
The Challenges of Evolving Technical Courses at Scale:
Four Case Studies of Updating Large Data Science Courses

Sam Lau
lau@ucsd.edu
UC San Diego

La Jolla, California, USA

Justin Eldridge
jeldridge@eng.ucsd.edu

UC San Diego
La Jolla, California, USA

Shannon Ellis
sellis@ucsd.edu
UC San Diego

La Jolla, California, USA

Aaron Fraenkel
afraenkel@ucsd.edu

UC San Diego
La Jolla, California, USA

Marina Langlois
malanglois@ucsd.edu

UC San Diego
La Jolla, California, USA

Suraj Rampure
rampure@ucsd.edu

UC San Diego
La Jolla, California, USA

Janine Tiefenbruck
jlobue@eng.ucsd.edu

UC San Diego
La Jolla, California, USA

Philip J. Guo
pg@ucsd.edu
UC San Diego

La Jolla, California, USA

ABSTRACT
Instructors who teach large-scale technical courses, especially on
data science and programming, must do a large amount of logistical
work when updating their courses. All of this behind-the-scenes
labor takes time away from the pedagogically-meaningful work of
teaching students. Over the past five years, the authors of this paper
have created and updated eight courses for an undergraduate data
science program that serves over 2,000 students per year.We present
four case studies from our teaching experiences that highlight major
challenges in maintaining and updating technical courses: 1) There
were intricate dependencies between course materials, so making
updates to one part of the course would require updating many
other parts. 2) We needed to maintain several variants of course
materials such as assignments. 3) We wrote large amounts of ad-hoc
custom software infrastructure to manage logistics. 4) We could
not easily reuse software written by others. Our case studies point
to design ideas for instructor-oriented tools that can reduce the
logistical complexities of teaching at scale, thus letting instructors
focus on the substance of teaching rather than onmundane logistics.

CCS CONCEPTS
• Human-centered computing→ HCI empirical studies.

KEYWORDS
course logistics; software infrastructure; maintenance work

ACM Reference Format:
Sam Lau, Justin Eldridge, Shannon Ellis, Aaron Fraenkel, Marina Langlois,
Suraj Rampure, Janine Tiefenbruck, and Philip J. Guo. 2022. The Challenges
of Evolving Technical Courses at Scale: Four Case Studies of Updating
Large Data Science Courses . In Proceedings of the Ninth ACM Conference on
Learning @ Scale (L@S ’22), June 1–3, 2022, New York City, NY, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3491140.3528278

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
L@S ’22, June 1–3, 2022, New York City, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9158-0/22/06.
https://doi.org/10.1145/3491140.3528278

1 INTRODUCTION
Suppose Alli is an instructor teaching an introductory data science
course. She first created this course four years ago, and enrollments
have doubled each year. This term, Alli wants to move the lecture
on data tables earlier in the course since last year students were
confused by this concept. Although this seems like a simple change
from a pedagogical standpoint, she runs into major logistical chal-
lenges. After moving the lecture, Alli also needs to update many
other pieces of course materials to keep them up-to-date, such as
discussion worksheets and assignments. But, making these updates
requires knowledge of multiple custom infrastructure scripts and
third-party software tools that her TA staff uses to generate those
course materials. At the scale of Alli’s course, she must not only
ensure good pedagogy but also pay close attention to variations in
hundreds of assignment files, manage autograder software config-
urations, and debug programming assignments as the underlying
software libraries evolve.

This example scenario highlights the reality that large courses, es-
pecially on technical topics such as programming and data science,
require instructors to manage a tremendous amount of invisible
behind-the-scenes logistical work. All of that work takes valuable
time and energy away from what they actually want to do: teach
students. For instance, one of our paper’s co-authors said the follow-
ing during a discussion of the challenges we faced in maintaining
and updating our large courses:

“I had 14 to 15 hour work days, every day. It was a lot
of work, and NOT the fun kind of work because I didn’t
get to interact with students during any of it.”

Over the past five years, we (this paper’s co-authors) have created
and updated a set of eight courses for an undergraduate data science
program that serves over 2,000 students per year.We havewitnessed
firsthand the tremendous growth in enrollments to data science
and computing majors over the past half-decade [4, 19, 23] – some
of our course enrollments have nearly doubled every year.

To handle such increasing scale, instructors of technical courses
like programming and data science adopt automated workflows to
support large class sizes, such as creating software infrastructure to
automatically distribute and grade assignments [36]. While these
innovations have benefits, they also require lots of work to manage
and debug.What logistical challenges do instructors face when
maintaining and updating large technical courses?

https://doi.org/10.1145/3491140.3528278
https://doi.org/10.1145/3491140.3528278


Challenge Description Representative Example

Intricate dependencies
between course
materials

Course material depends on each other; updating
a single lecture can cause worksheets and
assignments to become out-of-date.

Adding hypothesis testing concepts to a course created a
cascade of unforeseen updates, even for material that was
not directly related to the topic. (Section 5.1).

Maintaining consistent
variants of course
materials

Even single pieces of course content require
careful management of multiple file variants and
computing environments.

For many assignments, we have an instructor version, a
version released to students, and student submissions.
However, student Python versions sometimes differed
from the autograder’s Python version, causing subtle bugs
and student confusion (Section 5.2).

Writing ad-hoc
software infrastructure
to manage scale

Each course has its own scripts and software
written by course staff to automate tasks like
autograding. However, every piece of
infrastructure code requires work to maintain.

One course’s infrastructure, which started out as a single
file of LaTeX macros, grew to become a collection of scripts
that stitched together multiple programming languages
(LaTeX, Python, bash) and software tools (Section 5.3).

Cannot easily reuse
software written by
others

Most software development tools do not fully
enable instructors’ desired workflows, so
instructors still need to write custom code and
pay close attention to software updates.

When a third-party software tool released important bug
fixes, it also added backwards-incompatible changes that
broke our existing course infrastructure (Section 5.4).

Table 1: From our experiences teaching large data science courses, we discovered four main sets of challenges whenmaintaining
and updating course content. This logistical complexity hindered our ability to make pedagogically useful improvements.

This question is important because dealing with logistical chal-
lenges takes time away from the pedagogically-meaningful work
that instructors want to do. By understanding the complexities
that instructors face in their daily workflows, we can move toward
streamlining the process so that they can focus on the substantive
parts of actually teaching well.

To investigate this question, we present four short case studies
drawn from our teaching experiences over the past five years. Each
highlights a specific challenge we faced when updating technical
courses. Table 1 summarizes each challenge along with representa-
tive examples: 1) There were intricate dependencies between course
materials, somaking updates to one part of the course would require
updatingmany other parts; and oftentimes these dependencies were
invisible, which led to inconsistencies that frustrate students. 2) We
needed to generate several variants of course materials, such as ver-
sions of assignments with and without solutions, then keep those
consistent with related materials. 3) We wrote large amounts of ad-
hoc custom software infrastructure to manage course logistics such
as running student code on servers, accepting homework submis-
sions, doing both automatic and manual grading, and maintaining
variants of course materials. 4) We could not easily reuse software
written by others, such as off-the-shelf learning management sys-
tems or even code written by prior terms’ instructors.

