
Inside the Mind of a CS Undergraduate TA: A Firsthand Account
of Undergraduate Peer Tutoring in Computer Labs

Julia M. Markel
UC San Diego

jmarkel@ucsd.edu

Philip J. Guo
UC San Diego
pg@ucsd.edu

ABSTRACT
As CS enrollments continue to grow, introductory courses are em-
ploying more undergraduate TAs. One of their main roles is per-
forming one-on-one tutoring in the computer lab to help students
understand and debug their programming assignments. What goes
on in the mind of an undergraduate TA when they are helping
students with programming? In this experience report, we present
firsthand accounts from an undergraduate TA documenting her 36
hours of in-lab tutoring for a CS2 course, where she engaged in 69
one-on-one help sessions. This report provides a unique perspective
from an undergraduate’s point-of-view rather than a faculty mem-
ber’s. We summarize her experiences by constructing a four-part
model of tutoring interactions: a) The tutor begins the session with
an initial state of mind (e.g., their energy/focus level, perceived
time pressure). b) They observe the student’s outward state upon
arrival (e.g., how much they seem to care about learning). c) Using
that observation, the tutor infers what might be going on inside
the student’s mind. d) The combination of what goes on inside
the tutor’s and student’s minds affects tutoring interactions, which
progress from diagnosis to planning to an explain-code-react loop
to post-resolution activities. We conclude by discussing ways that
this model can be used to design scaffolding for training novice TAs
and software tools to help TAs scale their efforts to larger classes.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
Lab Tutoring, Peer Tutoring, Undergraduate Teaching Assistants
ACM Reference Format:
Julia M. Markel and Philip J. Guo. 2021. Inside the Mind of a CS Undergrad-
uate TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer
Labs. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432533

1 INTRODUCTION
As CS enrollments have grown over the past few decades, universi-
ties have been hiring more undergraduates as teaching assistants.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432533

For instance, large CS courses often employ dozens of undergradu-
ate TAs (called UTAs) to serve up to a thousand or more enrolled
students [2]. Mirza et al. surveyed 40 papers about CS undergrad-
uate TAs and found that their most common task was “assisting
students in labs on programming assignments” [22]. Each UTA usu-
ally holds weekly tutoring hours in the computer lab; students come
there to work on assignments and put themselves on a queue to get
help. These sorts of peer tutoring [11] interactions are critical for
providing both technical and emotional support. As fellow under-
grads who have recently taken the same course, UTAs can be more
relatable to students than graduate students or faculty are [33].

Despite the pervasiveness of lab tutoring in CS courses, to our
knowledge no prior work has reported on the interpersonal dynam-
ics of this kind of help-giving interaction from a tutor’s perspective.
Lab tutoring is a cognitively complex yet ill-understood form of
teaching: UTAs must quickly jump in to understand each student’s
problem without prior context, figure out the best way to assist
without giving away the solution, provide emotional reassurance,
and balance quality of support versus the pressing time constraints
of needing to help other students who are waiting on the queue.

What goes on in the mind of an undergraduate TA when
they help students with programming problems in the com-
puter lab? To address this question, we present an experience
report where the first author, a 20-year-old female computing stu-
dent, documented 36 hours of her tutoring experiences as a UTA
for a CS2 course where she engaged in 69 one-on-one help sessions.

We report her firsthand experience and then distill it into a four-
part model shown in Figure 1: a) The tutor begins the session with
an initial state of mind (e.g., energy/focus level). b) They observe
the student’s outward state upon arrival (e.g., initial demeanor).
c) Using that observation, they infer what might be going on inside
the student’s mind. d) The tutor’s and student’s combined states of
mind affect the dynamics of tutoring interactions, which consist
of five phases: arrival, diagnosis, game plan, explain-code-react
loop, and post-resolution activities. This model can potentially help
researchers to design policies and tools to support TAs in providing
one-on-one tutoring for students in a way that scales to meet ever-
growing enrollments. The contributions of this paper are:

• An undergraduate TA’s (UTA’s) firsthand experience of 36
hours of lab tutoring for an introductory CS course.

• A set of challenges that UTAs face when tutoring in the lab.
• Design ideas for policies and tools to support UTA tutoring.

2 RELATEDWORK
To our knowledge, we are the first to model the experiences of a
CS undergraduate TA while they are tutoring in the computer lab.
Prior work has interviewed UTAs [25, 31], observed them working

https://doi.org/10.1145/3408877.3432533
https://doi.org/10.1145/3408877.3432533

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA Julia M. Markel and Philip J. Guo

Figure 1: A model that summarizes the first author’s experiences helping students in the lab as an undergraduate CS TA.

in the lab [25], and presented a self-reflection of overall UTA experi-
ences [12]. Those works focus more on higher-level perceptions of
job satisfaction and challenges rather than the detailed step-by-step
interpersonal dynamics of one-on-one tutoring that we focus on.

