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Abstract23

A program semantics visualizer (PSV) helps illuminate a language’s semantics by explaining the24

runtime execution of programs. PSVs are often used in introductory programming (CS1) courses to25

help introduce a notional machine, an abstraction of the computer that executes the language. But26

what information should PSVs present to fully explain such notional machines?27

In this paper we propose a three-axis model to assess the design of PSVs that visualize execution28

traces. PSVs should help users by clearly answering three questions: What is the machine’s29

configuration at each execution step? Why did an execution step take place? How did an execution30

step change the machine’s configuration?31

We demonstrate our model’s utility for assessing PSVs by explaining why, in actual classroom32

use, instructors have resorted to manually extending PSV output. In particular, we study instructors’33

additions to visualizations generated by Python Tutor, the most popular PSV.34
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1 Introduction43

Students struggle to form accurate mental models of program execution. For example, in a44

study of an introductory Java programming course, only 17% had an accurate mental model45
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23:2 The Essence of Program Semantics Visualizers

Listing 1 Factorial in Python. Understanding this five-line function requires mastering (at least)
four semantic concepts: expression evaluation, variable lookup, function entry, and loops.
def fact(n):

product = 1
for i in range(n):

product = product * (i + 1)
return product

print(fact (6))

of object reference assignment [19].46

Yet developing an accurate mental model is essential, since even understanding simple47

programs demands mastery of several crucial semantic concepts. For example, consider the48

Python program in Listing 1. Understanding this code involves (at least) four aspects of49

Python’s semantics: expression evaluation, variable lookup, function entry, and loops.50

Figure 1 Python Tutor visualization of the factorial program in Listing 1.

These and other semantic concepts compose a notional machine, “an idealized abstraction51

of computer hardware and other aspects of the runtime environment of programs” [25].52

Program semantics visualizers (PSVs), like Python Tutor [15], visualize traces of program53

execution to help explain notional machines by example [9] (Figure 1).54

Getting a PSV’s design “right” is vital for helping users develop accurate mental models.55

But how can we assess whether a PSV explains everything a student needs to comprehend56

the necessary semantic concepts?57

Leveraging abstract machine formalizations (section 2), we contribute a three-axis model58

for assessing PSV design. Specifically, we identify three key questions (section 3) a PSV59

should clearly answer:60

1. What is the machine’s configuration at each step of execution? (subsection 3.1)61

2. Why did an execution step take place? (subsection 3.2)62

3. How did an execution step change the machine’s configuration? (subsection 3.3)63

We demonstrate the utility of this model by accounting for instructors’ manual extensions64

to Python Tutor’s visualizations. More specifically we study extensions from the first few65
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lectures of three CS1 courses, whose content comprises the four semantic concepts necessary to66

understand Listing 1. Our model accounts for extensions that explain expression evaluation,67

variable lookup, and function entry. For extensions concerning loops, we found that our68

model does not elegantly account for instructors’ explanations we observed in practice. We69

conclude that our model is sufficient for visualizations of single executions steps. Future70

work will need to build on the foundation established in this paper with additional axes to71

account for explanations that visualize multiple steps simultaneously. We speculate how such72

extensions may be developed (section 5) and urge others to develop tools that clearly answer73

PSV users’ “What, Why, How” questions automatically (section 6).74

In the spirit of PLATEAU, our work repurposes insights from programming languages (PL)75

to advance visualization design and ultimately help democratize programming. Specifically,76

our three-axis model leverages formal semantics to address the needs of three user groups:77

(i) it suggests how learners may develop accurate mental models of programs, (ii) it provides78

guidelines for visualization authors who customize PSVs, and (iii) it provides design criteria79

for PSV tool builders.80

More precisely to create an expressive PSV, we must be able to construct a mapping from81

a machine model to a visual domain. Since we are doing this in a language-agnostic way,82

we will not use a specific machine model example, but rather grab some language-agnostic83

definition. Programming Languages offers many possibilities, but the one that suits our84

needs best is the abstract machine.85

2 Abstract Machines86

By definition a PSV visualizes program semantics. Thus to understand the information a87

PSV should explain, one must study the information intrinsic to the semantics themselves.88