Research contributions to Learning@Scale: This paper is, to our
knowledge, the first to characterize the challenges that instructors
face when doing maintenance and update work for large technical
courses. We focused on data science courses in particular since
they combine concepts from multiple technical disciplines – math-
ematical theory, applied statistics, computer programming, data
visualization, and the social sciences (e.g., the ethical and social
context of data use). Thus, we believe that parts of Table 1 can

generalize across other types of technical courses. More broadly,
we hope our case studies open up a dialogue about how to support
instructors of large university courses, who are often temporary
lecturers, teaching-track professors, and graduate students [39]
who must bear the brunt of this invisible behind-the-scenes labor.

In sum, this paper’s contributions to Learning@Scale are:

• Case studies that highlight four sets of logistical challenges
in maintaining and updating large technical courses.

• A call to develop better practices and domain-specific tools
to support instructors in managing these challenges so that
they can focus more of their time on teaching.

2 RELATEDWORK
To our knowledge, our paper is the first to describe the challenges
that instructors face in maintaining and updating materials for
large-scale technical courses.

The closest related papers describe the implementation of spe-
cific components of large-scale courses. For instance, Sharp et al.
described the code submission, execution, and autograder frame-
work used inHarvard’s large intro. programming course andMOOC
(CS50) [36]; lead instructor David Malan also documented its server
sandbox environment [29] and the entire suite of open-source soft-
ware infrastructure [28] used to manage CS50 logistics. Basu et
al. [5] and Sridhara et al. [38] presented innovations in automated
code grading and feedback systems deployed in UC Berkeley’s intro.
programming course. Others have documented how instructors
use GitHub to manage course materials and to enable students to
submit coding assignments [14, 42]. Many such tools are focused on
programming-related courses, but some are topic-agnostic: Grade-
scope facilitates AI-assisted grading of handwritten assignments



and exam questions [37]. PeerStudio [26] and Talkabout [25] fa-
cilitate peer feedback and small-group discussions, respectively,
in large-scale MOOCs with open-ended learning activities. And
ProjectLens helps instructors and students manage group project
logistics in HCI MOOCs [7]. Similarly, we discovered that assign-
ment submission and grading infrastructure were hard to maintain.
But in contrast to these related papers, which each focus on the
technical details of individual software components, our case stud-
ies instead focus on instructors’ holistic experiences in maintaining
and updating course materials in the face of increasing scale.

The closest analogues to the activities that we describe in this
paper come from software engineering research. Specifically, soft-
ware maintenance [6] and evolution [16] are classic topics of study
that date back to the birth of computer software in the 1960s. Unlike
physical systems, software does not physically degrade over time,
but it does need to be updated in light of changes to the surrounding
environments that it runs upon (e.g., operating systems, software
libraries, hardware). Similarly, course materials do not physically
degrade but also need constant updating in light of changes to
their ‘environment’ such as new developments in the field. Also,
since our courses involve lots of programming, our materials in-
clude software components that must be routinely updated, such
as incorporating new versions of Python libraries for data science.

Dependencies alsomake softwaremaintenancemore challenging
since it is hard to change one component independently from the
dozens or hundreds of code libraries that it depends upon [9]. We
faced similar issues with dependencies amongst different intricately-
linked components of our course materials, which made updates
fraught with unexpected surprises. For details, see Section 5.1: In-
tricate dependencies between course materials.

More broadly, our work relates to collaborative peer production
of online resources, such as groups of writers convening to update
Wikipedia [17] and other Wiki knowledge bases [20], and program-
mers convening to produce open-source software [10, 12]. While
not as large-scale as some of these projects, the courses we describe
in this paper often have a dozen or more staff members collabo-
ratively updating materials that consist of dozens of lecture slide
decks, lab handouts, code examples, and homework assignments.
This collective work is reminiscent of Geiger et al. describing the “in-
visible and infrastructural work” involved in keeping open-source
software projects running, such as “uncredited” behind-the-scenes
tasks like updating documentation [15]. In our case, instructors
spend large amounts of time on invisible infrastructural work to
keep their course materials maintained and up-to-date.

3 METHODS
This paper investigates two main research questions:

• Why do instructors need to make updates to large-scale
technical courses that are already well-established?

• What challenges do instructors face when maintaining and
updating these large technical courses?

We addressed these questions by reflecting on our own experi-
ences as data science instructors and synthesizing them into four
short case studies. Each case study presents a challenge we faced
along with a reflection of its broader implications for our research
questions. The main benefit of this case study method is that we can

Course Topic Students TA Terms Instructors
Intro. to Data Science 280 16 16 5
Data Structures 250 5 11 2
Theory for Data Science I 150 9 14 5
Theory for Data Science II 150 9 13 2
Algorithms for Data Science 150 10 13 3
Applications of Data Science 100 9 12 3
Data Science in Practice 550 10 17 4
Capstone Project 220 6 7 1
Table 2: The courses that this paper’s authors created for a
data science major at a U.S. university. Students = approxi-
mate enrollment per term, TA = number of TAs this term,
Terms = howmany terms has this course been taught. Instruc-
tors = how many different people have taught this course.

candidly introspect on our own experiences and discuss them as
co-authors in a way that is not as feasible with external interviews
or surveys. (But see Section 3.3 for limitations of this method.)

3.1 Case Study Participants
For a case study to be effective, its participants must be represen-
tative of the general population that its research questions aim to
target. In our case, the N co-authors of this paper (exact number
anonymized for submission) collectively helped create the data sci-
ence major at a large public Ph.D.-granting institution in the United
States. We designed and taught large data science courses for the
major, including all six required lower-division courses, a popular
elective course, and a capstone project course. These courses cover
foundational topics in data science, including data manipulation,
data structures, visualization, and statistical modeling. We mostly
use widely-adopted Python data science tools like pandas [30],
Jupyter notebooks [34], and scikit-learn [33]. Thus, we believe
that we are well-positioned to reflect on our firsthand experiences
to highlight the challenges of updating technical courses.

Methodologically, our approach follows the precedence set by
prior research papers at Learning@Scale that are case studies of the
authors’ own firsthand experiences. Some notable examples include
lessons learned from simultaneous deployments of a MOOC and
residential course [22], reflecting on five years of Georgia Tech’s
online masters program [18], a case study of an HCI MOOC with
group-based design projects [7], and six years of reflections on an
internationalized CS curriculum [35] (Best Paper Award in 2020).

3.2 Overview of Courses
Table 2 summarizes the eight data science courses that we created
and updated over the past five years. Average course sizes ranged
from 150 to 550 students. We hired large teams of teaching assis-
tants (TAs) to help manage these courses, with three hiring 10 or
more TAs each term. TAs held a wide variety of responsibilities,
including hosting discussion sections, holding office hours, attend-
ing staff meetings, updating and releasing assignments, updating
the course website, and grading assignments. We hired both under-
graduate and graduate students as TAs, although the majority were
undergraduates who did well in prior offerings of the course [31].



