
End-User Programmers Repurposing
End-User Programming Tools to Foster Diversity in

Adult End-User Programming Education
Sean Kross

UC San Diego
La Jolla, CA, USA
seankross@ucsd.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

Abstract—Efforts to improve diversity in computing have
mostly focused on K-12 and university student populations, so
there is a lack of research on how to provide these benefits to
adults who are not in school. To address this knowledge gap, we
present a case study of how a nine-member team of end-user
programmers designed an educational program to bring job-
relevant computing skills to adult populations that have tradi-
tionally not been reached by existing efforts. This team conceived,
implemented, and delivered Cloud Based Data Science (CBDS), a
data science course designed for adults in their local community
in historically marginalized groups that are underrepresented
in computing fields. Notably, nobody on the course development
team was a full-time educator or software engineer. To reduce the
amount of time and cost required to launch their program, they
repurposed end-user programming skills and tools from their
professions, such as data-analytic programming and reproducible
scientific research workflows. This case study demonstrates how
the spirit of end-user programming can be a vehicle to drive
social change through grassroots efforts.

Index Terms—diversity in computing, end-user programming,
data science

I. INTRODUCTION

A widely-acknowledged deficit in computing fields is the
lack of historically underrepresented groups on teams that
build software and make engineering decisions [1], [2]. This
deficit of perspectives is especially impactful considering how
algorithmic-driven decision-making has become a fundamental
part of modern life. Algorithms determine who is approved
for bank loans [3], which job applications are considered for
job openings [4], and what plan of care certain patients end up
receiving [5]. Data-driven systems have also re-enforced racial
biases [2] and denied essential social services to members of
historically marginalized groups [6]. The reasons for these
failings are multifaceted, but they are compounded when
contributions from the people who would be most affected
are excluded from the system design process [2], [6].

In recent years both researchers and community organiza-
tions have addressed these issues by diversifying the popula-
tion of students who choose to study computing. For instance,
academic projects such as Storytelling Alice [7], Scratch [8],
and App Inventor [9] have fostered more inclusive program-

ming communities at the K-12 level, especially in middle and
high schools. Nonprofits such as Code2040 [10], Girls Who
Code [11], and Black Girls Code [12] strive to improve both
gender and racial diversity amongst K-12 students interested
in computing. At the university level, research-backed curric-
ula such as media computation [13] and diverse paths into
computing [14], [15] have made advances in the proportion of
computing majors from underrepresented groups. In addition,
college scholarships and mentoring programs have helped
retain such students as they advance through school. However,
the majority of such efforts target K-12 and university students,
so there is a lack of knowledge about how to provide these
benefits to adults who are not in school.

To address this gap, this paper presents a case study of
a team of academic research scientists who partnered with
a local community organization to teach data science to
adults living in a high-poverty area of a large U.S. city.
The typical student in this program is an adult member of
an underrepresented and marginalized group who did not
complete high school; they may have grown up in foster care
or may have experienced extended periods of unemployment
or homelessness. The program’s goal is to equip these adults
with basic data science skills required to get entry-level jobs
doing tasks such as spreadsheet data entry, data cleaning,
wrangling, and validation. These types of data-oriented jobs
offer an on-ramp into computing careers while being more
within their reach than full-time software developer positions,
which require much more extensive training.

To implement this grassroots initiative on a short time
frame with a small budget, the team had to perform end-
user programming [16] to repurpose existing tools from their
research workflows and to create new ad-hoc tools to support
course development. Specifically, they developed text-based
programmatic workflows based on R Markdown computa-
tional notebooks [17] that they use in their research lab.

Our study is the first, to our knowledge, to analyze how
a team of end-user programmers (i.e., academic research
scientists) applied the philosophy of end-user programming
(i.e., repurposing/building software tools for personal use) to
diversify end-user programming (i.e., data science) education978-1-7281-0810-0/19/$31.00 ©2019 IEEE

to reach traditionally underrepresented groups. While this
paper reports a single case study, we believe its findings
have generalizable research value to the field of end-user
programming. Specifically, it advances the idea that end-user
programming can be a vehicle for positive social change by
enabling a small team of non-specialists to repurpose software
tools to serve their user population quickly and at low cost.

This paper makes the following contributions:
• Findings from a case study of a nine-member research

lab on how they performed end-user programming to
repurpose tools from their research to foster education.

• Implications for end-user programming research and
practice, especially related to social good, diversity in
computing, and broadening educational opportunities.

II. RELATED WORK

Our study extends and brings together prior work in two
main areas: end-user programming and diversity in computing.

A. End-User Programming

End-user programming is commonly defined as the act of
programming as a means to personal ends rather than for
producing software artifacts for widespread public use [16],
[18], [19]. This definition encompasses a wide variety of
personas, ranging from professional software engineers writing
throwaway prototype code to teachers writing spreadsheet
macros to track grades. (Many prefer to use the term “end-user
programming” to focus on the activity [16], but for notational
simplicity we will use “end-user programmer” to refer to
people who frequently perform end-user programming.)

In this paper we study academic research scientists who
perform end-user programming by writing code in the R lan-
guage. Prior work has studied how scientists code for their re-
search in a range of settings, including high-performance com-
puting [20] and across the physical and social sciences [21]–
[23]. In recent years, groups have studied how researchers use
Jupyter notebooks [24]–[26] in their end-user programming
workflows. However, whereas prior work has focused on
scientists writing code to support their own research, our study
is unique in showing how they repurpose those skills to create
an ad-hoc educational platform outside of their core research.

Besides being end-user programmers, our study participants
are also creating an educational initiative to train future
end-user programmers: data scientists who use code as a
means to produce data-driven insights. Longstanding efforts
such as Software Carpentry [27] and Data Carpentry [28]
have trained data scientists in academia through volunteer-run
university workshops. We have previously surveyed a broad
range of data science teaching programs across universities,
coding bootcamps, and industry settings [29]. While many of
these efforts strive to provide an inclusive and welcoming
environment, they still mainly target graduate students and
working professionals who often already have advanced de-
grees. In contrast, the team that we study is working with
a local community organization to provide free data science
training to adults in underrepresented groups who often did

not even finish high school. We know of no prior academic
research on end-user programming education being extended
to underserved populations like the one that we study.