In this section we explain our choice of abstract machines as the formal basis for our study89

of program semantics.90

To the best of our knowledge, Berry [5] was the first to explore the role of formal semantics91

in PSVs. That early work relied on big-step and small-step operational semantics. While92

this proved to be a useful formalism, operational semantics are generally not conducive to93

visualizations, since their inference rules often rely on the evaluation of subterms. The ordering94

of subterm evaluation is implicit, requiring additional animation steps that do not correspond95

to operations in the original machine rules. Sirkiä [24] introduced Jsvee, a language-agnostic96

DSL for creating PSVs. Jsvee provides roughly 50 high-level semantic building blocks, called97

“operations,” which are shared among many programming languages. These primitives are98

useful in practice for quickly developing PSVs. Our approach is complementary, establishing99

a simpler, more general model of PSV design that we believe could inform the design of100

Jsvee’s semantic blocks.101

In contrast to the approaches above, Pollock et al. [23] suggest that abstract machines102

could play a central role in formally reasoning about PSVs. Abstract machines present103

machine models close to existing semantics visualizations and provide a well-defined notion104

of time step. Starting here and continuing through the next section, we will incrementally105

present a formal definition of an abstract machine based on Abstract Evaluation Systems [16].106

Intuitively, an abstract machine is a combination of (1) a set of possiblemachine configurations,107

including both initial configurations corresponding to a program beginning execution on108

a given input and also final configurations corresponding to program results, and (2) a109

transition relation that explains how configurations evolve over time as the machine executes.110

For brevity, we depart from Abstract Evaluation Systems by eliding the details of initial and111
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23:4 The Essence of Program Semantics Visualizers

final configurations. Together these properties comprise a labeled transition system:112

I Definition 1. A labeled transition system is a triple 〈C, Λ,→〉 where C is a set of113

configurations, Λ is a set of labels, and → ⊆ Λ× C × C is a labeled transition relation. One114

often writes the label above the arrow: L−→ ⊆ {L} × C × C.115

We can think of the labels as different rules that combine to fully describe the machine’s116

execution.117

3 The Three-Axis Model118

Beginning with our basic abstract machine formalization, we simultaneously motivate each119

of our model’s three axes and refine our machine description.120

3.1 Trace: Answering What? Questions121

Ben-Bassat Levy et al. [18] propose completeness as a design goal for PSVs: “Completeness122

means that every feature of the program must be visualized, for example, a value such as a123

constant may not appear from nowhere.” We reformulate this definition of completeness as a124

question about notional machines that PSVs must help users answer:125

What is the machine’s configuration at each step of execution?126

A PSV can answer What? questions if it can present all intermediate configurations to127

the user in detail. We formally model this information as a trace: the transitive closure of128

configurations reached by the transition relation starting from an initial configuration and129

ending in a final configuration. For simplicity, we assume execution is deterministic. Most130

PSVs operate on specific linear traces, so this is a reasonable restriction. The trace from131

initial configuration c0 to final configuration cn is the sequence c0, c1, . . . , cn such that the132

abstract machine relates ci to ci+1 by some rule Li. That is, ci
Li−→ ci+1.133

This formalism suggests What? questions are not sufficient, since they say nothing134

about the Li. In the next two subsections, we will explore design principles and questions135

that address relations between states.136

3.2 Pattern Match: Answering Why? Questions137

Nelson et al. [21] argue that students must also understand “the causal relationship between138

syntax and machine behavior”. That is, why does a syntax fragment cause a particular139

evolution in the machine? Rather than providing an explicit definition, the authors define140

causality using an implicit virtual machine model with syntax, bytecode instructions, and141

machine configurations. We reformulate this definition of causality as a question about142

notional machines that PSVs must help users answer:143

Why did an execution step take place?144

To address this question, we must refine our model. Configurations alone do not contain145

the information necessary, rather, we must look to the machine’s transition relation for146

answers. In our general abstract machine formalism, each execution step is driven by a label.147

Definition 1 merely characterizes the relation as a collection of opaque rules. Presenting the148

relevant rule to the user could help provide an answer to this question, but an abstract rule149

is no better than the formal semantics themselves. We need to refine our definition.150
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3.2.1 Term Rewriting151