Seven of these courses are required for data science majors at
our university, and one is a popular elective. Typically, each week
we presented three hours of lecture and an hour-long discussion
section. Weekly homework assignments consisted of a mix of math,
computer programming, and open-ended narrative write-ups.

Moreover, all these courses were well-established, with the ma-
jority having been offered in at least ten past terms (see ‘Terms’
column in Table 2). There are four quarter-long terms per year at
our university. Most courses had multiple instructors teaching it in
the past (‘Instructors’ column); for instance, our intro course had 5
instructors teaching 16 offerings over the past five years.

These courses are large-scale and complex to manage not only
due to high student enrollments but also because of large staff sizes
(often with over 10 TAs), and because they are taught by many
instructors over multiple past offerings. Thus, we feel they are
appropriate to use as the settings for our case studies in this paper.

3.3 Limitations
The usual limitations of a self-reflective case study apply here. This
paper’s co-authors all work at the same large public university in
the United States. This left out other settings where data science
is taught, such as bootcamps, MOOCs, and online workshops [23].
On the other hand, having multiple instructors within the same
data science program captures complementary perspectives from
different instructors of the same courses. For instance, we often
rotate between teaching each other’s courses. During an academic
year, an instructor typically teaches between 3-5 courses within
the program. We acknowledge the limitations of this self-selected
sample, so to compensate we tried to estimate how often the issues
we encountered came up for peers who taught at other types of
universities and reported issues that were more likely to generalize.
In the future, interviewing or surveying our colleagues who work
at other institutions can help reduce these limitations.

Another limitation is that we only teach data science and pro-
gramming courses, but other technical courses across STEM fields,
such as math and physics, also have large enrollments. We chose to
focus on these fields since data science and intro programming are
amongst the fastest-growing and highest-enrollment courses at ma-
jor U.S. universities andMOOCs [4, 19, 23].We also believe that data
science courses are good representatives of technical courses since
they combine concepts from multiple STEM domains: our courses in
Table 2 cover mathematical theory, applied statistics, computer pro-
gramming, data visualization, and written narrative assignments
about the social and ethical context of data. Thus, studying these
courses could shed light on problems that courses from other tech-
nical domains may encounter at scale. However, our findings may
not generalize to all types of technical topics, especially those that
do not involve as much math or programming (e.g., biology).

4 WHAT KINDS OF UPDATES ARE NEEDED
FOR LARGE TECHNICAL COURSES?

First we describe the kinds of updates that are typical for large-scale
technical courses such as our data science courses (Table 2).

We all taught established courses that have each existed for
at least three years. Thus, every term we all had the option of
“replaying” the course verbatim—we could have reused the material

that already existed without changing any of it. In fact, this material
was often written by ourselves in a prior offering of the course. Yet,
all of us shared a common desire to update our course materials
despite the effort required to do so. Here are the three main kinds
of updates and common reasons for making them:

1) Improving lecture materials: The most common reason for
updating existing lecture materials was observing students struggle
with an important concept from the prior term. In response, we
often trimmed, expanded, and moved topics. For example, at times
we allocated more lectures for basic statistics concepts or decided
to move them earlier in the course to give students time to practice.
Larger classes often involve more frequent lecture edits to accom-
modate more students with varying levels of prior experience.

We also updated the examples used in lectures to keep up with
current trends. For example, most of us felt students were more en-
gaged when lectures incorporated personal interests or data related
to current news events. Related, since data science and program-
ming technologies (e.g., software libraries and APIs) change rapidly
year-to-year, the code examples used in lectures must be continually
updated or else we risk teaching outdated content.

2) Updating assignments to keep them fresh: In established
courses, assignment solutions inevitably get leaked online after
several offerings, which increases the odds of cheating. Table 2
shows that most of our courses had been taught over ten times
before. Many of us felt that students were negatively impacted by
assignment solution leaks, to the point that we avoided repeating
an assignment in consecutive offerings. Thus, assignments must be
constantly updated to help maintain academic integrity.

Another reason for assignment updates is that data science
courses often rely on the latest data or real-time data streams to
provide timely and motivating assignments for students. Some as-
signments used election data or real-time Twitter feeds, so they
had to be updated to incorporate the latest data changes.

3) Adding more content as enrollments grow: Student demand
for our courses has been at an all-time high due to more people
wanting data science and programming jobs. Most of our courses
in Table 2 have doubled or tripled in size over the past few years.

We had to create more content as enrollments increased. First,
we needed to write more internal documentation for our TAs. To
ensure that even new TAs (who are mostly undergraduates) can
deliver high-quality instruction, we had to write more detailed TA
guides to provide structure for TA sections and create more detailed
grading rubrics. We felt that these additional teaching materials
were required to maintain a consistent student experience at larger
scales. For instance, when our data structures course grew from 60
to 250 students, we made discussion worksheets so that students
could get useful practice no matter which section they attended.

Larger courses also mean a greater diversity of student back-
grounds; in our experience, this manifested most prominently in
the amount of prior computer programming experience that stu-
dents had when coming into our courses. When we taught the
programming-heavy parts, we found that many students either
found programming too easy or too difficult. To address this wide
variance, we created supplemental course content to help students
who had less programming background. For instance, one of us



Figure 1: Even within a single week in a course, instructors must manage multiple pieces of course content with intricate
dependencies (depicted as dotted blue arrows in this figure). In this example from one of our courses, the discussion Jupyter
notebook reinforces topics from lecture. The worksheet is accompanied by a separate Python script which must stay up-to-date
with the content in the notebook. Lab and homework also depend on the discussion and lecture content. At a higher level,
dependencies exist between subsequent weeks. An instructor who wishes to update a single lecture must ensure that all the
dependent material is also updated across the entire course. Instructors now do this manually, which is tedious and error-prone.

created a separate problem-solving guide for the data science the-
ory course. We also created a separate track of content for more
advanced students who wanted additional depth for a particular
topic, for instance by inviting guest lecturers or by adding more
lectures that covered recent advances in the field.

5 WHAT CHALLENGES DO INSTRUCTORS
FACEWHEN UPDATING THEIR COURSES?

We distilled our collective experiences of updating our course mate-
rials over the past few years into four main challenges, summarized
in Table 1. For each challenge, we use a small case study to illustrate
a representative example from our experiences. Each case study
provides background context, the difficulties we faced in making
that course update, and a reflection on broader implications. We
conclude each one with a list of other kinds of course updates that
resulted in similar challenges.

5.1 Challenge 1: Intricate dependencies between
course materials

Figure 1 shows that in technical courses even a single week can
involve many pieces of course material that must remain consistent
with each other. For example, a typical week might contain two to
three lectures. Each lecture has both a set of slides and a Jupyter
computational notebook [27, 34] that the instructor presents to
show live code and data examples in class. Students also attend
discussion and lab sections during the week to reinforce lecture
content; those sections each require their own Jupyter notebooks
or printed paper handouts. Each assignment also requires its own
Jupyter notebook and supplemental files like datasets.