B. Diversity in Computing

Diversity in computing has been a longstanding interest
in computing education research, and it is also this year’s
VL/HCC special emphasis topic [30]. To our knowledge, the
majority of efforts around this topic have been for students in
K-12 and university settings. In contrast, we study a program
to teach computing to adults who are not in school settings.

At the K-12 level (elementary, middle, and high schools),
researchers have developed domain-specific programming en-
vironments to broaden interest in computing amongst tradi-
tionally underrepresented groups. For instance, Storytelling
Alice [7] focused on engaging female middle school students,
and Scratch [8] was deployed to after-school programs to
foster computing interest amongst low-income African Amer-
ican and Latinx youths from 8 to 18 years old [31]. Beyond
programming, the Glitch Game Tester project [32]–[34] hired
African American high school students as game testers, which
sparked their interest in computing careers. Project Rise Up 4
CS [35] used in-person mentorship and financial incentives to
encourage African American high school students to succeed
on the annual AP Computer Science exam.

At the university level, research-based diversity initiatives
have focused on two fronts: curriculum design and activi-
ties inside the classroom. On the curricular front, alternative
pathways into computer science [14], more flexible threads of
courses for different interests [15], and service learning op-
portunities [36] have improved diversity in computing majors.
Within the classroom, pair programming, peer instruction [37],
[38], and media computation activities [13], [39] have im-
proved retention for students from underrepresented groups.

In contrast to K-12 and university initiatives, we study the
development of a free computing education program targeted
at adults who do not have access to formal schooling. Prior
research on adult learning of computing has studied how
working adults take online courses [40], how older adults
over 60 years old [41] learn to code on their own, and how
end-user programmers learn to code on the job [42]–[44].
However, these adults often already have higher education
and plentiful access to technology. Despite these differences in
learner demographics, the educational program that we study
addresses some of the same challenges of adult education that
prior work found, most notably lack of time given other life
responsibilities and feelings of isolation due to lack of in-
person support. Finally, our study is unique in showing how a
team attempted to address diversity in computing by using the
tools of end-user programming at their disposal to develop an
adult data science education program.

III. METHODS

We performed a case study of the development process
of Cloud Based Data Science (CBDS), a free online course
described in Table I. The goal of CBDS is to teach basic

data science skills using spreadsheets and the R language in
order to prepare students to obtain jobs as entry-level data
scientists. In essence, it is training students to become end-
user programmers who write code as a means to an end to
clean data and produce analysis outputs.

For this case study we interviewed everyone involved in
creating CBDS: eight research scientists at a large U.S. uni-
versity and the project’s program administrator, who was a
research administrator in their lab. None of the nine team
members’ full-time jobs were to create educational programs
or to write software; CBDS was a voluntary effort. The first
author conducted all interviews (each lasting 45 to 60 minutes)
using video conferencing software.

The interviews were semi-structured with questions focus-
ing on the motivations each team member had for working on
this project, their use and development of software tools during
the project, and how these tools affected their interactions with
other team members. Interview questions included:

• How did you first get involved in CBDS?
• What was your role in developing CBDS?
• What existing tools have you used for educational content

development?
• What was your level of expertise with these particular

tools before CBDS? (if they mentioned specific tools)
• Did you have to build any of your own software tools to

develop CBDS? If so, which ones?
• How were development tasks distributed throughout the

team?
• How did you coordinate work between team members?
The first author took notes and recorded verbatim quotations

during every interview. After all interviews completed, the
research team (two members) iteratively categorized them into
major themes using an inductive analysis approach [45].

A. Study Design Limitations

This project was a case study of a specific team of aca-
demics at a U.S. university who attempted to develop a
nontraditional educational program. Thus, we do not have
large-scale replicable data and cannot claim that the CBDS
team’s experiences generalize to other related efforts. Also,
we are relying solely on interviews and did not perform an
ethnography to observe the team when CBDS was first being
developed. Note that CBDS is still under active development,
so many of the details are fresh on participants’ minds.

Since CBDS is still in its early stages, having enrolled only
around a dozen students so far, it is too early to tell the long-
term outcomes of this program in terms of sustainability and
impacts on its alumni. We also did not have direct access to
the students and thus cannot report on their experiences. This
study focuses solely on the CBDS development team.

IV. CBDS GOALS: DIVERSIFY END-USER PROGRAMMING

We report our case study’s findings by first detailing the
goals of CBDS and the motivations of its volunteer devel-
opment team. Then we describe their end-user programming
activities throughout project development.

Module Subject
1 Introduction to the CBDS Program
2 How to use Your Chromebook Laptop
3 How to use Web Applications
4 Organizing a Data Science Project
5 The Command-Line and Version Control
6 R Programming
7 Data Wrangling
8 Data Visualization
9 Connecting to Data Sources

10 Data Analysis
11 Communicating Analysis Results
12 Getting a Data Science Job

TABLE I
CURRICULUM OF THE CBDS (CLOUD BASED DATA SCIENCE) COURSE.

Table I shows the curriculum of CBDS, a self-paced online
course that anyone can take for free. However, being free
and online is nowhere near sufficient for ensuring that it
is accessible to many members of underrepresented groups.
Over the past decade of research into MOOCs (Massive Open
Online Courses), a widely-acknowledged finding is the notable
lack of diversity in who takes and benefits from them: MOOC
students are mostly white or Asian males with at least college-
or graduate-level degrees [46]–[48].

Interview participants P1 and P3 saw this lack of diversity
firsthand since they had prior experience creating data science
MOOCs. P1 explained his motivation for starting CBDS:
“Why aren’t certain groups of people using our existing
MOOCs? Maybe they didn’t have access to hardware, they
lacked prerequisite knowledge, or they were just unaware
that data science was a thing.” P4 mentioned that existing
courses assume prior educational experiences that exclude
people without access to such opportunities: “The problem
with data science programs is that the material is pretty ad-
vanced. They’re geared towards master’s students.” The CBDS
team believed that with a more accessible curriculum and
personalized teaching approach, they could bring data science
to a group that has not traditionally been reached by MOOCs.
Specifically, P1’s goal was to target students with a 10th-grade
level of math literacy. The team also augmented CBDS with
in-person support to help members of underrepresented groups
enroll, remain in, and successfully complete the course.

