
Five Pedagogical Principles of a User-Centered Design Course
that Prepares Computing Undergraduates for Industry Jobs

Sean Kross
UC San Diego

seankross@ucsd.edu

Philip J. Guo
UC San Diego
pg@ucsd.edu

ABSTRACT
We present a new user-centered design course that prepares com-
puting undergraduates for software industry jobs such as UI/UX
designer, product designer, and product manager. Our course aims
to bridge the academia-industry gap and innovates upon prior pub-
lished HCI courses due to its targeted focus on job preparation,
inclusion, and scale. Nearly 200 students (55% women) have taken
it in the past two years. We developed its curriculum to align with
the needs of modern industry employers and implemented five
theory-backed pedagogical principles: 1) industry-relevant project
prompts developed in consultation with recent course alumni, 2)
final project deliverable optimized for job-seeking, 3) no coding
required to foster inclusion, 4) low-stress effort-based grading to fur-
ther foster inclusion, 5) weekly feedback and chances for revisions.
We discuss the theoretical rationale behind these five principles
and how instructors can potentially apply them to a broad range of
project-based courses across many areas of computing.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
HCI education, UX design, project-based course, job preparation

ACM Reference Format:
Sean Kross and Philip J. Guo. 2022. Five Pedagogical Principles of a User-
Centered Design Course that Prepares Computing Undergraduates for Indus-
try Jobs. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2022), March 3–5, 2022, Providence, RI, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3478431.3499341

1 INTRODUCTION
User-centered design is a product development process that involves
observing and interviewing users to discover their actual needs,
creating a series of prototypes, and performing usability testing
to refine those prototypes on the path toward a finished prod-
uct [10, 11, 26]. Although this methodology applies to many fields,
it is especially prevalent in computing: Every widely-used piece of
software today was likely developed with a user-centered design
process to optimize for satisfying real user needs [18].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9070-5/22/03.
https://doi.org/10.1145/3478431.3499341

Despite the importance of user-centered design in the software
industry, university students rarely get a chance to learn it. Within
CS departments it is usually taught in HCI electives [17], but those
courses traditionally focus on theoretical design principles [7, 33].
Project-based HCI courses provide much-needed hands-on experi-
ence [3, 10, 14, 31], but from surveying prior work (see Section 2)
we found that they lack explicit support for helping students to obtain
relevant jobs, which limits their perceived utility in students’ eyes.

To address this limitation, we created a new user-centered design
course explicitly focused on preparing computing undergraduates
for technology industry jobs such as UI/UX designer, product de-
signer, and product manager. To our knowledge, this paper is the
first to describe this type of job-focused university HCI course that
aims to bridge the academia-industry gap [29, 30] (see Section 2).
We teach at a large public U.S. university (UC San Diego), so scale
was critical: Whereas project-based courses at design schools are
taught in studios with 10–20 students [1, 2], we had to create a
course that serves an order of magnitude more students. Nearly 200
students (55% women) have taken our course in its first two years.

This experience report contributes to the computing education
literature by presenting five pedagogical principles from our course
that instructors can adapt into their own computing project courses:

(1) Industry-relevant project prompts: UI/UX design is a
fast-changing field, so each year we use feedback from course
alumni working in industry to make project prompts that
are the most timely and relevant for current industry jobs.

(2) Final deliverable optimized for job-seeking: After fin-
ishing the project, everyone creates a final deliverable, which
is a design case study in an industry-standard format that
hiring managers are looking for. Our students have gotten
jobs as UI/UX designers and product managers in software
companies by presenting these case studies to employers.

(3) No coding required: To lower participation barriers and
make the course more inclusive, we do not require any cod-
ing. Instead students use industry-standard prototyping tools
(e.g., Figma), which are much easier for novices to learn.

(4) Effort-based grading: Again to make the course more in-
clusive, we implemented an effort-based grading policy [16]
where students get full credit for simply completing each
assignment, regardless of the subjective ‘quality’ of their
design work. This way, students coming in with less prior
design experience are not put at a disadvantage grade-wise.