In practice, abstract machine rules exhibit common structure. By refining our definition to152

reflect this structure, we can provide a more detailed answer to Why?. We follow Hannan153

and Miller [16] and refine our labeled transition relation definition to a term rewriting system:154

I Definition 2. A term is a Node consisting of a name, na, and list of subterms, ns. We155

denote the term by Node(na, ns).156

I Definition 3. A pattern is either a variable name, Var(x), or a constructor consisting of157

a name, ca, and subpatterns, ps. We denote a construct pattern by Cnstr(ca, ps).158

I Definition 4. A rewrite rule is a pair 〈LHS, RHS〉 of patterns. To rewrite a configuration159

c into a new configuration c′ using a rewrite r, we match the LHS against c to get a160

substitution map from variables in the pattern to values, then apply that substitution to RHS161

to build c′. We stylize a rewrite as LHS  RHS.162

For example, the rule x + x 2× x has LHS as x + x and RHS as 2× x. To apply this163

rule to 1 + 1, we first match the LHS against the term, yielding the substitution x 7→ 1.164

Then we apply the substitution to RHS, yielding the new term 2× 1. In our case, rewrites165

will always match on the entire program configuration, not on any nested subterms.166

I Definition 5. A term rewriting system is a pair 〈C, R〉 where C is a set of configurations167

and R is a set of rewrite rules. If a rewrite rule Ri matches a configuration ci and produces168

a configuration ci+1, we write ci
Ri−−→ ci+1.169

Though rewrite systems refine transition systems, they are still general [16], neatly repres-170

enting many common abstract machines including CEK, SECD, Krivine, and CAS-based171

semantics.1172

3.2.2 Using Patterns to Answer Why Questions173

To answer Why? questions, a PSV must help students understand why one pattern matched174

and others did not. We describe the match phase (introduced in Definition 4) of rewriting in175

pseudocode, to study how this decision is made.176

To keep our causal analysis simple, we assume a common restriction on rewrite rules:177

orthogonality [16]. A collection of rewrite rules is orthogonal if it satisfies two properties.178

First, the rules must be left-linear : variables can only appear once in the left-hand pattern.179

The example rewrite rule above is not left-linear, but a rule such as x + y → y + x is. Second,180

the rewrites must be non-overlapping: for any term, only a single rewrite rule in the collection181

will match. Left-linearity makes the pattern matching algorithm straightforward and could182

be relaxed. Non-overlapping rules are easier to reason about causally as we will see below183

and also ensure deterministic execution.184

1 Language features such as machine arithmetic and capture-avoiding substitution require special treatment
in this model; however, neither of these posed issues in our analysis. We believe this model can be
extended to support those features without fundamentally changing the axes.
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input : pattern and configuration
output :A substitution if the pattern

matches.

match(p, n):

switch (p, n) do
case (Var(x), _) do

return Some([(x, n)])
end
case (Cnstr(ca, ps), Node(na, ns))
do

if ca == na then
return match(ps, ns)

else
return None

end
end

end

input : patterns and configurations
output :A substitution composed of the match

on each pair only if they all succeed.

match(ps, ns):

switch (ps, ns) do
case ([], []) do

return Some([])
end
case ([p, . . . ps], [n, . . . ns]) do

switch (match(p, n), match(ps, ns))
do

case (Some(s), Some(ss)) do
return Some(s ++ ss)

end
case _ do

return None
end

end
end

end

185

The match function contains the logic for determining which rule fires, since it only186

returns a mapping if the match succeeds. To determine whether or not a particular rewrite187

rule fires, match compares the left-hand pattern of that rule against the current machine188

configuration. If the pattern is a constructor that matches the configuration’s constructor,189

we visit its children and repeat, otherwise the match fails. If the pattern is a variable, we190

add the corresponding piece of the configuration to the substitution map.191

To discuss the cause of a particular rule firing, we use the notion of counter-factual or192

“actual” causality [20]. Roughly, we define causality to mean that A causes B iff A precedes193

