings along with our
open research questions can spur conversations about how to work
with these tools in effective, equitable, and ethical ways.
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