(5) Weekly feedback and chances for revisions: Students
receive feedback from classmates and TAs each week and
then get several chances to revise their prior work in re-
sponse to such feedback. Since grading is based on effort
(see above), our TAs feel very comfortable giving students
highly-critical feedback without it harming their grades.

https://doi.org/10.1145/3478431.3499341
https://doi.org/10.1145/3478431.3499341


2 RELATEDWORK
In the early 2000s, SIGCSE held several panel discussions on HCI ed-
ucation [4, 8], and researchers followed-up with experience reports
and surveys to document techniques for teaching HCI [3, 7, 14, 22,
25, 31, 33]. These courses varied widely in content, but two common
threads emerged: 1) having students implement a team project, 2) of-
fering regular feedback and critiques in small-group studio sessions.
Our course follows this standard template but innovates beyond
prior courses in its focus on providing industry-relevant project
prompts (Section 4.1) and having students create a final deliverable
(a case study) that they can present to employers (Section 4.2).

Aberg [3] and Hui [14] surveyed instructors about challenges in
teaching HCI courses, and Oleson et al. [24] complemented those
findings with student perspectives. One recurring theme was that
students perceive the content in such courses to be too abstract,
vague, and sometimes ‘obvious’ or ‘common sense.’ As a result, they
felt that grading tended to be too subjective and unfair, which our
course remedies with its effort-based grading policy (Section 4.4)
and weekly opportunities for feedback and revision (Section 4.5).

Another recurring issue is that project deliverables are usually
prototypes and reports that students cannot put to good use after
the class ends. Aberg recounted that “as for the report of the project
work, there was a sense of an unclear aim” [3] so students were
unmotivated to write up their findings. He suggested “to get around
the problems with lack of motivation one could try to connect it
better to the industry.” [3] Our course provides such motivation via
industry-relevant project prompts (Section 4.1) and a project report
formatted as a design case study that students can immediately put
to use by presenting it to employers when job hunting (Section 4.2).

Despite the long lineage of work on HCI education, to our knowl-
edge there have been no papers documenting HCI courses that are
designed with industry-relevant job preparation as a core goal. Thus,
we contribute to this academic literature by describing a novel HCI
course that is designed to optimize for job preparation, inclusion,
and scale to serve a large public university. More broadly, our course
aims to bridge the academia-industry gap in computing education,
which has been a recurring discussion in our community [29, 30].

3 COURSE OVERVIEW
Our HCI course teaches students to apply a user-centered design
process to create a computing-related design project that they write
up as a case study in an industry-standard format. The case study
they create in our course can be used to directly apply for jobs in
the software industry such as UI/UX designer, product designer,
and product manager (PM). It can also augment the portfolios of
students who are applying for more traditional software engineer-
ing and programming jobs. See Section 4.2 for details about what a
modern industry-standard design case study looks like (circa 2022).
Student population: We teach at a large public U.S. university
containing a large computer science department (over 2,000 ma-
jors) and over 2,000 computing-related students in several adjacent
departments (e.g., cognitive science, electrical and computer engi-
neering). Our students mostly come from those majors. This is a
new elective course that has been offered twice, with 82 students in
Fall 2019 (48% women) and 112 students in Fall 2020 (61% women).

Week Main Concepts Project Milestone Due
1 Intro. to user-centered design (none)
2 User research for needfinding project proposal,

user research plan
3 Giving design critiques user research findings
4 Sketching possible solutions user personas, competitive

audit, UX flows, UI sketches
5 Low-fidelity prototyping, low-fi digital wireframes,

usability testing initial user testing
6 (none, time for revisions) revisions based on feedback
7 High-fidelity prototyping hi-fi prototype, user testing
8 Reaching out to employers refine prototype from testing
9 Writing up a case study (1) revisions based on feedback
10 Writing up a case study (2) case study on live website

Table 1: Our user-centered design course for computing stu-
dents, with project milestones due at the end of each week.

Course calendar: Table 1 shows the flow of our course over a
standard 10-week term at our university. We cover all major steps
of a user-centered design process [10, 17, 26] ranging from user
research to UX flows to UI prototyping to user testing. There are
no theory-based homework assignments or exams; all grades come
from a term-long project with milestones to turn in each week.
Project milestones: Students work either individually or on a
small team to complete a term-long design project. The right column
of Table 1 shows how each week they must turn in a milestone that
corresponds to the step of the user-centered design process they
are implementing that week. They receive feedback from both their
classmates and TAs about each milestone. The final milestone at
the end of Week 10 is their completed case study (Section 4.2).
Undergraduate TAs: We mostly use undergraduate TAs since
they can relate better to our undergraduate students, have recently
taken the same course or similar courses, and have done recent
internships in UI/UX/product design roles. The pervasive use of
undergraduate TAs in university computing courses has been well-
documented [21, 23], and we extend that tradition to HCI. We invite
top-performing students to become TAs for next term, which helps
ensure a sustainable pipeline that scales as enrollment grows.