Mirza et al. surveyed 40 research papers about undergraduate
TAs (UTAs) [22] and found that tutoring in lab hours was the most
common UTA duty, with the next two most common being leading
sections and grading. Despite this fact, none of the papers they
surveyed investigated what occurs during lab tutoring interactions.
The closest lines of research presented the kinds of questions that
students asked in UTA office hours [30], interviews with students
and UTAs about post-hoc perceptions of lab tutoring [8], student
perceptions of peer tutors [13], impact on grades [10, 27], training
materials and competence models for UTAs [7, 9, 32], and student
perceptions of getting help from a human tutor versus an ITS (intel-
ligent tutoring system) in a controlled study [28]. Our contribution
to this literature is a firsthand account of what goes through a
UTA’s mind as they are in the midst of tutoring.

Our work also complements studies that investigate emotional
barriers that students face in introductory programming, such as
Kinnunen and Simon’s series of studies on the emotional toll and
self-efficacy impacts on students struggling with CS1 programming
assignments [16–18], the role of metacognitive self-regulation in
programming problem solving [20, 24], and issues of anxiety related
to math and computing [23]. More broadly, there is a rich literature
on technical misconceptions that students have about programming
languages and concepts [29]. Our experience report augments these
lines of work with a model of what lab tutors do to help students
overcome these emotional and technical barriers.

3 SETTING: LAB TUTORING IN CS COURSE
The first author is a 3rd-year undergraduate computer engineering
major (female, 20 years old) at a large public U.S. university. She
excelled in a CS2 course (details below) during her first year and
was recruited to be an undergraduate TA (UTA) for that course.

Over the past two years, she has been a UTA for 6 quarter-long
terms and is now one of the head UTAs who mentors junior UTAs.

The site for her field observations was an offering of a CS2 course,
which enrolled ∼200 students and lasted 10 weeks from January
to March 2020. This course is required for all computer science
and computer engineering majors and covers the implementation
of data structures in C, C++, and Java. Each week, students must
individually complete a programming assignment that involves im-
plementing progressively more complex data structures (e.g., stacks,
linked lists, binary trees, hash tables) based upon staff-provided
starter code. These assignments are especially challenging because
students need to implement each assigned data structure in two
different languages (starting with C and Java, then C++ and Java).

To help students on these programming assignments, the UTA
staff signs up for shifts to work as tutors in the computer lab. At any
time there are usually 2 to 4 tutors in the lab. Students come to the
lab space to work at their own pace on Linux desktop computers
there or on their own laptops. To request help from a tutor, they
use a web application to put themselves on the help queue.

The first author worked a single 4-hour shift in-person in the
computer lab every Saturday (9am–1pm) for 9 weeks during the
winter 2020 term; the 10-week term ended in early March 2020 right
before COVID-19 quarantines began. She held 69 total tutoring
sessions throughout the term (average of 7.66 per weekly shift),
with each session lasting 22 minutes on average.

The first author served as a participant-observer for this study.
She took field notes for a few minutes immediately after helping
each student and before moving onto the next one in the queue.
Each note aimed to capture both the technical and affective (emo-
tional) details of the interaction, which include the context of the
student’s question, observations of the student’s affective state be-
fore and during the interaction, her own affective state, technical
details of the problem and debugging process, and what happened
immediately after the issue was (or was not) resolved. After each
weekly lab shift, she met with a faculty research advisor (who was
not involved in teaching this course) to analyze her field notes and

Inside the Mind of a CS Undergraduate TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

iteratively construct a model that summarizes her tutoring interac-
tions. To do so, we took an inductive analysis approach [5] to distill
a set of higher-level themes from specific experiential details.

4 TUTORING EXPERIENCES AND MODEL
We now present all parts of the model in Figure 1. Since this is an
experience report, we will use “I” throughout this section to convey
the first author’s experiences that we used to construct this model.

4.1 Tutor’s Initial State of Mind
When I take a student’s help request from the queue and approach
them in the lab, my state of mind at that time affects how the tutor-
ing interaction will proceed. Figure 1a shows four salient factors:
Energy/focus level: Ideally each tutor comes into the lab fully-
focused on the task at hand, but since tutors are also students (fellow
undergrads in the case of UTAs), their energy and focus levels vary
with the usual rhythms of student life. For instance, if I did not
sleep well or have my own homework due soon, that will make me
less focused during my lab shift. Taking breaks between students
can help me recharge, but that is often hard for me to justify if there
are many students waiting on the queue for their turn.
Familiarity with assignment: Each tutor should come into the
lab fully-familiar with the programming assignment for that week,
having gone over it in detail beforehand. But again, since tutors
are students with their own coursework to manage, they often do
not have time to do extensive prep. I personally have a cold-start
at the beginning of each lab shift and actually re-familiarize myself
with the assignment while I am helping the first few students. But
then as my shift progresses, I incrementally get more familiar with
the assignment, having loaded the technical details into my brain’s
cache and recalling common issues brought up by prior students.
Then as my shift progresses, even though I grow progressively
more fatigued, I also grow more familiar with assignment details,
which somewhat compensates for my lower energy/focus level.
Perceived time pressure: Ideally each tutor treats all student in-
teractions with the same level of care, but in reality time pressure
affects how much they can focus on any one student. I personally
feel time pressure mainly based on the current size of the help
queue; it also happens when helping a student toward the end of
my shift and needing to decide whether I want to stay beyond my
posted hours. When the queue is relatively empty, I feel less time
pressure and can more comfortably go in-depth with each student.
However, I never feel fully relaxed since I always have the lingering
“calm before the storm” feeling that the queue size could spike any
time as more students arrive. When the queue is moderate (e.g., 3
to 5 students), I still feel comfortable staying with a student for as
long as it takes, since I know that other tutors are in the lab tending
to the queue. However, when the queue is very long, then I feel
intense pressure to be as fast as possible, at the expense of quality.
History with this student: I try to treat all students similarly, but
there are some “regulars” who return to lab week after week during
my shifts. In the best case, I am more invested in those students
whom I see regularly and have developed good rapport with. Even
though lab tutoring is fairly “transactional” and not meant to be
a long-term mentoring relationship, I take pride in seeing those