Due to the intricate dependencies shown in Figure 1, if an in-
structor wants to update any piece of course content (e.g., to fix

a bug or improve an example), they must also update a batch of
related content to keep it all consistent. And although each piece
of content depends on others, these dependencies are hidden and
must be maintained manually by instructors and TAs.

5.1.1 Case Study: Substituting or Moving Course Topics. The first
course that all students take in our degree program is an introduc-
tion to data science. For this intro course, we adapted UC Berkeley’s
openly-available Data 8 curriculum [11]. However, Data 8 is a 15-
week course, so we had to modify it for our university’s shorter
10-week academic term. Data 8 is split into three parts: computation
(Python), inference (hypothesis testing), and prediction (machine
learning). To prune this course down to ten weeks, we did not
include inference when we first offered our version. However, a
year later we updated our course to make the opposite choice—we
removed topics in prediction to teach inference instead.

Why make a change? The motivation for making this change
actually came from other instructors in our data science program.
Specifically, one of the more advanced data science courses teaches
students to do end-to-end data analyses, including hypothesis test-
ing. However, the instructors for that course felt that teaching
hypothesis testing from the ground up took too much time away
from their core topics, which made us realize it was important for
students to learn it first in our intro course. Thus, we decided to
replace prediction topics with inference (hypothesis testing) since
other courses in the program already covered prediction.

Why did we not include hypothesis testing in the original version
of our intro course? Because it was the very first course we created
for our data science program, so these later courses did not even
exist back then. Although we knew the basic high-level descriptions
for later courses, it was not possible to know exactly what would be
most important to cover until those courses were actually taught



for the first time and we received student and instructor feedback.
Thus, during the first offering we decided to teach prediction in-
stead of inference because we felt that a prediction project related
to machine learning would be more interesting for students. But
once the subsequent courses were launched, we found that having
inference in our intro course was better for students. This is an
example of updating our course in the face of changing external
circumstances such as new downstream courses being created later.

How did we update our course? We adjusted the lecture schedule
to emphasize inference instead of prediction. As we updated course
materials, we repeatedly encountered the challenge of intricate
dependencies: switching each lecture’s topic required updating the
discussion worksheet, lab assignment, and homework for that week.
We also realized that we could adjust the first half of the course to
better prepare students for inference. For instance, our old content
did not teach students how to draw random samples from a data
table, an important skill for inference. Thus, we updated content
not only for the weeks that were directly focused on inference
but also previous weeks in the course so that students could be
better prepared for inference later. This is an example of an update
triggering additional updates of dependencies.

Reflection. This case study illustrates how intricate dependencies
exist between materials within a course. But at a higher level, it also
illustrates how dependencies exist between courses. In our case, an
advanced downstream course motivated us to swap out prediction
topics for inference. Once we made this change, other courses in
the program also needed to adjust since their students would have
more practice with inference content but less practice with predic-
tion. For instance, courses that previously assumed that students
understood how to fit a classification model in Python could no
longer do so. This poses a big challenge for instructors: Although
we want to make pedagogical updates to improve our courses, it is
difficult to predict how much work these updates will actually take
to implement. One update could cause cascading changes to many
other pieces of material, but we do not know which other pieces of
material will become out-of-date until we review them manually.

5.1.2 Other examples. Here are other times where we encountered
the problem of intricate dependencies between course materials.

• Updating references to past assignments in text (e.g. “In the
last assignment, we covered these topics.”)

• Changing a core software package for working with data
tables in Python.

• Moving graph algorithms from an earlier course to a later
course in our data science program.

• Removing geospatial data from a course to cover natural
language models in more depth.

5.2 Challenge 2: Maintaining consistent
variants of course materials

In the prior section we showed how updating one piece of course
content often results in needing to update many other pieces of
content that depend on it. Here we present a related problem: even
maintaining a single piece of content in isolation (without worry-
ing about dependencies) requires instructors to manage multiple
variants of that content. For instance, a typical assignment in one

of our courses has at least three variants: 1) an instructor version
that contains both questions and solutions, 2) a student version
that contains only the questions (not the solutions), 3) each student
completes the assignment to produce their own personal variant (a
completed assignment) to submit for grading.

5.2.1 Case Study: Reacting to Unexpected Python API Changes. One
of our courses contains lessons on text data, regular expressions,
and natural language models. We give students an assignment
where they write Python code to download books from Project
Gutenberg [2] and tokenize the text. However, some students ran
into unforeseen problems after we upgraded the course Python
version from 3.6 to 3.7. This led us to update the assignment.

Why make a change? In the midst of the term we got unexpected
reports from students and TAs about an issue where for some stu-
dents, their code would run correctly on their personal computers
but not on the autograder server that grades assignments. After
looking into this, we realized that this problem affected only stu-
dents who had not upgraded to Python 3.7. In 3.7, Python changed
the behavior of regular expressions. Before, splitting the string
'ba t' using r'\s*' would result in ['ba', 't']. But in 3.7, the
same regular expression produces ['', 'b', 'a', '', 't', ''].
The challenge here was that some students had installed Python
3.6 from a previous course while others had installed Python 3.7.
Our autograder system used Python 3.7, so students who wrote
perfectly correct code for Python 3.6 could still fail the tests for 3.7.

Unfortunately, we did not catch this subtle issue until we had al-
ready released the assignment. Why not? Our staff-written solution
to the assignment did not rely on the specific regular expression
syntax affected by the Python update, so the staff solution still pro-
duced the correct output using either Python version; in contrast,
many good student solutions (that were still correct) used a regular
expression that broke in 3.7. Also, the webpage that documented
the changes in Python 3.7 buried this tiny backwards-incompatible
change within a long list of other changes [1]—if it were printed
out, this change would be on page 38 within a 42-page document.

How did we update our course? When we found out about this
issue, we wanted to update the assignment so that the test cases
would detect and notify students when they were using the prob-
lematic syntax. To do this, the course staff added test cases to the
instructor version of the assignment and regenerated the blank
student version of the assignment. However, we then ran into the
problem that many students had already downloaded and made
progress on the old version of the assignment—some students had
even finished the assignment before we discovered this issue. If
a student wished to use the new version of the assignment, they
would have to download a blank copy of the assignment and copy
all of their code over. However, we felt that this was too burden-
some for students since there were many pieces of code in this
assignment, and we only needed to update one question.

Instead, we sent an email announcement to students to upgrade
to Python 3.7 immediately. We also instructed our teaching assis-
tants to make sure students in their discussion sections ran their
code using Python 3.7, not 3.6. For future iterations of the course,
we emphasized that students needed to install and use the same
Python environment as the autograder.



Reflection. This case study highlights the challenges of having
multiple variants of course materials. In this example, a single
assignment had an instructor file (with both the questions and the
solutions) and a blank student file (with no solutions) that needed to
stay consistent with each other. But each time a student downloaded
the assignment and worked on it, they created yet another file that
could become inconsistent with the instructor version. When the
course staff fixed a question in the instructor version, all previously-
downloaded student copies of that assignment (which could be
hundreds in a large course) became out of sync.