B and if A didn’t happen then B didn’t happen. Though this definition poses philosophical194

issues in general settings, in our restricted case we can apply it in a fairly straightforward195

way. We wish to “blame” some pieces of the machine configuration for a rule firing. If we196

look at the Cnstr case of match, we see that changing the contents of a Node will directly197

change whether or not that rewrite rule fires. Thus the pieces of config that match Cnstr198

nodes cause a particular rewrite rule to fire.199

For example, imagine we have the rewrite rules x + y → y + x and x× y → y × x and200

we evolve the configuration 1 + 2 to 2 + 1. + causes this transition, because the pattern201

x + y that matched the configuration contains a single constructor, +. Changing it to ×202

would result in the other rule firing. However, changing 1 + 2 to 1 + 3 does not change which203

rule fires, because it is not changing part of the configuration that is matched by a Cnstr.204

Notice this definition relies on the non-overlapping assumption to ensure that changing data205

matched by the variable components of a pattern will never cause a different rule to match.206

Summing up, a PSV can answer Why? questions if it can explain how match decided to207

execute a given rewrite rule. It can do this by identifying what pieces of configuration were208

matched by constructors in the pattern.209
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3.3 Pattern Application: Answering How? Questions210

Just as students must understand the causes of a rule firing, they must also understand its211

effects. Ben-Bassat Levy et al. [18] suggest the principle continuity as a design goal for212

PSVs: “Continuity means that the animation must make the relations between actions in the213

program explicit. For example, Jeliot 2000 [(the authors’ PSV)] shows how the values of the214

subexpressions of an expression contribute to its value. This means that the visual objects215

that represent subexpressions must remain visible until all of them have been evaluated;216

then these objects are animated to form the expression.” We reformulate this definition of217

continuity as a question about notional machines that PSVs must help users answer:218

How did an execution step change the machine’s configuration?219

A PSV can answer How? questions if it can explain how the abstract machine uses220

information from the previous configuration to construct the next configuration. PSVs can221

do this by identifying what pieces of the previous configuration this step’s rewrite retains,222

where those pieces go, and which pieces of the configuration the rewrite simply drops. As223

with Why? questions, we formalize this principle by analyzing rewrite rule pseudocode:224

input : substitution and pattern225

output :A new term created by plugging the substitutions into the pattern.226

apply(s, p):227

switch p do228

case Var(x) do
return s.lookup(x)

end
case Cnstr(c, ps) do

return Node(c, ps.map(apply(s)))
end

end229

Just as match encodes information about why a rule executed, apply encodes information230

about how data is constructed in the new state. apply uses the substitution map and the231

right-hand side pattern of a rule to build a new program configuration. If the right-hand side232

pattern is a variable, we look it up in the substitution, which copies data from the previous233

configuration. If it is a constructor, we use that data to build a node and visit its children.234

apply fails if a variable does not exist in the substitution map. We assume that all235

rewrite rules will be “well-formed” in the sense that this lookup will never fail (all variables236

in the right-hand side pattern must also exist in the left-hand side pattern). This ensures237

that only match makes decisions about which rule succeeds.238

apply constructs data in two ways. In the Var branch it copies data from the previous239

state. In the Cnstr branch it creates data based on the contents of the RHS pattern. These240

two actions encode the effects of a rewrite. Data can also be destroyed in two ways. If241

a variable is matched in the LHS pattern, but not used in the RHS pattern, that data242

disappears. Similarly, concrete pieces matched in the LHS pattern are not in the substitution243

map and thus completely “forgotten” during the rewrite.244

Thus PSVs can answer How? questions by illustrating how apply introduces, moves, or245

eliminates information from the previous configuration to construct the next configuration.246

CVIT 2016



23:8 The Essence of Program Semantics Visualizers

4 Case Study: An Assessment of Python Tutor in the Wild247

Motivated by formal abstract machines and existing informal PSV design principles, the248

previous sections detailed our three-axis model of the information PSVs should encode to249

help students develop accurate mental models of notional machines. To demonstrate the250

utility of our model, we use it to explain instructors’ manual extensions of Python Tutor251

visualizations.252

4.1 Method253

To assess a PSV in the wild, we used our three-axis model to analyze uses of Python Tutor254

in introductory programming (CS1) courses. We focused on Python Tutor because it has255

attracted millions of users during its first 10 years [1] and because several university courses256

and textbooks rely on it. Crucially, though many instructors use Python Tutor as a PSV, it257

was originally designed to be a visual debugger. This means that rather than using Python’s258

semantics as its ground truth, Python Tutor aims to visualize the information encoded in259