students grow throughout the term; I remember that they were
visibly appreciative of my earlier help in prior weeks, so I want to
continue being as helpful as possible. In the worst case, for the few
students whom I did not have good rapport with in the past, I may
actively avoid taking their question; one way to do so is to “wait it
out” by helping another student for longer and hoping that another
tutor frees up to take that student from the queue.

4.2 Tutor’s Observation of Student
Aside from my own state of mind, what I observe when I first
approach a student in the lab also impacts how tutoringwill proceed.
Figure 1b shows the six characteristics that I notice most:
Initial demeanor: I first notice the student’s outward demeanor,
which varies along two dimensions: quiet to outspoken, and inse-
cure to confident. While those could be correlated (e.g., outspoken
students being more confident), I have seen all four combinations
in the lab. Many are indeed quiet because they seem insecure about
their programming skills. But some are quiet even though they are
highly confident in their progress and only need light help. Con-
versely, some outspoken students appear to be hiding insecurities
about their knowledge gaps, which I soon discover.
Effort before asking: Another first impression I get is how much
effort the student seems to have put into the assignment before
asking for help. I see indicators of effort by the materials they show
me when I approach. The most salient is the current state of their
code; some simply have the instructor-provided starter code on
display without much code of their own written yet, while others
have substantial amounts of their own code interleaved with print-
debugging statements. Some also have lots of web browser tabs
open, indicating that they have been seeking help online, or even
sketches of tracing through code on paper; both indicate high effort.
Prior help: Related to effort, some students tell me that they have
already gotten help on their problem from friends or from another
tutor. Although prior help can be beneficial, it may also confuse
the student more if that help was not well-scoped for their needs.
Question granularity: Some students can precisely phrase their
questions to pinpoint exactly where they are struggling (e.g., down
to a particular function or line of code), even though their initial
guesses of the problem location may be incorrect. In contrast, other
students ask vague questions like “how do I start on this part?”
Question granularity often depends on which stage of the program-
ming assignment [21] they are currently attempting: e.g., planning
their approach to the problem, trying to get their initial code to
compile, diagnosing run-time errors, or making their code more
robust to tricky edge cases once it already works on an initial set of
tests. Granularity can vary even within a stage. For instance, when
asking about a run-time error, they can either ask “why is my code
crashing?” (vague) or “I think this part of my code is throwing an
out-of-bounds exception but I’m not sure why” (specific).
Interest in learning: I can usually sense a student’s interest in
learning by how they phrase their questions. On one end, some
ask “what’s wrong with this?” or “how do I fix this?” with a curt
tone, which indicates that they simply want a quick answer without
caring as much about deeper understanding. Bolder students may
even probe for answers with questions worded like “so, how would

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA Julia M. Markel and Philip J. Guo

I write this part?” rather than first making an earnest effort and
then asking me to check their work. On the other end are students
who demonstrate a genuine interest in learning the underlying
concepts and not just passing the assignments. For instance, some
ask questions like “I tried X and thought it would work this way,
but why doesn’t it?” Other students have code that works fine but
they want to have me walk through it with them so they can better
understand why it works the way that it does.
Desire for context: Related to interest, another trait that varies
between students is their desire for understanding the context sur-
rounding their question. Since programming assignments often
contain dozens of lines of code, much of it in instructor-provided
starter code and API calls, some students want to understand how
the surrounding code operates and connects with the code that they
are writing. While that might appear to be a good sign (it shows
interest in learning), too much of a desire for context can be counter-
productive: for instance, it is hard for me to justify spending extra
time explaining context that is not as relevant to the assignment
when others are waiting to get help, especially when the queue is
long. On the other end, some students are too myopically focused
on just the lines of code they are debugging at the moment and
have no desire to “zoom out” to learn more context.

4.3 Inferring What is Inside the Student’s Mind
Based on my observations I must then infer what might be going
on inside the student’s mind (Figure 1c). One central challenge that
tutors like me face is that they must build a mental model of what
is going on inside the student’s mind without being able to directly
observe that internal state. Most importantly, I must infer the stu-
dent’s (faulty) mental model of the current code they are debugging,
based on how they phrase their question. I must also infer their emo-
tional state, which includes three components: 1) Self-efficacy [3]
represents how much the student believes that they are capable of
solving the given programming assignment. 2) Goal orientation [26]
represents whether the student’s goals are more geared toward
simply completing the assignment (i.e., performance-oriented) or
toward more deeply learning the underlying course material (i.e.,
mastery-oriented). 3) Metacognitive self-regulation represents the
student’s awareness of their own progress and limitations, along
with their ability to seek out help at the proper times [4, 6, 21].