Another related challenge with variants of course material is
that these variants might be used in different computing environ-
ments. In this case study, one version of the assignment ran on the
instructor’s computer and another ran on each student’s computer.
And once students submitted the assignment, their code would
run on the autograder server, which had its own distinct Linux
environment. In other words, instructors must not only ensure
that variants of course materials stay consistent but also that the
computing environments for these variants stay consistent as well.
One way to cope with this problem is to have all students use a
cloud-based coding environment. Some courses do this, but others
give students the flexibility to work locally on their own computers.

5.2.2 Other examples. Here are other times when we faced the
challenge of maintaining consistent variants of course materials:

• Changing the dataset used for an assignment often requires
rewriting many questions and accompanying autograder
tests, then testing those tests to make sure they are robust.

• Creating alternate versions of programming assignments
after noticing that the current solutions were posted online.

• Updating lecture and assignment code because a package
version updated, for example pandas releasing version 1.0.

5.3 Challenge 3: Writing ad-hoc software
infrastructure to manage scale

Another challenge of teaching large technical courses is that we
find ourselves spending lots of time working as software developers
and sometimes as software development managers, even though
our primary job is supposed to be teaching. We have to either write
lots of software infrastructure ourselves or supervise TAs who write
the code to manage the complexity of course logistics. See Figure 2
for an example of some software infrastructure that we created.

5.3.1 Case Study: Handling Math and Programming Problems. Af-
ter students take the introductory courses in our data science pro-
gram, they then take a theory course on algorithms. When we
first launched this course, students completed a weekly assignment
in LaTeX. To make an assignment, we created a single LaTeX file
that contained all the problems and solutions. Then, we used a
library of LaTeX macros to strip out solutions in the student ver-
sion of the assignment. This system was relatively simple, since we
could create the student versions of the assignment using a single
shell command. However, this course infrastructure software grew
significantly more complex over time as we iterated on the course.

Why make a change? As is typical for new courses, the topics
we taught in this course changed many times over its first few
years. For instance, the course initially spent several weeks on

Figure 2:Wewrote custom software infrastructure tomanage
assignment workflows. (A) Instructors use custom scripts to
strip out solutions and test cases to generate a student-ready
assignment file. (B) Students write and submit assignments to
a cloud-hosted computing environment. (C) Another custom
script runs an autograder on student code and splits out the
open-ended responses for manual grading. (D) Grades are
collected into a single score and released to students.

statistical concepts. However, we later decided to move those topics
to another course in the program and focus on algorithm analysis
instead. Whenever we added a new topic or changed the order of
existing topics, we also needed to update the course assignments
to match the lecture schedule (as discussed in Section 5.1). The
process of updating assignments was prone to introducing syntax
errors or pedagogical bugs since we had to manually copy-paste
LaTeX problem descriptions between files.

Also, after several course offerings we accumulated a growing
“library” of assignment problems for every course topic. For instance,
we wrote problems on big-O notation for each offering, so after
a few years of running the course we had a number of possible
problems to include in an assignment. We wanted a way to choose
a few problems from our problem library for each assignment, but
there was no existing tool available to do this task.

How did we update the course? Updating course topics meant
that we also had to update the ad-hoc infrastructure code that we
had written earlier to manage assignment creation, submission, and
grading (summarized in Figure 2).

First, we refactored our existing assignments by moving every
problem to its own file. We then wrote a script that could concate-
nate problem files together into a complete assignment. This script
started as a simple set of shell commands but grew more complex
as we augmented it to handle other tasks. For instance, we added a
feature to automatically generate a blank LaTeX starter template
for students to write in their solutions so that submissions had a
consistent style to make them easier to grade.

We also wanted to give students programming questions in the
course, which required a series of extensions to the existing in-
frastructure that managed our lecture and assignment materials,
which were based on Jupyter notebooks. We wrote scripts that



could remove our solution code from Jupyter notebooks, concate-
nate notebooks together, bundle both code and LaTeX files together
for students, and generate configuration settings for the course
autograder server. At the time of writing, this course infrastruc-
ture consists of an ad-hoc mix of shell scripts, LaTeX macros, and
Makefiles that manage LaTeX files, Jupyter notebooks, and Python
scripts for assignments.

Reflection. Our software infrastructure plays an important role
in helping us manage the scale of our courses—every task that the
infrastructure currently handles used to be manual work for the
course staff. For instance, we no longer worry about accidentally
leaving solutions in the student versions of assignments since our
scripts handle this automatically. This is especially useful for help-
ing us manage the many variants of course materials (Section 5.2).

However, this software infrastructure itself requires constant
maintenance and debugging since it is a complex piece of ad-hoc
software created by educators, not professional software developers.
Many courses in our program hire TAs who specifically monitor the
course infrastructure so that problems can be quickly addressed.

This infrastructure can grow complex over time. For instance,
Figure 2 depicts a typical part of our infrastructure for generating
assignments, handling submissions, and autograding them on a
server. This software not only needs to be written but must also be
fine-tuned every term as assignment details get updated and the
underlying run-time environment (e.g., operating systems, library
versions, cloud hosting services) change year-to-year.

5.3.2 Other examples. We have also used our infrastructure for:

• Extracting free-response questions from student submissions
for manual grading.

• Hosting a cloud-based computing environment so that stu-
dents all use the same Python and package versions.

• Handling grading special cases like late submission penalties.

5.4 Challenge 4: Cannot easily reuse software
written by others

The prior section described how we spend significant amounts of
time writing and maintaining custom software infrastructure for
our courses. A reasonable question is:Why don’t we purchase off-
the-shelf software or use freely-available software written by others?

First, some of us do use a generic LMS (learning management
system) to keep track of logistics like student enrollment lists and
gradesheets. But such software is best-suited for static content like
posting PDFs of homework assignments. Technical courses like the
ones we teach have lots of dynamic content such as coding assign-
ments that need autograding infrastructure and different variants
of course materials that interleave code, data, and exposition (see
Section 5.2). Generic LMS software such as Blackboard, Canvas, or
Moodle cannot handle that kind of dynamic content on their own.

We also use free tools such as GitHub and software development
toolchains like the classic Unix ‘make’ [13] for programmatically
compiling different variants of course materials. However, we still
have to write custom code to wrap around these tools since they
were not originally developed with educational use cases in mind.
And even though we use tools designed for educational use like

Gradescope [37], we still need custom code since each tool uses
differently formatted data.

In sum, we have found it challenging to reuse instructional soft-
ware written by others, as illustrated by the following case study.

5.4.1 Case Study: Handling Software Tool Updates. In several of
our courses we rely on an open-source software package for auto-
grading student code in Jupyter notebooks called Otter Grader [3].
This tool was specifically made for educational use, so it has several
convenient features. For instance, it can automatically generate
test cases from assert statements in Jupyter notebooks. However,
using this package comes with its own maintenance requirements—
when we update this package to use the latest release, it often
requires us to also update our course infrastructure and materials.