First they worked with a local community organization
to recruit potential students. To reach its target audience,
the CBDS team partnered with the Historic East Baltimore
Community Action Coalition (HEBCAC) [49], a nonprofit that
specifically serves the historically disenfranchised low-income
neighborhoods surrounding the university where the team
works. HEBCAC serves a community where many residents
did not complete high school, grew up in foster care, or
experienced extended periods of joblessness or homelessness.
HEBCAC steps in to help them complete their GED diploma
(the equivalent of a U.S. high school degree), place them in
jobs, or help them arrange further educational opportunities
such as community college. The majority of people served by
HEBCAC are African American, Hispanic, and Latinx adults.
HEBCAC was a critical bridge between potential students and
the CBDS team. Otherwise these students would not likely

ID Gender Field Job Title End-User Programming Experience Created Course Content? In-Person Tutor?

P1 M Biostatistics Research Lab P.I. > 5 years Yes No
P2 F Genetics Postdoc 1− 5 years Yes Yes
P3 M Biostatistics Research Scientist > 5 years No No
P4 M Biostatistics Research Scientist > 5 years Yes No
P5 F Biostatistics Research Scientist > 5 years Yes No
P6 F Biostatistics Ph.D. Student 1− 5 years Yes No
P7 F Liberal Arts Administrative Staff none No Yes
P8 M Economics Postdoc < 1 year Yes Yes
P9 F Genetics Ph.D. Student < 1 year Yes No

TABLE II
BACKGROUNDS OF THE NINE MEMBERS OF THE CBDS TEAM THAT WE INTERVIEWED, ALONG WITH THEIR PRIOR END-USER PROGRAMMING

EXPERIENCE AND WHETHER THEY CREATED COURSE CONTENT OR SERVED AS IN-PERSON TUTORS.

know about the existence of data science as a career path that
could be within their reach.

Once students enroll, they are given a free Chromebook
laptop (detailed in Section VI-A) and the opportunity to meet
in-person with volunteer tutors twice per week during 90-
minute office hours; P2, P7, and P8 served as tutors. Students
can also ask online questions to course staff in a private
Slack chat channel. Finally, to encourage retention in the
program, students are paid a modest stipend for successfully
completing each module in Table I; this stipend is designed to
be comparable to the wage they would earn from working in
the kinds of jobs that HEBCAC normally helps them obtain.

Once students finish the course, the CBDS team and HEB-
CAC work with them to do resume and interview preparation
and to refer them to entry-level data science jobs in the area.

V. MOTIVATIONS OF CBDS DEVELOPMENT TEAM

Not only was CBDS’s goal to train new end-user pro-
grammers (i.e., data scientists), its course development team
also consisted of end-user programmers. Table II shows team
members’ backgrounds. Everyone on the team works in the
same life science research group at a large U.S. research
university. P1–P6 all had several years of end-user program-
ming experience, in the form of using bioinformatics pipelines
and programming as part of statistical data analysis for their
research. P8 and P9 had limited programming experience
before working on CBDS, while P7 had no programming
experience before joining. None of the team members have a
degree in computer science or experience doing professional
software development. All are cisgendered (5 female, 4 male).

Why was this team motivated to create CBDS when their
primary job was as research scientists? Their workplace is
located in the same neighborhood served by HEBCAC, an
area that has been historically disenfranchised. Decades of
societal inequity has led to increased rates of poverty, which
everyone on the team sees around them. Thus, all team mem-
bers reported their primary motivation as wanting to create
opportunities for adults in the surrounding neighborhood who
could not normally afford to pay the tuition for a traditional
education like that offered at their university.

P7 was closest to the target student community. She does
most of the administrative work for CBDS and serves as a
volunteer tutor for it. She grew up near the area served by

HEBCAC, so she was very motivated to see people from her
community succeed in this program: “My personal excitement
about joining in the first place was to help my people.” Besides
growing up in the area, P7 felt that she was also able to relate
to the students because she had only recently started learning
how to code: “I really appreciate my position in the program
because I believe I am the least experienced staff member in
terms of programming. So I experience the same frustrations
and joys when a program crashes or when my graph turns
out how I thought it would.” Also, as the only member of the
team who was not on a Ph.D.-oriented research career path,
she felt that students could be more honest and open with her:
“I definitely think it was a good idea to have somebody on
the team who they weren’t intellectually intimidated by.”

VI. END-USER REPURPOSING OF EXISTING TOOLS

Because CBDS was developed by a team of volunteer
non-specialists, they needed to engage in a variety of end-
user programming activities to make this program work with
relatively little time and money. The first set of activities
we describe here, while not “programming” per se, invoked
the spirit of end-user programming by repurposing existing
hardware and software to develop a data science curriculum.

A. Repurposing Low-Cost Chromebook Hardware

Keeping costs as low as possible was a major concern for
the team. P1 described how prohibitively expensive it would
be to build CBDS as an official university course or MOOC:
“In a traditional college setting if you had assembled several
faculty to build this program it would have cost millions of
dollars. We did not have that!” Cost minimization was not
just a concern in terms of development, but it was critical
to the team’s mission to make data science education avail-
able to underserved members of their local community. One
initial obstacle they faced was simply making the technology
required for doing data analytic work available to students.
The students that they wanted to reach typically did not even
own personal computers, or their computers were too old to
install modern data science tools on: “We wanted to reduce the
cost of the hardware you need to get started. For low income
folks these small costs are insurmountable.” (P3)

The team’s solution was to provide a Chromebook laptop
for free to every student in the program. Many Chromebooks

now cost less than $300, which is affordable compared to the
typical hardware that data scientists use and well within the
constraints of the seed funding provided to launch the program
with the first dozen students. In addition, Chromebooks are
sometimes available to check out for free from public libraries.

Each Chromebook runs Chrome OS, an operating system
geared for web applications. Instead of relying on a computer
with powerful hardware, students used RStudio Cloud [50],
a free data science run-time environment for the R language
that is hosted on a web server and accessed via a browser-
based IDE. This web-centric setup also helped students start
coding in their browser without the frustrations of software
installation, which prior work found to be a major barrier to
getting started [29]: “The goal was to minimize tool setup for
students. Everything had to be done in the browser.” (P2)

In short, the CBDS team repurposed Chromebooks, which
have traditionally been used for casual web browsing, as end-
user programming tools for aspiring data scientists.