From Figure 1b, my observation of the student’s initial demeanor
is the most direct indicator of their self-efficacy. Another indicator
is question granularity: students with higher self-efficacy are usually
able to more precisely pinpoint the kind of question they want to
ask the tutor. The interest in learning and desire for context that they
exhibit both potentially indicate their goal orientation (performance
vs. mastery oriented). Finally, their amount of effort before asking
for help and whether they have already gotten prior help are both
signs of metacognitive self-regulation in terms of knowing how to
plan their progress and to ask for help at the necessary times.

4.4 Tutoring Interactions
As Figure 1d shows, my tutoring interactions contain five phases: ar-
rival, diagnosis, game plan, explain-code-react, and post-resolution.

4.4.1 Arrival. When I arrive to greet a student, I adopt a demeanor
that ranges from relatable to authoritative, depending on both my
own mental state and my observation of the student’s state (see
prior sections). For most students, I lean on the side of being re-
latable and accommodating since I want to give them emotional
reassurance in addition to technical support. Also, I want to es-
tablish upfront that they should not be embarrassed to ask their
question. However, when my energy level is low or I am under time
pressure, I may adopt a firmer demeanor where I focus more on the
technical issue at hand and not as much on emotional reassurance.
At the most extreme, when I have not had a good history with this
particular student or can sense that they may question my expertise,
then I am the most firm in establishing myself as authoritative.

4.4.2 Diagnosis. Having calibrated my demeanor, my first task is
to work together with the student to diagnose their underlying
problem. The easiest case is when I have seen that same problem
before, so I can eyeball the issue by just looking at their code and
terminal output. The next easiest case is if the student articulates
their question clearly and their code is clean; even if I have not
seen this problem before, I am confident that we can diagnose it
together successfully. What I usually do here is ask the student
to trace through the relevant code and verbally tell me what they
think is going on at each step (e.g., I ask “what do you think this
line does?” or “what happens next?”). Through this questioning
process, I can usually tell where and what their misconception is.

More often, the student’s question is less well-defined or even
inadvertently misleading, or they may not be able to reproduce the
bug reliably. In those cases, I trace through the code myself, draw
out values on paper, or tell them to insert print statements to verify
my hypotheses. If there is a segfault or other crash, I may also use
a debugger to quickly find the crashing location and stack trace.

The hardest cases to diagnose are when the student’s code is ex-
tremely messy and confusing. Those students also have the hardest
time clearly explaining their problem to me. I need to expend a lot
of energy on just understanding their code, which leaves me with
less energy to help them fix it. I also sometimes get flustered as I
attempt to diagnose difficult bugs. When that happens, I need to
try to keep a stoic “poker face” so that I do not inadvertently make
the student feel bad that their code is hard to understand.

4.4.3 Game Plan. After a successful diagnosis1, I formulate a plan
for the rest of the session. This requires careful thought because
the purpose of tutoring is not to simply fix the student’s problem;
it is to teach the student something meaningful so that the next
time they encounter a similar problem, they can fix it themselves.
Depending on my rapport with the student, I will formulate one
of three types of game plans: 1) Fix-then-explain: When the bug is
simple, I will directly suggest a hint that leads to a fix. Once the
student has resolved the problem, then I explain why it works. The
advantage here is that the student feels relieved that their problem
is resolved quickly and then may be more willing to listen to an
explanation. 2) Interactive: Most of the time, we will engage in an
interactive conversationwhere I incrementally nudge them closer to
the bug fix by asking them to explain their mental model, clarifying
any misconceptions, then giving them some relevant code hints.

1If I cannot diagnose a bug, I will usually ask another TA or post on the class forum.

Inside the Mind of a CS Undergraduate TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

3) Explain-then-fix: In rare cases, I will explain upfront what their
misunderstanding is and exactly what we are going to do to fix it.
Here I feel like a doctor explaining a diagnosis and treatment to a
patient. I take this approach when I take an authoritative demeanor,
such as with a student who may question my competence.

4.4.4 Explain-Code-React Loop. After formulating a game plan,
the student and I enter into the main loop that oscillates between
me explaining and asking questions (explain/ask), working with
them to modify their code (code), and assessing their reaction (react).
Depending on the game plan (see above), all of these actions may
be interleaved in any order throughout the tutoring session (e.g.,
explain then react then code, or code then explain then react).
Explain/Ask: Depending on the student’s interest in learning and
desire for context, along with time constraints, I will either adopt a
more direct instruction approach of explaining concepts to them or
a more constructivist approach of asking questions to get them to
discover the knowledge for themselves [19] (usually a mix of both).
Code: Since I do not want to give away the solution code or even
touch the student’s keyboard, I must carefully work with them to
guide them toward a viable solution while keeping their morale up
throughout the (sometimes-long) process. The main consideration
here is code preservation – how much of the student’s existing code
to preserve versus getting them to start over from scratch.