Why make a change? Since Otter Grader receives regular bug
fixes and updates, we prefer to use the latest package version when
possible. But these updates also come with their own backwards-
incompatible changes. In one notable instance, an old package
version could take over 45 minutes to generate student variants of
assignments; the new package version fixed this bug so it ran much
faster. But when we updated to the new version, we found that
other parts of our infrastructure code stopped working since our
code depended on old functionality that was no longer available.

How did we update our course? To make our infrastructure code
work again, we needed to edit files in every single assignment for
the course. We also needed to teach the course staff how to use the
changed infrastructure since we updated our existing scripts in the
process of updating to the latest Otter Grader package version.

As another example, we added special markup to every assign-
ment that tells Otter Grader what parts of the assignment to con-
vert into test cases. However, in an upcoming package version the
markup format will change in a backwards-incompatible way. Thus,
when new versions are released and we update our infrastructure,
we expect that we will need to manually go through every single
assignment file and change the markup to match.

Reflection. This case study highlights the challenges of relying on
external software tools when running a course. Even software tools
that are specifically designed for instructional use require manual
effort to update. Since we lack a single tool that handles every
single instructional use case, we cobble multiple tools together
in our course software infrastructures. For instance, we use Otter
Grader alongside scripts that we wrote ourselves, and student code
is graded in another third-party tool called Gradescope that also
needs to be configured and hooked up to our other software.

In theory, we could have designed a one-size-fits-all infrastruc-
ture that works for all the courses in our data science program,
since presumably programming-based courses involve similar sorts
of workflows comprised of code submission, autograding, and as-
signment file variants. But despite these surface-level similarities,
in our experience it was still more effective to develop our own
software that could be customized for the needs of each course
rather than reuse another course’s software infrastructure.

In fact, several of us have actually tried to reuse another course’s
software, only to encounter mismatches that were time-consuming
to fix—for instance, a course infrastructure for Jupyter notebooks
might not be able to handle LaTeX files. When these moments



arose, we did not want to ask other instructors to spend even more
time adding features to their custom infrastructure since it would
unfairly take time away from their course.

Also, making software generally reusable by others requires
significant time investment beyond simply making the software
functional—for instance, software without good documentation is
hard for others to use. Since our primary jobs are to teach, not to
write and maintain software, our code ends up being highly specific
to our course and is not designed for others.

Finally, writing software ourselves makes it much easier to adjust
it on-the-fly in response to surprises that arise throughout the term.
Many of us value flexibility in our software since our courses change
frequently. And when the course’s TA staff has expertise in their
own software it is much more feasible to fix bugs quickly, which
we value especially during the run-up to assignment deadlines.

5.4.2 Other examples. Here are other cases where we encountered
difficulties in reusing software written by others:

• Running into merge conflicts when using the Git version
control tool, which then prevent Jupyter notebooks from
loading.

• Needing to write scripts to transfer grades between multi-
ple grading systems, like the course autograder, manually-
graded exams, and our university’s gradebook.

6 DISCUSSION
Our case studies shed light on the fact that running, maintaining,
and updating large-scale technical courses involve a tremendous
amount of invisible infrastructural work [15] that is not directly
related to pedagogy. In light of these findings, we now discuss how
to design better tools to support instructors in coping with such
complexities.

6.1 Instruction at scale lacks the tools that make
open-source software projects successful

To reflect on our findings as a whole, we draw an analogy between
instruction at scale and open-source software development [12]. In
both, multiple stakeholders collaborate to produce a useful product
that is shared with a large audience.

Successful open-source projects gain more users and maintain-
ers but must also deal with a growing code base that fills with
technical debt [24]. This progression mirrors our experience as
instructors since our courses are rapidly-growing not only in num-
bers of students but also in numbers of TAs and amount of course
material that we need to maintain. Open-source software projects
also face the challenges that we as instructors encounter with intri-
cate dependencies, infrastructure, and distribution of knowledge.
Like instruction at scale, large software projects depend on other li-
braries that are frequently updated. A single set of source code may
generate multiple output variants, for instance to build executables
for different operating systems. They also rely on ad-hoc infrastruc-
ture via custom build scripts and Makefiles. And complex software
contains too many features for one person to track in detail, so
project knowledge is distributed among multiple maintainers.

People who maintain open-source software are all-too-familiar
with the problem of cascading updates due to chains of dependen-
cies [9], which we also faced when updating our course materials.
But instructors lack analogous tools that software projects rely on.
For instance, package managers [40] enable automatic dependency
tracking—a developer might update a dependency by changing a
single metadata file that tracks package versions, running its test
cases, and then using code inspection tools to ensure the project
still functions as expected. However, these off-the-shelf tools do
not account for all the different settings where instructors might
use code, like as screenshots embedded within lecture slides or
as snippets inserted in LaTeX or MS Word assignment files. More
broadly, instructors lack an way to automatically track semantic
dependencies based on pedagogical concepts.

6.2 Toward instructor-centered tool design
Wenow synthesize our findings into ideas for future tools to address
the logistical challenges of instruction at scale. As a whole, we
advocate for instructor-centered tool design: rather than force
instructors to adopt entirely new systems and workflows, tools
should acknowledge that courses already have existing workflows,
that teaching staff changes frequently from term to term, and that
instructors desire flexibility in handling course updates.

As a representative example, consider the dependency problem
again from Section 5.1. For instance, an instructor who removes a
lecture slide introducing pivot tables [41] needs to ensure that no
future course content relies on pivot tables. These dependencies
extend beyond just keeping software package versions up-to-date;
thus, they are not supported by current package manager tools. A
future tool might address this by explicitly representing the depen-
dencies between pieces of content in a course. Such a tool could
represent dependencies in a fine-grained way, so that removing a
lecture slide on pivot tables would alert the instructor to the specific
homework questions, discussion worksheets, and exam questions
that also need updating. This will make it easier to keep multiple
pieces of course content in sync.

However, it is unrealistic to expect that instructors will explicitly
set aside time to record every single content dependency, for the
same reasons that they currently do not set aside time to document
their course updates. To take this into account, future tools could
embed themselves directly within instructor workflows without
requiring them to switch applications to record dependencies. For
instance, we noticed that we often open multiple pieces of depen-
dent material in separate windows to manually ensure that materi-
als remained consistent. A tool for automatic dependency tracking
might observe this activity at the operating-system level [32] and
provide a prompt to allow the instructor to mark these materials
as linked together, or even automatically record the links based on
how often two files were opened side-by-side.

Relatedly, instructors do not wish to break out of their workflows
in the process of making course updates and thus do not often use
outside tools to document their changes. They also hesitate to
create yet another piece of content with metadata that they must
keep up-to-date. In software development, maintainers often rely on
email threads, chat channels (e.g., Slack), and GitHub issues/commit
messages rather than monolithic documentation pages. Can future



tools support similar kinds of lightweight contextual documentation
for instructors who work in multiple applications and diverse file
formats? Such a tool could record down useful context that the
instructor provides tacitly [8] as they are working.