B. Repurposing Tools for Open and Reproducible Science

As academic researchers who practice open and repro-
ducible science [51], [52], the CBDS team were adept users
of computational notebooks – especially R Markdown [17] –
to do end-user programming for their research. R Markdown
allows users to write prose in the lightweight Markdown
format, while interleaving graphs, diagrams, and runnable code
in several programming languages such as R and Python.
Users can write R Markdown in a text editor or in RStudio
Cloud, which renders it as a notebook-like interface similar
to Jupyter [53]. Since these are text documents, changes can
easily be tracked in version control systems like Git. To create
lessons for CBDS, the team repurposed this computational
notebook – one of the central tools in their daily scientific
workflow – to become the substrate for the educational content
they built.

A related example of repurposing was the fact that years
of the team’s data analysis code and documentation were
already in R Markdown, so they could be curated, simplified,
and re-used for teaching. For instance, P9 took software
documentation she had already written for internal lab use
and adapted it into course content: “The fact that all of the
content is plain text makes making those changes super easy.”

Another example of repurposing was led by P1 and P3, who
had both developed MOOCs before. MOOC providers like
Coursera offer an in-browser rich-text editor where instruc-
tors are supposed to write lessons and assignments for their
course. Compared to the team’s usual open science workflows,
which take advantage of the command line, Git, and other
programmatic tools, the team felt hindered by the compulsory
use of manually-driven web-based GUIs. P1 explained: “The
way the Coursera platform is set up, which isn’t as simple
as ‘push to GitHub,’ it makes [content updates] difficult.”
Thus, to better integrate the end-user programming workflows
they already used for scientific research into their desired
teaching workflow, the team partnered with online publisher
Leanpub [54] to develop a new course platform. Leanpub is

currently a platform for taking Markdown-formatted docu-
ments and compiling them into eBooks. P1 and P3 already
had experience publishing eBooks there, and they shared
Leanpub’s ethos of working with Markdown files. The team
also valued Leanpub’s pricing philosophy and applied it to
CBDS: content on Leanpub follows a pay-what-you-want
pricing model, which enables people to get it for free if
desired.

The team worked directly with Leanpub, which built them
a custom web application where they can upload R Mark-
down files and have them render as course webpages and
assessments. This web app recognized custom Markdown
syntax for elements such as multiple-choice questions and
programming assignments with test cases. P3 appreciated how
it was compatible with their existing text-based workflow:
“Leanpub catered very much to the idea of ‘text to course.’
Assessments as plain text was a very important feature.”

Using this custom platform, seven of nine team members
(P1, P2, P4, P5, P6, P8, P9) developed technical course
content solely in R Markdown files, tracked changes using
Git, and collaborated on developing course modules (Table I)
using GitHub across 25 different repositories. Course material
development began in February 2018, and the first in-person
cohort for CBDS started at the end of May 2018. The team
credited the ability to repurpose their research workflows as
critical for launching this initial version in just three months.
Significant updating of materials continued as the first cohort
made their way through the program, as changes were made
based on student feedback.

Lastly, the CBDS team also had to grapple with teaching
modern data science software libraries that were continuously
updating and changing their APIs. When they previously used
MOOC platforms like Coursera, whenever a library or API
changed, they would need to spend hours navigating menus
and GUIs to modify relevant course content that mentioned
that library. This manual workflow was antithetical to the
team’s practice of reproducible research [52], [55], where all of
the figures, tables, and reported statistics in a data analysis can
be automatically re-compiled with one command whenever the
underlying dataset is updated. Working with Markdown course
materials allowed the team to use command-line tools to find
and appropriately replace outdated content, similar to how they
would update an outdated statistic or graph in light of updated
input data while they were doing research.

Plain-text data formats, coupled with command-line tools
and Leanpub’s platform, enabled the CBDS team to take
an end-user programming approach to course development
instead of relying on manually-driven GUI-based content
management portals typically used for online courses.

VII. END-USER PROGRAMMING TO BUILD NEW TOOLS

Seven team members (P1–P6, P8) had previously developed
bespoke R-language packages for performing domain-specific
analysis tasks or for sharing algorithms and data from their
published research studies. Besides repurposing the tools of
computational science to programmatically generate online

course materials, these team members also engaged in end-
user programming to build custom tools for themselves. Here
we detail two such tools: Didactr for validating course content
and Ari for expediting video production.

A. Didactr: Custom Software to Validate Course Content

The team developed various R packages to help them create,
check, and deploy the data science lessons that went into
CBDS. One of those packages, called Didactr, allowed team
members to automatically validate lessons to make sure their
Markdown was structured correctly before being uploaded to
Leanpub. Lessons comprised two types of files: lecture videos
that explained course concepts (see next section on Ari), and
R Markdown files containing lesson readings, example code,
and assessments to practice after each lesson.

Didactr parses these files using heuristics to make sure
they are formatted to display properly on Leanpub’s online
course platform. Compiling the lessons and checking for errors
locally with Didactr was faster and provided more useful
error messages compared to uploading an error-laden lesson
to Leanpub and manually checking on the web: “Compiling
courses on Leanpub takes time. Didactr allowed me to preempt
errors that I would get on Leanpub so I could fix them locally
and shorten the correctness-evaluation loop.” (P2) Ultimately
Didactr served as a “command center” package which allowed
the CBDS team to test and track the dozens of rapidly-evolving
content files that constituted the course.

In the spirit of end-user programming for one’s own needs,
Didactr’s features were built piecemeal in response to recur-
ring bottlenecks the team faced while making course content.
For instance, P3 worked closely with several other team
members to better understand tasks they were initially doing
manually: “I asked the content creators, ‘Show me what you
do’ and tried to then find APIs that would allow us to automate
as much as possible.” And P2 recalled how closely she worked
with teammates to extend Didactr on-the-fly: “When I would
tell [P3] there was a feature I wanted, he would sit with me
and build it right in front of me.”