I always try to preserve the student’s original code, especially
if I can tell that they have already put in a significant number of
hours and formed an emotional connection with it. Even though
there are always more optimal ways for an expert to write that
code, it is demoralizing for a student to have a tutor invalidate their
approach. So I try my best to work with what is in front of me.

In the most extreme case, when I feel like it is best for a student
to start over from scratch, I still never tell them “you should start
over” since that feels too harsh. Instead I take a Ship of Theseus [1]
approach and guide them to incrementally rewrite each portion
until the result is that their code is nearly brand-new.
React: As I am explaining, asking questions, or guiding the stu-
dent’s coding, I constantly gauge their reactions. Student reactions
vary along two dimensions: engagement level and demeanor.

Students react differently based on their engagement level: On
one end, some students get distracted by their phone’s notifications
or start texting on it while I am helping them. Since I sense that
they are not putting in effort at the moment, I try to point them
toward the right direction and then move on to the next student.
In the middle, most students passively listen to my explanations
and will try what I suggest, but they will not write code unless I
prompt them. The most common passive reaction is a silent nod,
which is hard for me to interpret. I need to ask further questions,
watch their facial expressions, give them time to react, and pay
close attention to how they are speaking to determine whether a
nod means they truly understand or whether they are just being
polite. Next, more active students will take the initiative to pull out
additional notes or make drawings themselves on paper instead of
just watching me draw. The most engaged students will take the
initiative to write code and think-aloud about their process.

Students also react to me differently based on their demeanor
throughout the session. Most remain calm but some gradually grow

more agitated when they realize that their misunderstanding is
deeper than they originally expected. Even though those students
are more agitated, I can tell that they genuinely want to work
with me to understand and solve their problem. But this change
in demeanor can cause me to get flustered and lose confidence in
my ability to help. When that happens, I try to backtrack to the
prior “checkpoint” where they felt comfortable, reestablish a sense
of calm, and then gradually work forward toward the frustrating
part. However, some get agitated because they just want me to give
them the solution; they might cut me off in the midst of explaining
something or ask me leading questions to fish for answers.

4.4.5 Post-resolution. After resolving the student’s issue, I rarely
just leave right away unless: a) the resolution was straightforward
(e.g., a simple syntax error) so it requires no further explanation,
b) the student shows little interest in learning or seems too ex-
hausted, or c) the queue is long so I feel compelled to move on.

I typically stay with the student for a fewminutes post-resolution
because I feel like that is the best teachable moment [14] when
they are the most receptive to learning. We have just gone on a
journey together to a successful end, and they often have follow-up
questions or want to reflect on it with me. The ideal I strive for when
tutoring is leaving students with more generalizable knowledge
about the subject so that they can figure out how to solve similar
problems on their own in the future. If I am just providing temporary
fixes and not teaching them how to debug on their own, then they
will be just as stuck the next time a similar problem occurs.

I also try to provide emotional reassurance at this time by ac-
knowledging that this bug was indeed difficult and that they did a
good job working through it with me. At this point some students
ask me how long I spent on this assignment back when I took the
class, so hearing me reflecting on my own effort and struggles gives
them further reassurance that the amount of time they spent is
normal. This is a relatability benefit to being an undergraduate TA,
since I was in the student’s shoes just a year or two earlier. Right
before leaving, I give them encouragement that the path is now
clear for them to make headway on the next part of the assignment.

5 DISCUSSION: LESSONS LEARNED
Here we present some lessons learned from this process of reflecting
on UTA tutoring experiences. Our reflections revealed challenges
that tutors face and potential design ideas for overcoming them.

5.1 Challenges That Programming Tutors Face
Reading the student’s mind: The central challenge that tutors
face is building an accurate mental model of what the student’s
mental model of their code is (Section 4.3). Students are inexperi-
enced at phrasing their questions in a clear way, and their guesses
at what might be wrong with their code are often incorrect.
Emotional regulation: Tutoring is a cognitively and emotionally
demanding task. Under time pressure, the tutor needs to diagnose
the problem and guide the student toward a fix while reacting to the
student’s changing demeanor. The tutor also needs to keep a calm
demeanor themselves (e.g., a “poker face”) so as not to inadvertently
discourage the student further. Finally, since tutors are often also

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA Julia M. Markel and Philip J. Guo