7 CONCLUSION
We used four case studies to present some of the complexities of
updating large-scale courses related to data science and program-
ming. These challenges include managing intricate dependencies
between course materials, content variants, software infrastructure,
and software reuse. The main implication of our findings is that
large technical courses are like complex engineering systems with
hundreds of ‘moving parts’ that depend on one another in sub-
tle ways. Similar to how programmers have developed a rigorous
methodology of software engineering over the past few decades,
we call for the Learning@Scale community to move toward an anal-
ogous discipline of courseware engineering [21]. This would involve
not only better design practices but also building domain-specific
tools to help manage the logistical complexities of maintaining
and updating courses at scale. These efforts will hopefully free up
instructor time and energy to focus on what matters most: teaching
students.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. NSF IIS-1845900 and Grant No. NSF
DGE-1735234.

REFERENCES
[1] 2018. What’s New In Python 3.7 — Python 3.9.6 Documentation.

https://docs.python.org/3/whatsnew/3.7.html#porting-to-python-37.
[2] 2021. Project Gutenberg. https://www.gutenberg.org/.
[3] 2022. Otter-Grader Documentation — Otter-Grader Documentation. https://otter-

grader.readthedocs.io/en/latest/.
[4] Computing Research Association. 2017. Generation CS: Computer Science Un-

dergraduate Enrollments Surge Since 2006. https://cra.org/data/generation-cs/.
Accessed: 2021-01-15.

[5] Soumya Basu, Albert Wu, Brian Hou, and John DeNero. 2015. Problems Before
Solutions: Automated Problem Clarification at Scale. In Proceedings of the Second
(2015) ACM Conference on Learning @ Scale (Vancouver, BC, Canada) (L@S ’15).
Association for Computing Machinery, New York, NY, USA, 205–213. https:
//doi.org/10.1145/2724660.2724679

[6] Ned Chapin, Joanne E. Hale, Khaled Md. Kham, Juan F. Ramil, and Wui-Gee
Tan. 2001. Types of Software Evolution and Software Maintenance. Journal of
Software Maintenance 13, 1 (Jan. 2001), 3–30.

[7] Hao-Fei Cheng, Bowen Yu, Siwei Fu, Jian Zhao, Brent Hecht, Joseph Konstan,
Loren Terveen, Svetlana Yarosh, and Haiyi Zhu. 2019. Teaching UI Design at
Global Scales: A Case Study of the Design of Collaborative Capstone Projects for
MOOCs. In Proceedings of the Sixth (2019) ACM Conference on Learning @ Scale
(Chicago, IL, USA) (L@S ’19). Association for Computing Machinery, New York,
NY, USA, Article 11, 11 pages. https://doi.org/10.1145/3330430.3333635

[8] Anna T. Cianciolo and Robert J. Sternberg. 2018. Practical Intelligence and Tacit
Knowledge: An Ecological View of Expertise (2 ed.). Cambridge University Press,
770–792. https://doi.org/10.1017/9781316480748.039

[9] Russ Cox. 2019. Surviving Software Dependencies. Commun. ACM 62, 9 (Aug.
2019), 36–43. https://doi.org/10.1145/3347446

[10] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository. In
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work
(Seattle, Washington, USA) (CSCW ’12). Association for Computing Machinery,
New York, NY, USA, 1277–1286. https://doi.org/10.1145/2145204.2145396

[11] John DeNero. 2021. Data 8. http://data8.org/.
[12] Nadia Eghbal. 2020. Working in Public: The Making and Maintenance of Open

Source Software. Stripe Press.
[13] Stuart I. Feldman. 1979. Make–A program for maintaining computer programs.

Software: Practice and experience 9, 4 (1979), 255–265.

[14] Joseph Feliciano, Margaret-Anne Storey, and Alexey Zagalsky. 2016. Student
Experiences Using GitHub in Software Engineering Courses: A Case Study. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). 422–431.

[15] R. Stuart Geiger, Nelle Varoquaux, Charlotte Mazel-Cabasse, and Chris Holdgraf.
2018. The types, roles, and practices of documentation in data analytics open
source software libraries. Computer Supported Cooperative Work (CSCW) 27, 3
(2018), 767–802.

[16] Michael W. Godfrey and Daniel M. German. 2008. The past, present, and future
of software evolution. In 2008 Frontiers of Software Maintenance. 129–138. https:
//doi.org/10.1109/FOSM.2008.4659256

[17] Aaron Halfaker, R. Stuart Geiger, Jonathan T. Morgan, and John Riedl. 2013.
The Rise and Decline of an Open Collaboration System: How Wikipedia’s
Reaction to Popularity Is Causing Its Decline. American Behavioral Sci-
entist 57, 5 (2013), 664–688. https://doi.org/10.1177/0002764212469365
arXiv:https://doi.org/10.1177/0002764212469365

[18] David A. Joyner and Charles Isbell. 2019. Master’s at Scale: Five Years in a Scalable
Online Graduate Degree. In Proceedings of the Sixth (2019) ACM Conference
on Learning @ Scale (Chicago, IL, USA) (L@S ’19). Association for Computing
Machinery, New York, NY, USA, Article 21, 10 pages. https://doi.org/10.1145/
3330430.3333630

[19] Alexander C. Kafka. 2018. With Student Interest Soaring, Berkeley Creates New
Data-Sciences Division. The Chronicle of Higher Education (Nov 2018).

[20] Aniket Kittur and Robert E. Kraut. 2010. Beyond Wikipedia: Coordination and
Conflict in Online Production Groups. In Proceedings of the 2010 ACM Conference
on Computer Supported Cooperative Work (Savannah, Georgia, USA) (CSCW ’10).
Association for Computing Machinery, New York, NY, USA, 215–224. https:
//doi.org/10.1145/1718918.1718959

[21] Carlos Delgado Kloos, Ma Blanca Ibáñez, Carlos Alario-Hoyos, Pedro J Muñoz-
Merino, Iria Estévez Ayres, Carmen Fernández Panadero, and Julio Villena. 2016.
From software engineering to courseware engineering. In 2016 IEEE Global Engi-
neering Education Conference (EDUCON). IEEE, 1122–1128.

[22] Joseph A. Konstan, J. D. Walker, D. Christopher Brooks, Keith Brown, and
Michael D. Ekstrand. 2015. Teaching Recommender Systems at Large Scale: Eval-
uation and Lessons Learned from a Hybrid MOOC. ACM Trans. Comput.-Hum.
Interact. 22, 2, Article 10 (apr 2015), 23 pages. https://doi.org/10.1145/2728171

[23] Sean Kross and Philip J. Guo. 2019. Practitioners Teaching Data Science in
Industry and Academia: Expectations, Workflows, and Challenges. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 263, 14 pages. https:
//doi.org/10.1145/3290605.3300493

[24] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical Debt: From
Metaphor to Theory and Practice. IEEE Software 29, 6 (2012), 18–21. https:
//doi.org/10.1109/MS.2012.167

[25] Chinmay Kulkarni, Julia Cambre, Yasmine Kotturi, Michael S. Bernstein, and
Scott R. Klemmer. 2015. Talkabout: Making Distance Matter with Small Groups
in Massive Classes. In Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing (Vancouver, BC, Canada) (CSCW
’15). Association for Computing Machinery, New York, NY, USA, 1116–1128.
https://doi.org/10.1145/2675133.2675166

[26] Chinmay E. Kulkarni, Michael S. Bernstein, and Scott R. Klemmer. 2015. PeerStu-
dio: Rapid Peer Feedback Emphasizes Revision and Improves Performance. In
Proceedings of the Second (2015) ACM Conference on Learning @ Scale (Vancouver,
BC, Canada) (L@S ’15). Association for Computing Machinery, New York, NY,
USA, 75–84. https://doi.org/10.1145/2724660.2724670

[27] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space of
Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.
In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (VL/HCC ’20).