B. Ari: Custom Software for Text-Based Video Production

Other than writing lessons and assignments, the most time-
consuming part for the CBDS team was recording and editing
lecture videos. Videos in CBDS often feature an instructor
giving a real-time demo of writing and running code or
showing how to think through a data analysis task. If the API
for a function in the featured analysis changes, then significant
portions of the video must be re-recorded and re-edited. This
problem is particularly pronounced in fields like data science,
where industry-standard libraries are rapidly evolving. P1 and
P3 remembered how costly it was to re-record videos for their
past MOOCs whenever the code they were teaching had their
APIs updated: “With content that changes so often it’s not
feasible to reshoot videos, re-edit, et cetera, every time an
API changes” (P3).

To make it easier to create and update these code- and slide-
based lecture videos, the CBDS team developed a custom R

Fig. 1. The software workflow that the CBDS team developed to produce,
validate, and release course content from R Markdown (*.Rmd) source files.

package called Ari that allowed them to automatically generate
narrated lecture videos from the R Markdown documents they
were already writing as part of their course materials. To use
Ari, a creator first passes in a set of lecture slides and an
accompanying text narration script. Ari uses Amazon’s text-
to-speech web API [56] to synthesize a machine voice to speak
out the script and FFmpeg [57] to stitch together the lecture
slides and spoken audio into a final compiled video file with
the proper timings. Lecture slides can be generated from R
Markdown files, but often team members opted to use more
traditional GUI-based presentation tools like Google Slides.

Ari helped the CBDS team take an end-user programming
approach to video production, turning it into a process of
editing text and compiling it into videos with R scripts instead
of manually recording and editing using heavyweight video
production GUI software. To make bug fixes or updates to
their videos, they can simply edit text files and recompile.
This format also allows them to easily track video edits in
Git version control. P3 discussed how Ari’s workflow aligned
with the team’s research philosophy: “The videos are fully
reproducible [from text-based sources], just like our scientific
work.” P3 elaborated that having this more modular format
meant they could iterate more quickly: “This allows us to
only modify content without changing presentation, delivery,
et cetera. So we can take a much more experimental approach
to making lecture videos.”

VIII. TOWARD END-USER SOFTWARE ENGINEERING

Figure 1 shows the team’s current course production
pipeline where textual R Markdown files (*.Rmd extension)
get compiled into videos (*.mp4), lesson webpages, and
assessments, validated with Didactr, and then released online
to Leanpub’s web platform.

The CBDS team’s goal was to create a free data science
course for members of their local community, not to create
a production-scale course development platform. However, to
create such a course as a volunteer effort on a short time frame
(3 months from inception to launch), they had to repurpose
end-user programming skills from their research careers to
create tools to make themselves more productive. But now
that the course is in progress, the team found themselves
transitioning from end-user programming into end-user soft-
ware engineering [16], [18] with issues of tool maintenance,
robustness, and updates from new contributors on their minds,
especially as some of the original team members depart.

For instance, P1 was concerned about the ease with which
future CBDS team members could interact with both the
tools and course content: “I know the original builders of
the program will graduate soon, so lots of knowledge about
maintaining the program will leave. This fact informed all of
the technology decisions.” As our study was being conducted
P2 finished her postdoc and moved to a new institution, and P1
explained the extent to which her departure was already testing
the robustness of their tools: “We have already done lots of
maintenance and restructuring and our system is working.
Team members who have then left are still regularly fixing
bugs, which shows how easy the material is to maintain.”

A related concern was the extent to which tools could enable
future maintenance and expansion of course content. P1 said
the motivation behind building tools in the first place was the
question: “How can we make [course] maintenance costs as
asymptotically close to zero as possible?” But now the tools
themselves need to be maintained and updated as well.

IX. DISCUSSION

We conclude by reflecting on our findings in light of
implications for future end-user programming and computing
diversity research, end-user programming for education and
social good, and the paradox of scale and access to education.

A. Implications for Future Research

This case study presents only a single snapshot, but we
believe it can open the doors to future research on the interplay
between end-user programming and diversity in computing.
For instance, there is at least an order of magnitude more end-
user programmers than professional software developers [58],
[59], and they likely come from more diverse demographics
than those who specialized in computing fields. Thus, one
of the most practical and scalable ways to further broaden
diversity in computing is to channel the energy of end-
user programmers. How can institutions that employ such
programmers foster these kinds of initiatives without making
them too bureaucratic and thus undermining their bottom-up
grassroots spirit? Can lessons from these volunteer-run efforts
inspire new practices for designing collaboratively-constructed
educational experiences?

Switching gears, how can systems researchers develop tools
to better support the extensibility of end-user programming
environments to stretch far beyond their original intended
uses? In our case study, the CBDS team repurposed the R
language ecosystem, which was originally designed for statis-
tical research, to build an online course development platform.
While experts in educational technology could probably come
up with a “better” toolchain, the fact is that this is the toolchain
these research scientists already know well, so tools should
meet them where they are. But must every ecosystem reinvent
the same wheels in an ad-hoc non-reusable manner? Or are
there more general principles for constructing modern software
platforms that we can abstract out into language-agnostic tools
that developers can plug into whether they are working in R
or Python or JavaScript or even spreadsheet environments?

B. DevOps Patterns in End-User Programming for Education

Reflecting on our nine interviews in this case study, one
recurring theme was how much technical infrastructure was
involved behind the scenes to keep CBDS running. It reminded
us of how the past decade saw the emergence of DevOps [60]–
[62], a practice that combines software development with the
operations required to deliver and maintain that software. In
industry, DevOps engineers write custom code to monitor the
lifecycle of software products (especially web applications)
throughout development, deployment, testing, and release.
In a similar vein, the CBDS team are not only producing
educational content like faculty normally do, but they are
also writing custom software to manage the lifecycle of that
content. In essence, they are mirroring the patterns in DevOps
while performing end-user programming for education.

Like DevOps engineers, the CBDS team has significant
influence on the design of their program (developing content),
the programming tasks involved in delivering their “product”
(building software to support that content), and monitoring
its status (interacting with students to see where they get
confused). Every CBDS team member can both make obser-
vations about what parts of their system (Figure 1) need to be
improved and are empowered to make those improvements.