students, they must regulate their emotions even when they are
tired or anxious due to the other responsibilities of student life.
Maintaining student engagement: This is a universal challenge
of teaching in general, and it can even manifest in a one-on-one
tutoring setting. At worst, students get distracted in the midst of
getting helped, but even if they try hard to pay attention, they are
often passively listening and nodding. How can we get students to
more actively engage while respecting the tutor’s time constraints?
Teaching vs. bug-fixing: From a pedagogical standpoint, the ideal
to strive for in tutoring is actually teaching the student some gener-
alizable knowledge that they can apply to future problems. However,
most students just want help getting their current code bug fixed
so they can proceed with the assignment. How can tutors juggle
those two competing goals while under time constraints?
Triage and prioritization: Lab tutoring works on a first-come
first-served basis, enforced by the help queue. Although we should
not discourage students from asking questions, the reality is that
not all students are equally prepared to ask well-formed questions.
Due to having to obey first-come first-serve, tutors sometimes get
occupied for a long time by an unprepared student when the next
student on the queue is more “ready” to get helped because they
have put in more prior effort. How can we nudge students toward
the “optimal” time to ask for help – not too soon and not too late?
Ideally tutors can prioritize students by how ready they are at the
moment while giving quick nudges to the other students to try
things out on their own before accessing the tutor’s scarce time.
Preserving student code: Fixing one’s own buggy code can be
challenging enough, but it is even harder to guide a student toward
fixing their code while preserving as much of that code as possible.
Since the tutor should not take over the student’s keyboard to
directly write code on the student’s computer, they must essentially
“write” the code in their heads first before suggesting possible next
steps. Note that the tutor cannot use their own laptop since they
do not have direct access to the current state of the student’s code.
Getting real-time feedback: Even though UTAs can be more
relatable to students than faculty are, there is still a power imbalance
during tutoring sessions. This can make it hard for tutors to get
real-time feedback on whether their explanation is confusing; many
students will just politely nod, even if they do not fully understand.
Very rarelywill a student directly tell a tutor that their explanation is
inadequate, so it is up to the tutor to read the student’s expressions,
all while trying to diagnose and explain the underlying problem.

5.2 Design Ideas for Improving Lab Tutoring
Easing problem diagnosis: While students are waiting on the
queue, they could interact with an automated system such as a chat
bot to help them narrow down their question. That way, when the
tutor arrives, the student will more likely have formulated a more
precise and targeted question, which can lead to an easier diagnosis.
In the best case, reminiscent of ELIZA [34] or rubber duck debug-
ging [15], the student actually figures out and resolves the problem
on their own through the act of verbalizing their assumptions.
Encouraging deeper learning: Ideally students come out of tu-
toring with a deeper knowledge of underlying concepts so they

can solve similar problems on their own next time. But all too of-
ten, they just want their code fixed for the practical purpose of
passing that specific part of their assignment. One lightweight way
to nudge students toward deeper learning is to have them write a
brief structured self-reflection after they get tutored to explain their
underlying misunderstanding and how that was resolved. These
self-reflections can both help the student solidify their own learning
and also help their classmates see what common misunderstand-
ings arose in the assignment. Right now since both the tutor and
student are in a rush to move on after tutoring is done, no lasting
artifacts come out of these information-rich interactions.
Mitigating power imbalances: There will always be power im-
balances between students and course staff. To mitigate possible
negative effects, first it is important to train tutors to be aware
of power dynamics, implicit biases, and sociocultural factors that
affect students’ emotional states when asking for help. Next, pro-
viding a systematic checklist for how tutors should approach each
interaction step-by-step (e.g., based on Figure 1) may make the
experience more standardized and thus more predictable to stu-
dents. Finally, online tutoring via text chat in a web-based IDE
could further reduce power imbalances because students may feel
less intimidated online than if they were physically sitting next to
a tutor in the lab; they could also choose to get help anonymously.
Trainingnovice tutors: Althoughwe did not directly study novice
tutors, the first author is a head UTA who has tutored for six terms
and now informally mentors new tutors. As UTAs graduate each
year, it is important to constantly be training the next generation
to serve as effective tutors, especially as class sizes grow. One way
to train novice tutors is to pair them up with a more experienced
tutor; that way, the novice can either watch the experienced tutor
work, or have the experienced tutor watch and critique them. A
more scalable approach is to use our model in Figure 1 to develop
a structured checklist for tutors to follow when approaching each
student. Our model essentially encapsulates an experienced tutor’s
workflow. A complementary approach is to have new tutors fill out
a self-reflection form after each student interaction to summarize
what they felt the main challenges and lessons were, in order to
encourage them to engage in metacognition about their tutoring.

6 CONCLUSION
In this experience report we summarized the workflow and chal-
lenges that an undergraduate TA faces when tutoring in the com-
puter lab for a 10-week CS2 course. We distilled her experiences
into a four-part model that captures the tutor’s and student’s states
of mind, along with the interpersonal dynamics of their tutoring
interactions. The main limitation of this work is that since this
model is based on only one UTA’s experiences, more follow-up
research is required to make sure that it generalizes beyond our
own setting. As CS enrollments continue to grow in both in-person
and online courses, we believe that recruiting, sustaining, and sup-
porting UTAs and other peer tutors will be critical for making sure
every student gets the help that they need. We hope that our initial
model can start a conversation about how to best provide support
to growing cohorts of UTAs via both policies and software tools.

Acknowledgments: This material is based upon work supported
by theNational Science Foundation under Grant No. NSF IIS-1845900.