4 FIVE PEDAGOGICAL PRINCIPLES
The UI/UX design topics we cover (Table 1) are fairly standard, but
what makes our course unique is a set of five principles that we
developed to optimize for job preparation, inclusion, and scale.

4.1 Industry-relevant project prompts
A central challenge of project-based courses is what constraints
to place on students’ project ideas. At one extreme, instructors
could allow students to do projects on whatever they want; this
maximizes freedom but often results in bland projects because, in
practice, many undergrads are not able to come up with interesting
ideas. They often end up creating cliche ‘college student apps’ such



as class selection tools, todo lists, or apps to facilitate on-campus
socializing. Thus, some instructors create their own project prompts
to provide constraints, but the problem here is that those prompts
are not necessarily what appeal to industry employers.

To overcome this limitation, instead of us as instructors com-
ing up with arbitrary prompts ourselves, we surveyed the top-
performing students from prior years (some of whom are our cur-
rent TAs) to have them come up with prompts related to the latest
design themes and trends that they have seen recently in the soft-
ware industry1. Since these top students often do internships at
relevant companies and then go on to full-time jobs there after
graduating, they are much more in touch with industry trends.

The exact prompt details vary by year since industry trends
evolve over time, but they all follow this general template:

Extend or redesign a feature of a widely-used
[type of software application] to help a [specific
type of user] to [do some important task better].

Critically, students must extend or redesign a feature of an exist-
ing widely-used app (e.g., a mobile app, web app, or desktop app
that many people use) rather than creating their own from scratch.
Theoretical rationale: We use industry-relevant project prompts
because of the motivating power of authenticity. This is a major
theme of Guzdial’s 2015 book on computing education theory and
practice [12]. To summarize, students want to feel like they are
making ‘the real thing’ with industry-standard practices and not
just doing ‘toy projects.’ Guzdial relates authenticity to expectancy-
value theory [32], which states that students are more motivated
when they see genuine value in what they are assigned to do.
Potential benefits: Our prompt template has three benefits:

• It makes for more compelling job applications since it is a
more realistic simulation of what new hires do in industry.
Employers want to see how students can work within the
constraints of existing apps rather than making their own
app from scratch (which employees rarely do in industry).

• It forces students to work within the constraints of widely-
used popular apps and to solve problems faced by real people.
This prevents them from making up cliche ‘toy’ project ideas
that look amateurish when presented to potential employers.

• Honing in on a specific feature provides focus and eliminates
overly-vague goals like “I want to redesign Skype and Zoom!”

Each term the course staff creates around half a dozen prompts
to account for a diverse variety of student interests as well as recent
industry design trends. For instance, in the most recent offering
(Fall 2020) we created a set of timely prompts related to improving
quality of life during the COVID-19 pandemic, such as facilitating
K-12 education, helping extended families remain connected, and
supporting local businesses during the pandemic. Here is one ex-
ample prompt: Extend or redesign a feature of a widely-used online
education tool to help K-12 teachers to [do some important task better].

To give a sense of what students worked on, here are some
examples of the most outstanding projects from the Fall 2020 term:

• adding features to Zoom and Google Calendar to help K-12
teachers to better manage their virtual classrooms

1Some courses connect students with real industry clients, which is even more realistic
but is very hard to scale since the staff needs to manage those connections [10, 14, 31].

Figure 1: Excerpts from two case study webpages created
by students in our course (full case studies too long to fit
here). a) problem motivation and user personas for extend-
ing Google Calendar for K-12 education. b) user-testing and
refining an extension of the Quizlet online education app.