PDB [15], a line-level debugger. Instructors bridge the gaps between Python Tutor’s PDB-260

based visualizations and Python’s underlying semantics with visual annotations, auxiliary261

explanations, and completely custom diagrams. We call these augmentations instructor262

additions, and they highlight information gaps we hypothesized our model could explain.263

Corpus. We first assembled a corpus of instructor additions. We examined all 81 CS1264

courses at the 40 most prominent CS departments in the U.S. [14] and identified three that265

used Python Tutor. Within these courses, we identified slides with explanations of the four266

semantic concepts we identified in Listing 1 and that comprise the majority of early content267

in CS1 courses: expression evaluation, variable lookup, function entry, and loops. For each268

semantic concept, we collected visually distinct additions, totalling 18 unique slides, which269

are listed by concept in Appendix A.270

Analysis. We attempted to explain the information in each addition using our three271

axes. We analyzed both visual and textual information.272

What: Does the addition include machine configuration data or execution steps that are273

present in Python’s semantics, but not in Python Tutor?274

Why: Does the addition explain why a rule executed?275

How: Does the addition show how data moves from one configuration to the next?276

Additions that could not be fully explained with our axes were marked Other.277

4.2 Results278

Table 1 summarizes our collection of instructors’ explanations. For the first three concepts279

we analyzed, we found that additions for the same concept usually employed similar axes.280

Expression evaluation explanations added What information about how expressions become281

values (Appendix A.1). Variable lookup explanations added Why information to explain how282

Python chose what scopes to look for variables (Appendix A.2). Function entry explanations283

added How information to show how arguments move from a function call to a function body284

(Appendix A.3). We believe this correlation between semantic concepts (which are further285

linked to semantic rules of the abstract machine) and axes indicates our model reasons about286

semantic content rather than surface-level choices about how information is presented.287

Other. While we could explain most of the additions for the first three concepts, some288

parts of those explanations and all of the loop explanations did not use our three axes289
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ID Course School Topic What? Why? How? Other
S1 CS61A UC Berkeley Expr Eval 4 - - 4

S2 CSE160 Univ. of Washington Expr Eval 4 - - 4

S3 CSE160 Univ. of Washington Var Lookup - 4 - -
S4 CSCI0040 Brown University Var Lookup - 4 - -
S5 CS61A UC Berkeley Var Lookup - 4 - -

S6 CS61A UC Berkeley Func Entry - - 4 -
S7 CSCI0040 Brown University Func Entry - - - 4

S8 CSCI0040 Brown University Func Entry - - 4 4

S9 CSCI0040 Brown University Func Entry - - 4 -
S10 CSCI0040 Brown University Func Entry 4 - 4 -

S11 CS61A UC Berkeley Loops - - - 4

S12 CSE160 Univ. of Washington Loops - - - 4

S13 CSE160 Univ. of Washington Loops - - - 4

S14 CSCI0040 Brown University Loops - - - 4

S15 CSCI0040 Brown University Loops - - - 4

S16 CSCI0040 Brown University Loops - - - 4

S17 CSCI0040 Brown University Loops - - - 4

S18 CSCI0040 Brown University Loops - - - 4

Table 1 We analyzed 18 slides from three courses that used Python Tutor visualizations. We
labeled each addition with the axes used by the instructor to improve Python Tutor’s output and
marked additions with unexplained components as “Other.” Axes used are strongly correlated
within semantic concepts, which suggests our model identifies the additional information required to
understand these concepts rather than changes in visual presentation. Additions to loop visualizations
answered global questions across multiple execution steps rather than the local, single-step questions
in our model. We propose extensions to our model that could incorporate this information in
section 5.

of information. Nine of the slides2 (six from loops) presented information from multiple290

execution steps at once. Our three axes formalize the information encoded in a single291

execution step. We discuss extensions of our model to multiple execution steps in section 5.292

S12 and S13 rewrote more complex code into simpler code students already had a mental293

model of. For example, S13 unrolled while loops to straight-line code that students already294

knew how to execute. This deviates from the underlying semantics of Python; however, this295

visualization could be modeled by a different, but equivalent, abstract machine. Finally, S7296

explained why information did not appear rather than why it did; and S17 represented the297

program as a flowchart to explain loops.298

Implications. These results suggest that our three-axis model is useful for identifying299

the information required to understand single steps of program execution. Our analysis of300

loop additions suggests instructors use multi-step explanations to provide intuition for more301

complex semantic concepts.302

2 S1, S2, S8, S11, S14, S15, S16, S17, S18
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5 Future Work: Towards Higher-Level Semantic Explanations303