Inside the Mind of a CS Undergraduate TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

REFERENCES
[1] [n.d.]. The Ship of Theseus: The Philosophy Foundation. https://www.philosophy-

foundation.org/enquiries/view/the-ship-of-theseus. Accessed: 2020-08-01.
[2] [n.d.]. UC Berkeley: CS 61A: Structure and Interpretation of Computer Programs.

https://cs61a.org/. Accessed: 2020-08-01.
[3] Albert Bandura. 1977. Self-efficacy: toward a unifying theory of behavioral

change. Psychological review 84, 2 (1977), 191.
[4] Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the Role of

Self-Regulated Learning on Introductory Programming Performance. In Proceed-
ings of the First International Workshop on Computing Education Research (Seattle,
WA, USA) (ICER ’05). Association for Computing Machinery, New York, NY, USA,
81–86. https://doi.org/10.1145/1089786.1089794

[5] Juliet M. Corbin and Anselm L. Strauss. 2008. Basics of qualitative research:
techniques and procedures for developing grounded theory. SAGE Publications,
Inc.

[6] Lyn Corno. 1986. The metacognitive control components of self-regulated learn-
ing. Contemporary educational psychology 11, 4 (1986), 333–346.

[7] Holger Danielsiek, Jan Vahrenhold, Peter Hubwieser, Johannes Krugel, Johannes
Magenheim, Laura Ohrndorf, Daniel Ossenschmidt, and Niclas Schaper. 2017.
Undergraduate teaching assistants in computer science: Teaching-related beliefs,
tasks, and competences. In 2017 IEEE Global Engineering Education Conference
(EDUCON). 718–725. https://doi.org/10.1109/EDUCON.2017.7942927

[8] Adrian Devey and Angela Carbone. 2011. Helping First Year Novice Programming
Students PASS. In Proceedings of the Thirteenth Australasian Computing Education
Conference - Volume 114 (Perth, Australia) (ACE ’11). Australian Computer Society,
Inc., AUS, 135–144.

[9] Francisco J. Estrada and Anya Tafliovich. 2017. Bridging the Gap Between De-
sired and Actual Qualifications of Teaching Assistants: An Experience Report. In
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 134–139. https://doi.org/10.1145/3059009.3059023

[10] Paul Golding, Lisa Facey-Shaw, and Vanesa Tennant. 2006. Effects of Peer Tutor-
ing, Attitude and Personality on Academic Performance of First Year Introductory
Programming Students. In Proceedings. Frontiers in Education. 36th Annual Con-
ference. 7–12.

[11] Charles R. Greenwood, J.J. Carta, and D. Kamps. 1990. Teacher-Mediated Versus
Peer-Mediated Instruction: A Review of Educational Advantages and Disadvan-
tages. In Children Helping Children. John Wiley and Sons, New York, 177–205.

[12] Torey Halsey. 2018. Being an Undergraduate Teaching Assistant at Kalamazoo
College: Collaboration and Professional Development.

[13] Ken Hartness and Li-Jen Shannon. 2011. Peer mentors and their impact for
beginning programmers. Information Systems Education Journal (01 2011).

[14] Robert J Havighurst. 1953. Human development and education. (1953).
[15] Andrew Hunt and David Thomas. 2000. The Pragmatic Programmer: From Jour-

neyman to Master. Addison-Wesley Longman Publishing Co., Inc., USA.
[16] Päivi Kinnunen and Beth Simon. 2010. Experiencing Programming Assignments

in CS1: The Emotional Toll. In Proceedings of the Sixth International Workshop
on Computing Education Research (Aarhus, Denmark) (ICER ’10). Association
for Computing Machinery, New York, NY, USA, 77–86. https://doi.org/10.1145/
1839594.1839609

[17] Päivi Kinnunen and Beth Simon. 2011. CS Majors’ Self-Efficacy Perceptions in
CS1: Results in Light of Social Cognitive Theory. In Proceedings of the Seventh
International Workshop on Computing Education Research (Providence, Rhode
Island, USA) (ICER ’11). Association for Computing Machinery, New York, NY,
USA, 19–26. https://doi.org/10.1145/2016911.2016917

[18] Päivi Kinnunen and Beth Simon. 2012. My program is ok – am I? Comput-
ing freshmen’s experiences of doing programming assignments. Computer Sci-
ence Education 22, 1 (2012), 1–28. https://doi.org/10.1080/08993408.2012.655091
arXiv:https://doi.org/10.1080/08993408.2012.655091

[19] Paul A. Kirschner, John Sweller, and Richard E. Clark. 2006. Why Minimal
Guidance During Instruction Does Not Work: An Analysis of the Failure of Con-
structivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teach-
ing. Educational Psychologist 41, 2 (2006), 75–86. https://doi.org/10.1207/
s15326985ep4102_1 arXiv:https://doi.org/10.1207/s15326985ep41021

[20] Dastyni Loksa and Amy J. Ko. 2016. The Role of Self-Regulation in Programming
Problem Solving Process and Success. In Proceedings of the 2016 ACM Conference
on International Computing Education Research (Melbourne, VIC, Australia) (ICER
’16). Association for Computing Machinery, New York, NY, USA, 83–91. https:
//doi.org/10.1145/2960310.2960334

[21] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez,
and Margaret M. Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (San Jose, California, USA) (CHI
’16). Association for Computing Machinery, New York, NY, USA, 1449–1461.
https://doi.org/10.1145/2858036.2858252