• enhancing popularmobile apps to coordinate access to health-
care services while minimizing risks of venturing outside

• redesigning FaceTime to better connect older adults with
family members to keep emotional ties when quarantined

4.2 Final deliverable optimized for job-seeking
Many project-based courses provide the raw materials for students
to present in their portfolio when job-hunting, but they suffer from
the last-mile problem [27]: these courses never teach students how
to write up their project work in a format that appeals to employers.
Instead, students are left to figure this all out by themselves. As
a result, even though they have put in all the work to complete a
project, many find it hard to traverse that vital “last mile” to turn it
into a compelling addition to their portfolio that employers value.2

We address this last-mile problem by explicitly teaching students
how to write up a design case study and upload it to a real portfolio
website as the final deliverable of our course. A case study is a
blog-post-like webpage that shows how a student adopted a user-
centered design process from the start of a project all the way to
the finished product; it explains the analytical reasoning behind all
the various design decisions made along the way. Figure 1 shows
two excerpts from case studies made by our students. The exact
details are unimportant, but these case studies mix explanatory text
with images, mock-up app screenshots, and sometimes animated
GIFs or embedded videos that demonstrate user interactions.

2The last-mile problem [27] is a term from communications, infrastructure, and logis-
tics design that conveys the difficulty of connecting end-to-end. For instance, a subway
station may be located over a mile away from many commuter’s homes or offices, so
they also need to carry bicycles or skateboards with them to cover that last mile.



Employers have told us that these case studies are the most im-
portant part of a student’s portfolio when they apply to jobs such
as UI/UX designer or product manager. They read case studies to
get a sense of applicants’ skills as an analytical and design-oriented
thinker. This is why in our course we teach students to write a
case study on their project in an industry-standard format that ap-
peals to employers. Specifically, we guide students to write up the
‘behind-the-scenes’ details of their design process, justifications,
and rationale so they are not simply showing the final product. Our
curriculum is available at [link anonymized for submission], and we
have adapted content from industry guides for case studies [28].
Theoretical rationale: Similar to industry-relevant project prompts
(Section 4.1), we guide students to create real case studies because of
the motivating power of authenticity [12]. According to expectancy-
value theory [32], we believe that students are more motivated
when the final product they create in our course is a case study that
looks like those that have helped their peers to get industry jobs.
Potential benefits: Several students have already emailed us to
report that they directly used the case study from our course to
obtain their first design-related internship in the software industry.

In addition, although some tech-savvy students already know
how to create case studies and portfolio webpages, many comput-
ing students who come from less privileged backgrounds have not
done so before. Thus, by teaching them how to do this step-by-step
in our course, we hope to improve equity and inclusion in our
field. Here is a relevant anecdote from an end-of-term course re-
view survey that we conducted (students consented to having their
anonymized feedback potentially appear in academic publications):

“The best part is I finally made a portfolio/website for
myself to showcase my project (and hopefully future
projects) to potential employers. Even though I’ve al-
ways heard that a portfolio was one of the most valuable
things for a college student, it was something that I never
thought I would ever do. This was due to lack of knowl-
edge and lack of projects that I felt were worthy enough
to display. Now, instead of skipping the section for ‘Per-
sonal Website’ on job applications, I can confidently lead
them to my website to showcase my abilities.”

4.3 No coding required
Students often design mobile or web applications in their project-
based computing courses, so it seems natural to have them also im-
plement their designs in code. We have taught several such courses
in the past and one author, in his role as the undergraduate educa-
tion chair in his department, has spoken with many students about
their perceptions of these programming-heavy courses. We found
that while such coding-intensive courses give students the chance
to implement real software, the complexities of coding overshadow
the higher-order lessons we want to teach them about design. What
often happens is that students spend an enormous amount of time
on the myriad complexities of setting up, debugging, and interfac-
ing with libraries to implement modern mobile or web applications.
And due to the short time-span of such courses, students often end
up with a final product that is buggy and unpolished, which does
not make for a compelling portfolio piece to show employers.

Figure 2: Instead of implementing their projects with code,
students in our course use industry-standardUI prototyping
tools such as Figma. Here a student is using Figma to proto-
type an extension to the Twitter mobile app for iOS.

Thus, in our course we do not require any coding. Instead, stu-
dents create prototypes of mobile or web apps using industry-
standard UI prototyping tools such as Figma. These are GUI tools
that UI/UX designers in industry use to prototype the look-and-feel
of user interfaces along with user interactions and animations, all
without needing to write any code. Figure 2 shows how students
use Figma to prototype an extension to Twitter’s iOS app UI by
modifying pre-made iOS UI components; the resulting prototype
looks similar to a real app and can even have simple interactivity.