Abstract Interpretation. We hypothesize that abstract interpretation could formalize304

multi-step visualizations, such as those used to describe loops. For example, Lerner [17]305

connects loop summary visualizations to collecting semantics, which, for each location in306

the source program, “collects” the configurations the machine executes through while at307

that location. This prompts further questions about the role abstraction plays in PSVs.308

We believe our model, with its connections to PL and its granular treatment of individual309

execution steps, is well-suited to these kinds of extensions.310

Programs As Term Rewriting Systems. We note that our definition of abstract311

machine, while specific enough to identify three distinct kinds of information, is actually312

general enough to apply to systems beyond low-level program semantics. In fact, a program313

in a lazy functional language, like Haskell, may be interpreted as a rewrite system [26]. In314

the words of the authors of one such system: “A Clean program basically consists of a315

number of graph rewrite rules (function definitions) which specify how a given graph (the316

initial expression) has to be rewritten” [22]. This connection suggests that explanations317

and visualizations of programs more generally may also benefit from answering our What?,318

Why?, and How? questions.319

Implementation Challenges. Our work contributes a conceptual model to guide PSV320

design, and our pseudocode formalization suggests that one could generate answers to the321

three questions directly from abstract machine definitions or any other term rewriting system.322

However, to put our axes into practice, PSV researchers must solve additional challenges.323

PSVs inspired by our model may require new debuggers that track not only state information324

at each execution step, but also how information flows between states. To visualize this325

information, designers must also develop easy ways to render programs’ diverse collections of326

data.327

6 Conclusion328

In this paper we proposed a three-axis model—What? Why? How?—for critiquing the329

information presented in single-step PSVs. Based on our evaluation of instructor annotations,330

we expect these axes can improve PSVs so that students can build more robust mental models331

of notional machines.332

Using term rewriting systems as a formal basis for our model, we have also suggested333

these axes are applicable in more general contexts than teaching low-level program semantics.334

We imagine a world in which, rather than poking around in the dark with a printf flashlight335

to understand programs, formal systems can explain themselves.336
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A Appendix: Corpus of Instructor Additions405

A.1 Expression Evaluation406

Discussion Question 1 Solution

9

func min(...) 4 

3 

f(2, g(h(1, 5), 3)) 
3 

g(h(1, 5), 3) 
3 func max(...) 2 

3 
h(1, 5) 

func min(...) 5 

5 func max(...) 1 

(Demo)

Interactive Diagram

Another evaluation example

(72 – 32) / (9.0 * 5)
(40) / (9.0 * 5)
40 / (9.0 * 5)
40 / (45.0)
40 / 45.0
.888

7

Figure 2 Expression Evaluation Examples S1 [8], S2 [4]
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A.2 Variable Lookup407

How to look up a variable
Idea: find the nearest variable of the given name

1. Check whether the variable is defined in the local scope
2. … check any intermediate scopes (none in CSE 160!) …
3. Check whether the variable is defined in the global scope

If a local and a global variable have the same name, the global variable is 
inaccessible (“shadowed”)

This is confusing; try to avoid such shadowing

x = 22
stored = 100
def lookup():

x = 42
return stored + x

val = lookup()
x = 5
stored = 200
val = lookup()

def lookup():
x = 42
return stored + x

x = 22
stored = 100
val = lookup()
x = 5
stored = 200
val = lookup()

What happens if 
we define stored
after lookup?

17

See in python tutor See in python tutor

• When the call to mystery2 is about to return:

Visualizing How Functions Work 
pythontutor.com/visualize.html

Python looks for a 
variable in the 

current frame first, 
so  the local x will 
be used instead of
the global x when
returning x + 1.

47

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not 

found

“y” is not 
found, again

Error

• An environment is a sequence of frames.

• The environment created by calling a top-level function (no def within def) 
consists of one local frame, followed by the global frame.