[22] DibaMirza, Phillip T. Conrad, Christian Lloyd, ZiadMatni, and Arthur Gatin. 2019.
Undergraduate Teaching Assistants in Computer Science: A Systematic Literature

Review. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (Toronto ON, Canada) (ICER ’19). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3291279.3339422

[23] Keith Nolan and Susan Bergin. 2016. The Role of Anxiety When Learning to
Program: A Systematic Review of the Literature. In Proceedings of the 16th Koli
Calling International Conference on Computing Education Research (Koli, Finland)
(Koli Calling ’16). Association for Computing Machinery, New York, NY, USA,
61–70. https://doi.org/10.1145/2999541.2999557

[24] Claudia Ott, Anthony Robins, Patricia Haden, and Kerry Shephard. 2015. Illus-
trating performance indicators and course characteristics to support students’
self-regulated learning in CS1. Computer Science Education 25 (04 2015), 174–198.
https://doi.org/10.1080/08993408.2015.1033129

[25] Elizabeth Patitsas. 2012. A Case Study of Environmental Factors Influencing
Teaching Assistant Job Satisfaction. In Proceedings of the Ninth Annual Interna-
tional Conference on International Computing Education Research (Auckland, New
Zealand) (ICER ’12). Association for Computing Machinery, New York, NY, USA,
11–16. https://doi.org/10.1145/2361276.2361280

[26] Paul R. Pintrich. 2000. The role of goal orientation in self-regulated learning. In
Handbook of self-regulation. Elsevier, 451–502.

[27] I. Pivkina. 2016. Peer learning assistants in undergraduate computer science
courses. In 2016 IEEE Frontiers in Education Conference (FIE). 1–4. https://doi.org/
10.1109/FIE.2016.7757658

[28] Thomas W. Price, Zhongxiu Liu, Veronica Cateté, and Tiffany Barnes. 2017.
Factors Influencing Students’ Help-Seeking Behavior While Programming with
Human and Computer Tutors. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (Tacoma, Washington, USA) (ICER
’17). Association for Computing Machinery, New York, NY, USA, 127–135. https:
//doi.org/10.1145/3105726.3106179

[29] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https://doi.org/10.1145/
3077618

[30] Yanyan Ren, Shriram Krishnamurthi, and Kathi Fisler. 2019. What Help Do
Students Seek in TA Office Hours?. In Proceedings of the 2019 ACM Conference
on International Computing Education Research (Toronto ON, Canada) (ICER
’19). Association for Computing Machinery, New York, NY, USA, 41–49. https:
//doi.org/10.1145/3291279.3339418

[31] Emma Riese. 2018. Teaching Assistants’ Experiences of Lab Sessions in Introduc-
tory Computer Science Courses. In 2018 IEEE Frontiers in Education Conference
(FIE). 1–5. https://doi.org/10.1109/FIE.2018.8659243

[32] Martin Ukrop, Valdemar Švábenský, and Jan Nehyba. 2019. Reflective Diary
for Professional Development of Novice Teachers. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (Minneapolis, MN,
USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY, USA,
1088–1094. https://doi.org/10.1145/3287324.3287448

[33] Andries vanDam. 2018. Reflections on an Introductory CS Course, CS15, at Brown
University. ACM Inroads 9, 4 (Nov. 2018), 58–62. https://doi.org/10.1145/3284639

[34] Joseph Weizenbaum. 1966. ELIZA—a Computer Program for the Study of Natural
Language Communication Between Man and Machine. Commun. ACM 9, 1 (Jan.
1966), 36–45. https://doi.org/10.1145/365153.365168

https://doi.org/10.1145/1089786.1089794
https://doi.org/10.1109/EDUCON.2017.7942927
https://doi.org/10.1145/3059009.3059023
https://doi.org/10.1145/1839594.1839609
https://doi.org/10.1145/1839594.1839609
https://doi.org/10.1145/2016911.2016917
https://doi.org/10.1080/08993408.2012.655091
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1207/s15326985ep4102_1
http://arxiv.org/abs/https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/2999541.2999557
https://doi.org/10.1080/08993408.2015.1033129
https://doi.org/10.1145/2361276.2361280
https://doi.org/10.1109/FIE.2016.7757658
https://doi.org/10.1109/FIE.2016.7757658
https://doi.org/10.1145/3105726.3106179
https://doi.org/10.1145/3105726.3106179
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3291279.3339418
https://doi.org/10.1145/3291279.3339418
https://doi.org/10.1109/FIE.2018.8659243
https://doi.org/10.1145/3287324.3287448
https://doi.org/10.1145/3284639
https://doi.org/10.1145/365153.365168

	Abstract
	1 Introduction
	2 Related Work
	3 Setting: Lab Tutoring in CS Course
	4 Tutoring Experiences and Model
	4.1 Tutor's Initial State of Mind
	4.2 Tutor's Observation of Student
	4.3 Inferring What is Inside the Student's Mind
	4.4 Tutoring Interactions

	5 Discussion: Lessons Learned
	5.1 Challenges That Programming Tutors Face
	5.2 Design Ideas for Improving Lab Tutoring

	6 Conclusion
	References