Also like DevOps engineers, the CBDS team repurposed
or built custom software tools for each stage of the course
lifecycle. They used the same tools that they would normally
use to do their research to create course modules, deployed
those modules on GitHub so other team members could col-
laboratively build upon them, developed their own monitoring
software to test whether modules were formatted correctly, and
released online and iterated based on student feedback. If not
for their knowledge of appropriate tools to cobble together,
they would likely not have been able to deliver CBDS on top
of their normal duties as researchers. That said, some team
members like P3 had concerns with the technical challenges
of continued maintenance and scaling, given their multifaceted
job roles: “How can we be expected to be scientists, security
experts, system administrators, and good instructors?”

More broadly, we believe that treating educational artifacts
like software artifacts by borrowing patterns from fields like
DevOps could become a promising strategy as the demand for
computing education grows in the coming years.

C. End-User Programming for Social Good

Another unique aspect of the CBDS project was how end-
user programming was applied for broader social good. This
project originated from the team’s desire to create data science
education opportunities for an underserved adult population
that would not otherwise encounter an on-ramp into computing
careers. Although the CBDS team was composed mostly of
academic data scientists, it was not their data- or research-
related skills that allowed them to build CBDS; rather it was
their ability to design a code-based workflow that enabled
rapid collaborative iteration on their course materials via end-
user programming, software engineering, and DevOps.

The speed and relatively low cost with which CBDS was
launched opens up the question: Who is in the best position
to create such opportunities for underrepresented minorities to
enter computing fields? Many existing diversity efforts have
their origins at the top levels of organizations, whether it
is CEOs diversifying hiring practices or nonprofits offering
scholarships. This top-down approach, though impactful, is
often not closely connected to the communities which these
opportunities are designed for. Conversely, there are thousands
of bottom-up local organizations working to help historically
disenfranchised communities on the ground, but they are often
not aware of paths into viable computing careers, especially
in newer professions like data science. CBDS took more of
a bottom-up approach: The team was not highly-positioned
within the organizational structure of their university, and
they relied on a partnership with the HEBCAC community
organization to recruit interested students from the local area.

This case study points to the compatibility between a
grassroots vision for positive social change and the spirit of
end-user programming. CBDS was developed such that all
team members could contribute to not just course materials
but also to the custom software tools they developed for their
own workflow. The flat structure and transparency within the
team meant that they could address their students’ concerns
more quickly. Although the success of the program has yet to
be determined, it may be good for top-down decision makers
to rethink who should be empowered to help foster greater
diversity in computing fields. Simply using free software or
putting free course materials online is not enough to create
lasting change in terms of who has access to computing
education. It appears there was no single tool or innovation by
the CBDS team that allowed this program to come to fruition.
However, this program could not have been built without end-
user programming, which equipped each team member with
the level of technical agility required to respond to the needs
of their student population.

We believe that the CBDS team’s ability to write bespoke
software to manage their course production pipeline, combined
with their proximity to the target student population in their
neighborhood, made them well-positioned to deliver such
an educational program. In contrast, a traditional university
instructor would likely not be able to produce and support
a complex technical course outside their normal teaching
duties and would also not have funding to hire professional
engineering staff to help them. On the other end, a MOOC
provider such as Coursera or Udacity would likely not create
such a “small” program due to lack of perceived market size
and revenue potential; to our knowledge, no major MOOC
provider has yet partnered with local community organizations
to produce courses for underserved adult populations.

D. Rethinking Scale and Access to Educational Opportunities

One critique of CBDS might be, “How will this ever
scale?” At present, it does not scale, since the CBDS team
must staff the online Slack chat channels and in-person office
hours themselves on top of their day jobs as researchers. The

team has ideas for how to gradually scale, such as using alumni
as volunteer tutors for subsequent cohorts and fundraising to
buy more Chromebooks. However, we believe the fact that the
team did not initially think about scale was what led to this
program being developed in the first place. If they had thought
about scale from the beginning, they would have likely created
an ordinary MOOC like what P1 and P3 have done before.

People who take MOOCs tend to already have higher
incomes and higher levels of prior education; this is especially
the case for courses that teach technical subjects such as
computer science or data science [46]–[48]. It appears that if
a course is designed upfront for reaching the largest possible
audience in terms of enrollment, then it does not usually reach
populations that have been historically excluded from educa-
tional opportunities. Thus, paradoxically, designing courses for
scale might mean less access for those who are unlikely to find
those resources on their own.

In contrast, CBDS presents an alternative to online courses
or university outreach programs. It takes an approach where
free course materials are designed to scale online but are also
formatted in a way so that course creators can iterate on
them quickly. But it was the team’s willingness to do what
does not scale – adapting to their students by partnering with
the HEBCAC community organization – that enabled them to
tailor the program continuously as new needs arose throughout
deployment. Working with HEBCAC and the students face-to-
face does not scale, but we believe this approach provides a
path for greater access to computing opportunities.

Lastly, CBDS points the way toward future hybrids of
online and in-person education. One idea here for scaling is
that paid versions of CBDS could partially fund in-person
versions that target historically underrepresented groups. With
this financial model, those who have had more access to
educational opportunities can pay to enroll and thus indirectly
fund those who have not had access to the same opportuni-
ties. Beyond financial sustainability, online courses can take
advantage of their ability to scale by transforming their online
communities into in-person communities of support: Online
alumni could be recruited to help with in-person tutoring
in underserved communities and also provide guidance and
networking opportunities related to computing careers.

X. CONCLUSION

We presented a case study of how a team of academic sci-
entists repurposed end-user programming skills and tools from
their research to create an adult education program to cultivate
diversity in computing. The team provided an easily-accessible
learning environment with free Chromebook laptops, a web-
based coding platform, and weekly in-person office hours and
online help. They customized R Markdown computational
notebooks to develop and publish course content. And they
built custom tools such as those to validate lessons and to
compile textual scripts into lecture videos. This study shows
how the bottom-up grassroots spirit of end-user programming
can advance social good. Hopefully both small teams and large
organizations can repurpose these lessons for positive ends.

ACKNOWLEDGMENTS

Thanks to the UC San Diego Design Lab for feedback,
Xiong Zhang for feedback and BibTeX wizardry, and NSF
award #1735234 for funding.

REFERENCES

[1] J. Margolis, Stuck in the shallow end: Education, race, and computing.
MIT Press, 2010.