[28] David Malan. 2021. CS50 Docs: ALL THE DOCS! https://cs50.readthedocs.io/.
Accessed: 2021-01-15.

[29] David J. Malan. 2013. CS50 Sandbox: Secure Execution of Untrusted Code. In
Proceeding of the 44th ACM Technical Symposium on Computer Science Education
(Denver, Colorado, USA) (SIGCSE ’13). Association for Computing Machinery,
New York, NY, USA, 141–146. https://doi.org/10.1145/2445196.2445242

[30] Wes McKinney. 2011. Pandas: A Foundational Python Library for Data Analysis
and Statistics. Python for high performance and scientific computing 14, 9 (2011).

[31] DibaMirza, Phillip T. Conrad, Christian Lloyd, ZiadMatni, and Arthur Gatin. 2019.
Undergraduate Teaching Assistants in Computer Science: A Systematic Literature
Review. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (Toronto ON, Canada) (ICER ’19). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3291279.3339422

[32] Alok Mysore and Philip J. Guo. 2017. Torta: Generating Mixed-Media GUI and
Command-Line App Tutorials Using Operating-System-Wide Activity Tracing.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Qu&#233;bec City, QC, Canada) (UIST ’17). ACM, New York, NY,
USA, 703–714. https://doi.org/10.1145/3126594.3126628

https://cra.org/data/generation-cs/
https://doi.org/10.1145/2724660.2724679
https://doi.org/10.1145/2724660.2724679
https://doi.org/10.1145/3330430.3333635
https://doi.org/10.1017/9781316480748.039
https://doi.org/10.1145/3347446
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1109/FOSM.2008.4659256
https://doi.org/10.1109/FOSM.2008.4659256
https://doi.org/10.1177/0002764212469365
https://arxiv.org/abs/https://doi.org/10.1177/0002764212469365
https://doi.org/10.1145/3330430.3333630
https://doi.org/10.1145/3330430.3333630
https://doi.org/10.1145/1718918.1718959
https://doi.org/10.1145/1718918.1718959
https://doi.org/10.1145/2728171
https://doi.org/10.1145/3290605.3300493
https://doi.org/10.1145/3290605.3300493
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1145/2675133.2675166
https://doi.org/10.1145/2724660.2724670
https://cs50.readthedocs.io/
https://doi.org/10.1145/2445196.2445242
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/3126594.3126628


[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
and Vincent Dubourg. 2011. Scikit-Learn: Machine Learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[34] Jeffrey M. Perkel. 2018. Why Jupyter Is Data Scientists’ Computational Notebook
of Choice. Nature 563, 7732 (2018), 145–147.

[35] Chris Piech, Lisa Yan, Lisa Einstein, Ana Saavedra, Baris Bozkurt, Eliska Sestakova,
Ondrej Guth, and Nick McKeown. 2020. Co-Teaching Computer Science Across
Borders: Human-Centric Learning at Scale. In Proceedings of the Seventh ACM
Conference on Learning @ Scale (Virtual Event, USA) (L@S ’20). Association for
Computing Machinery, New York, NY, USA, 103–113. https://doi.org/10.1145/
3386527.3405915

[36] Chad Sharp, Jelle van Assema, Brian Yu, Kareem Zidane, and David J. Malan.
2020. An Open-Source, API-Based Framework for Assessing the Correctness
of Code in CS50. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
Association for Computing Machinery, New York, NY, USA, 487–492. https:
//doi.org/10.1145/3341525.3387417

[37] Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel. 2017. Grade-
scope: A Fast, Flexible, and Fair System for Scalable Assessment of Handwritten

Work. In Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale
(Cambridge, Massachusetts, USA) (L@S ’17). Association for Computing Machin-
ery, New York, NY, USA, 81–88. https://doi.org/10.1145/3051457.3051466

[38] Sumukh Sridhara, Brian Hou, Jeffrey Lu, and John DeNero. 2016. Fuzz Testing
Projects in Massive Courses. In Proceedings of the Third (2016) ACM Conference on
Learning @ Scale (Edinburgh, Scotland, UK) (L@S ’16). Association for Comput-
ing Machinery, New York, NY, USA, 361–367. https://doi.org/10.1145/2876034.
2876050

[39] Beckie Supiano. 2018. It Matters a Lot Who Teaches Introductory Courses. Here’s
Why. The Chronicle of Higher Education (Apr 2018).

[40] Wikipedia. 2021. Package manager. https://en.wikipedia.org/wiki/Package_
manager. Accessed: 2021-01-15.

[41] Wikipedia. 2021. Pivot table. https://en.wikipedia.org/wiki/Pivot_table. Accessed:
2021-01-15.

[42] Alexey Zagalsky, Joseph Feliciano, Margaret-Anne Storey, Yiyun Zhao, and
Weiliang Wang. 2015. The Emergence of GitHub as a Collaborative Platform
for Education. In Proceedings of the 18th ACM Conference on Computer Sup-
ported Cooperative Work & Social Computing (Vancouver, BC, Canada) (CSCW
’15). Association for Computing Machinery, New York, NY, USA, 1906–1917.
https://doi.org/10.1145/2675133.2675284

https://doi.org/10.1145/3386527.3405915
https://doi.org/10.1145/3386527.3405915
https://doi.org/10.1145/3341525.3387417
https://doi.org/10.1145/3341525.3387417
https://doi.org/10.1145/3051457.3051466
https://doi.org/10.1145/2876034.2876050
https://doi.org/10.1145/2876034.2876050
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Pivot_table
https://doi.org/10.1145/2675133.2675284

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Case Study Participants
	3.2 Overview of Courses
	3.3 Limitations

	4 What kinds of updates are needed for large technical courses?
	5 What challenges do instructors face when updating their courses?
	5.1 Challenge 1: Intricate dependencies between course materials
	5.2 Challenge 2: Maintaining consistent variants of course materials
	5.3 Challenge 3: Writing ad-hoc software infrastructure to manage scale
	5.4 Challenge 4: Cannot easily reuse software written by others

	6 Discussion
	6.1 Instruction at scale lacks the tools that make open-source software projects successful
	6.2 Toward instructor-centered tool design

	7 Conclusion
	Acknowledgments
	References