!10http://pythontutor.com/composingprograms.html#code=def%20f%28x,
%20y%29%3A%0A%20%20%20%20return%20g%28x%29%0A%0Adef%20g%28a%29%3A%0A%20%20%20%20return%20a%20%2B%20y%0A%20%20%20%20%0Aresult%20%3D%20f%281,%202%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Figure 3 Variable Lookup Examples S3 [3], S4 [13], S5 [6]
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A.3 Function Entry408

Calling User-Defined Functions

A function’s signature has all the 
information needed to create a local frame

13

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment 
2. Bind the function's formal parameters to its arguments in that frame 
3. Execute the body of the function in that new environment

Interactive Diagram
Visualizing How Functions Work 
pythontutor.com/visualize.html

• At the start of the call to mystery2:

mystery2(3, 2) gets its own frame
containing the variables that belong to it.
mystery2's x isn't shown yet because 

we haven't assigned anything to it. 46

Figure 4 Function Entry Examples S6 [7], S7 [13],
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                            x   y   a   b
def calculate(x, y):      3   2
    a = y                   ?   ?   ?   ?           
    b = x + 1           ?   ?   ?   ?            
    return a * b - 3           

print(calculate(3, 2))
            

A.   5  
B.   9 
C.   4
D.   3
E.   8

The values in the function call are 
assigned to the parameters.

In this case, it's as if we had written:
  x = 3
  y = 2 

74

def f(x):
    return 11*g(x) + g(x//2) 

print(demo(-4))

def demo(x):
    return x + f(x)  

demo
x = -4
return -4 + f(-4)

def g(x):
    return -1 * x 

stack frame

Functions Calling Other Functions!

58

  demo        f         g

 x | ret    x | ret   x | ret

-4 |          |         |  

                          

Figure 5 Function Entry Examples S8 [10], S9 [13],
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def f(x):
    return 11*g(x) + g(x//2) 

def demo(x):
    return x + f(x)  

demo
x = -4
return -4 + f(-4)

f
x = -4
return 11*g(x) + g(x//2)

def g(x):
    return -1 * x 

These are distinct memory locations 
both holding x's.

stack frame

stack frame

print(demo(-4))

Functions Calling Other Functions!

59

  demo        f         g

 x | ret    x | ret   x | ret

-4 |       -4 |         |

                         

Figure 6 Function Entry Examples S10 [13]
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A.4 Loops409

i = 1
print(i)
i = 4
print(i)
i = 9
print(i)

How a loop is executed:
Transformation approach

for i in [1,4,9]:
print(i)

State of the
computer: Printed output:

1
4
9

i: 1i: 4i: 9

Idea:  convert a for loop into something we know how to execute

1. Evaluate the sequence expression
2. Write an assignment to the loop 

variable, for each sequence 
element

3. Write a copy of the loop after each 
assignment

4. Execute the resulting statements

5

See in python tutor

Repeating a Repetition!

for i in range(3):        # 0, 1, 2
    for j in range(4):    # 0, 1, 2, 3
        print(i, j)

0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3

37

Figure 7 Loops Examples S13 [2], S14 [12],
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Index-Based  for Loop

def sum(vals):                 
    result = 0
    for i in range(len(vals)):
        result += vals[i]
    return result 

   
        

      
          

          
    

       
        

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

46

Element-Based  for Loop

def sum(vals):                 
    result = 0
    for x in vals:
        result += x
    return result 

   
        

      
          

          
    

       
        

vals = [3, 15, 17, 7]

x

45

Figure 8 Loops Examples S15 [11], S16 [11],
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for i in [1, 2, 3]:
    print('Warning')
    print(i)
print('That's all.')

Executing Our Earlier Example 
(with one extra statement)

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i     output/action
yes     1   Warning
            1
yes     2   Warning 

2
yes     3   Warning 

3
no     That's all.

print('That's all.')

print('Warning')
print(i)

yes

does

more values?
[1, 2, 3] have

26

a = 40
while a > 2: 
    a = a // 2
    print(a - 1)

How many values does this loop print?

a > 2 a prints
40

True 20 19
True 10 9
True 5 4
True 2 1
False

A.  2
B.  3
C.  4
D.  5
E.  none of these

25

Figure 9 Loops Examples S17 [11], S18 [12]
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