[2] S. U. Noble, Algorithms of oppression: How search engines reinforce
racism. NYU Press, 2018.

[3] I. Bose and R. K. Mahapatra, “Business data mining –
a machine learning perspective,” Information & Management,
vol. 39, no. 3, pp. 211 – 225, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S037872060100091X

[4] G. Mann and C. O’Neil, “Hiring algorithms are not neutral,” Harvard
Business Review, December 2016.

[5] C. Lecher, “What happens when an algorithm cuts your health care,”
The Verge, 2018.

[6] V. Eubanks, Automating inequality: How high-tech tools profile, police,
and punish the poor. St. Martin’s Press, 2018.

[7] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling alice motivates
middle school girls to learn computer programming,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’07. New York, NY, USA: ACM, 2007, pp. 1455–1464.
[Online]. Available: http://doi.acm.org/10.1145/1240624.1240844

[8] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for all,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[9] D. Wolber, H. Abelson, and M. Friedman, “Democratizing
computing with app inventor,” GetMobile: Mobile Comp. and
Comm., vol. 18, no. 4, pp. 53–58, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2721914.2721935

[10] “Code2040: Join the largest racial equity community in tech,”
http://www.code2040.org/, accessed: 2019-05-01.

[11] “Girls who code: Join the girls who code movement!”
https://girlswhocode.com/, accessed: 2019-05-01.

[12] “Black girls code: Imagine. build. create.”
http://www.blackgirlscode.com/, accessed: 2019-05-01.

[13] M. Guzdial, “Exploring hypotheses about media computation,” in
Proceedings of the Ninth Annual International ACM Conference
on International Computing Education Research, ser. ICER ’13.
New York, NY, USA: ACM, 2013, pp. 19–26. [Online]. Available:
http://doi.acm.org/10.1145/2493394.2493397

[14] A. E. Tew, W. M. McCracken, and M. Guzdial, “Impact
of alternative introductory courses on programming concept
understanding,” in Proceedings of the First International Workshop
on Computing Education Research, ser. ICER ’05. New
York, NY, USA: ACM, 2005, pp. 25–35. [Online]. Available:
http://doi.acm.org/10.1145/1089786.1089789

[15] M. Furst, C. Isbell, and M. Guzdial, “Threads™: How to restructure
a computer science curriculum for a flat world,” in Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education,
ser. SIGCSE ’07. New York, NY, USA: ACM, 2007, pp. 420–424.
[Online]. Available: http://doi.acm.org/10.1145/1227310.1227456

[16] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B.
Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state
of the art in end-user software engineering,” ACM Comput. Surv.,
vol. 43, no. 3, pp. 21:1–21:44, Apr. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1922649.1922658

[17] “R Markdown: Analyze. share. reproduce.”
https://rmarkdown.rstudio.com/, accessed: 2019-05-01.

[18] M. M. Burnett and B. A. Myers, “Future of end-user
software engineering: Beyond the silos,” in Proceedings of the
on Future of Software Engineering, ser. FOSE 2014. New
York, NY, USA: ACM, 2014, pp. 201–211. [Online]. Available:
http://doi.acm.org/10.1145/2593882.2593896

[19] B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT press, 1993.

[20] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, “Software
development environments for scientific and engineering software:
A series of case studies,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 550–559. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.77

[21] J. Segal, “Some problems of professional end user developers,”
in Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, ser. VLHCC ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 111–118. [Online]. Available:
http://dx.doi.org/10.1109/VLHCC.2007.50

[22] P. Prabhu, T. B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim,
N. P. Johnson, F. Liu, S. Ghosh, S. Beard, T. Oh, M. Zoufaly,
D. Walker, and D. I. August, “A survey of the practice of computational
science,” in State of the Practice Reports, ser. SC ’11. New
York, NY, USA: ACM, 2011, pp. 19:1–19:12. [Online]. Available:
http://doi.acm.org/10.1145/2063348.2063374

[23] P. J. Guo, “Software tools to facilitate research programming,” Ph.D.
dissertation, Stanford University, May 2012.

[24] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers,
“The story in the notebook: Exploratory data science using a literate
programming tool,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’18. New
York, NY, USA: ACM, 2018, pp. 174:1–174:11. [Online]. Available:
http://doi.acm.org/10.1145/3173574.3173748

[25] M. B. Kery and B. A. Myers, “Exploring exploratory programming,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Oct 2017, pp. 25–29.

[26] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in
computational notebooks,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’18. New
York, NY, USA: ACM, 2018, pp. 32:1–32:12. [Online]. Available:
http://doi.acm.org/10.1145/3173574.3173606

[27] G. Wilson, “Software carpentry: Getting scientists to write better code
by making them more productive,” Computing in Science Engineering,
vol. 8, no. 6, pp. 66–69, Nov 2006.

[28] “Data carpentry: Building communities teaching universal data literacy,”
https://datacarpentry.org/, 2018, accessed: 2018-09-20.

[29] S. Kross and P. J. Guo, “Practitioners teaching data science in
industry and academia: Expectations, workflows, and challenges,” in
Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’19. New York, NY, USA: ACM, 2019.
[Online]. Available: https://doi.org/10.1145/3290605.3300493

[30] “VL/HCC 2019: Call for papers,” https://human-
se.github.io/vlhcc2019/call-for-papers/, accessed: 2019-05-01.

[31] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,
“Programming by choice: Urban youth learning programming
with scratch,” in Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’08. New
York, NY, USA: ACM, 2008, pp. 367–371. [Online]. Available:
http://doi.acm.org/10.1145/1352135.1352260

[32] B. DiSalvo, M. Guzdial, C. Meadows, K. Perry, T. McKlin, and
A. Bruckman, “Workifying games: Successfully engaging african
american gamers with computer science,” in Proceeding of the 44th
ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’13. New York, NY, USA: ACM, 2013, pp. 317–322.
[Online]. Available: http://doi.acm.org/10.1145/2445196.2445292

[33] B. DiSalvo, S. Yardi, M. Guzdial, T. McKlin, C. Meadows,
K. Perry, and A. Bruckman, “African american men constructing
computing identity,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’11. New
York, NY, USA: ACM, 2011, pp. 2967–2970. [Online]. Available:
http://doi.acm.org/10.1145/1978942.1979381

[34] B. DiSalvo, M. Guzdial, A. Bruckman, and T. McKlin, “Saving
face while geeking out: Video game testing as a justification for
learning computer science,” Journal of the Learning Sciences,
vol. 23, no. 3, pp. 272–315, 2014. [Online]. Available:
https://doi.org/10.1080/10508406.2014.893434

[35] B. Ericson, S. Engelman, T. McKlin, and J. Taylor, “Project rise
up 4 cs: Increasing the number of black students who pass
advanced placement cs a,” in Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’14. New
York, NY, USA: ACM, 2014, pp. 439–444. [Online]. Available:
http://doi.acm.org/10.1145/2538862.2538937

[36] B. Brinkman and A. Diekman, “Applying the communal goal congruity
perspective to enhance diversity and inclusion in undergraduate
computing degrees,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, ser. SIGCSE ’16. New
York, NY, USA: ACM, 2016, pp. 102–107. [Online]. Available:
http://doi.acm.org/10.1145/2839509.2844562

[37] L. Porter, M. Guzdial, C. McDowell, and B. Simon, “Success
in introductory programming: What works?” Commun. ACM,
vol. 56, no. 8, pp. 34–36, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2492007.2492020

[38] L. Porter and B. Simon, “Retaining nearly one-third more majors
with a trio of instructional best practices in cs1,” in Proceeding of
the 44th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’13. New York, NY, USA: ACM, 2013, pp. 165–170.
[Online]. Available: http://doi.acm.org/10.1145/2445196.2445248

[39] S. A. Rebelsky, J. Davis, and J. Weinman, “Building knowledge
and confidence with mediascripting: A successful interdisciplinary
approach to cs1,” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’13. New
York, NY, USA: ACM, 2013, pp. 483–488. [Online]. Available:
http://doi.acm.org/10.1145/2445196.2445342

[40] K. Benda, A. Bruckman, and M. Guzdial, “When life and
learning do not fit: Challenges of workload and communication
in introductory computer science online,” Trans. Comput. Educ.,
vol. 12, no. 4, pp. 15:1–15:38, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2382564.2382567

[41] P. J. Guo, “Older adults learning computer programming: Motivations,
frustrations, and design opportunities,” in Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’17.
New York, NY, USA: ACM, 2017, pp. 7070–7083. [Online]. Available:
http://doi.acm.org/10.1145/3025453.3025945

[42] B. Dorn and M. Guzdial, “Graphic designers who program as informal
computer science learners,” in Proceedings of the Second International
Workshop on Computing Education Research, ser. ICER ’06. New
York, NY, USA: ACM, 2006, pp. 127–134. [Online]. Available:
http://doi.acm.org/10.1145/1151588.1151608

[43] ——, “Learning on the job: Characterizing the programming knowledge
and learning strategies of web designers,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’10.
New York, NY, USA: ACM, 2010, pp. 703–712. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753430

[44] P. K. Chilana, R. Singh, and P. J. Guo, “Understanding conversational
programmers: A perspective from the software industry,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’16. New York, NY, USA: ACM, 2016, pp. 1462–1472.
[Online]. Available: http://doi.acm.org/10.1145/2858036.2858323

[45] J. M. Corbin and A. L. Strauss, Basics of qualitative research: techniques
and procedures for developing grounded theory. SAGE Publications,
Inc., 2008.

[46] L. Breslow, D. E. Pritchard, J. DeBoer, G. S. Stump, A. D. Ho, and
D. T. Seaton, “Studying learning in the worldwide classroom: Research
into edX’s first MOOC,” Research & Practice in Assessment, vol. 8,
2013.

[47] J. D. Hansen and J. Reich, “Democratizing education? examining
access and usage patterns in massive open online courses,” Science,
vol. 350, no. 6265, pp. 1245–1248, 2015. [Online]. Available:
https://science.sciencemag.org/content/350/6265/1245

[48] M. Guzdial, “Limitations of moocs for computing education- addressing
our needs: Moocs and technology to advance learning and learning
research (ubiquity symposium),” Ubiquity, vol. 2014, no. July, pp. 1:1–
1:9, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/2591683

[49] “Historic East Baltimore Community Action Coalition (HEBCAC):
Thriving Baltimore Communities,” https://hebcac.org/, accessed: 2019-
05-01.

[50] “Welcome to RStudio Cloud: Do, share, teach and learn data science
with R.” https://rstudio.cloud/, accessed: 2019-05-01.

[51] J. S. S. Lowndes, B. D. Best, C. Scarborough, J. C. Afflerbach, M. R.
Frazier, C. C. O’Hara, N. Jiang, and B. S. Halpern, “Our path to better
science in less time using open data science tools,” Nature ecology &
evolution, vol. 1, no. 6, p. 0160, 2017.

[52] R. D. Peng, “Reproducible research in computational science,” Science,
vol. 334, no. 6060, pp. 1226–1227, 2011.

[53] “Project jupyter,” http://jupyter.org/, 2017.
[54] “Leanpub: publish early, publish often,” https://leanpub.com/, accessed:

2019-05-01.
[55] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil, B. Hanson,

M. A. Heroux, J. P. Ioannidis, and M. Taufer, “Enhancing reproducibility
for computational methods,” Science, vol. 354, no. 6317, pp. 1240–1241,
2016.

[56] “Amazon polly: Turn text into lifelike speech using deep learning,”
https://aws.amazon.com/polly/, accessed: 2019-05-01.

[57] “Ffmpeg: A complete, cross-platform solution to record, convert and
stream audio and video.” https://ffmpeg.org/, 2017.

[58] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers
of end users and end user programmers,” in Proceedings of
the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, ser. VLHCC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 207–214. [Online]. Available:
http://dx.doi.org/10.1109/VLHCC.2005.34

[59] C. Scaffidi, “Counts and earnings of end-user developers –
https://www.linkedin.com/pulse/counts-earnings-end-user-developers-
chris-scaffidi/,” Sep. 2017.

[60] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
Software, vol. 33, no. 3, pp. 94–100, May 2016.

[61] L. Zhu, L. Bass, and G. Champlin-Scharff, “Devops and its practices,”
IEEE Software, vol. 33, no. 3, pp. 32–34, May 2016.

[62] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, May 2016.