This decision also aligns well with what employers are looking
for since when students apply for jobs related to UI/UX/product
design, they are not required to code; instead, employers read
their case studies to assess their skills in reasoning about the user-
centered design process. They understand that the app screenshots
in case studies are mock-ups created using tools such as Figma (e.g.,
Figure 2) and thus do not expect to see a fully-functional app.
Theoretical rationale: Aside from the authenticity benefits of non-
code prototypes being what industry employers expect when hiring
designers (who are evaluated differently from software engineers),
not requiring coding also has benefits for inclusion. Prior work has
shown that one way to make courses more inclusive in terms of
gender and other demographics is to not equate computing with
geek stereotypes of pure coding prowess [20]. As one data point,
our enrollments so far have been 55% women (200 total students),
which is much higher than our CS department baseline of 25%.
Potential benefits: Prototyping tools like Figma lower barriers to
entry and enable students to create much more polished prototypes
than they would be able to do in code. They also promote inclusion
by not putting students with less prior coding experience at a
disadvantage. Here is a course review from a student who self-
identified as a novice programmer:

“I especially liked how this class did not require coding
as that is the one thing in life that I am 100% completely
horrible at like [getting] 24% on programming assign-
ments type of horrible. I like how I got to focus on the
research and designing and using the prototyping tools
that came with Figma.”



Even experienced programmers can benefit from not coding in
our course since it lets them focus more on high-level design ideas
rather than low-level code details. Here is a relevant student review:

“This course forces you to think about how effective
an application is at achieving its goal. As a computer
science student, this juxtaposed with the content I am
used to hearing and learning, where an application’s
main goal is to have properly working algorithms and
provide the correct output. Oftentimes, I believe people
overlook the importance of an application’s control flow
and user interface.”

4.4 Effort-based grading
From our experiences teaching many software engineering and
HCI project-based courses in the past, one perennial challenge
we face is how to do grading in a fair and efficient way. One tra-
ditional way has been to use rubrics [19], which are checklists
of requirements for each project component. However, some stu-
dents perceive rubrics to be too restrictive on their creativity, since
they must resort to ‘checking off the boxes’ to earn the respective
points; likewise, our TAs have found grading with rubrics to be very
time-consuming since they must tediously validate whether each
students’ submission meets each rubric item. We would also like
to assess the ‘quality’ of student projects, but doing so is fraught
with bias since each TA has different tastes as to what makes for a
‘good’ project. Unlike in, say, a mathematics course, there is often
not a ‘right’ or ‘wrong’ answer in open-ended design projects [14].

Our theory-backed solution to these issues is to implement effort-
based grading [16]: students get full credit on each weekly project
milestone if they put in the effort to turn it in on time (we allow a
few late days for emergencies). Each week students can get 2 points:
1 for turning in the milestone and 1 for giving peer feedback to
classmates on the prior milestone (see Section 4.5). The only ways
to get a 0 score are either not to turn anything in or to turn in
something meaningless (e.g., writing a random jumble of words).
This means students who put in the effort to complete all project
milestones will earn 100%, regardless of the ‘quality’ of their work.
Percentages translate into letter grades using a standard A–F scale.
Theoretical rationale: Our policy is directly inspired by the pro-
gressive concept of labor-based grading contracts from humanities
classes [16]. The theoretical justification there is one of equity: it is
hard to be ‘objective’ in judging student work in the humanities,
especially when students come from diverse cultural and socioeco-
nomic backgrounds. Thus, the developers of this method argue that
the most equitable and ethical way to assign grades is by whether a
student has put in the effort of labor to complete each assignment.
Potential benefits: Although readers may be skeptical of this grad-
ing policy, we have gotten tremendous benefits from it. For instance:

• It mostly eliminates subjectivity and bias in grading, since
TAs are not assigning grades based on perceived quality.
(There is still some subjectivity in determining whether a
student has ‘completed’ a milestone, but that is much easier
to agree on than judgments of quality. To calibrate, other
TAs and the instructor will take a look at borderline cases.)

• TAs spend very little time on grading and can devote the
majority of their time to mentoring students’ projects and
giving them honest feedback. This policy empowers them to
give candid, constructive, and even highly-critical feedback
to students without worrying that it may hurt their grades.

• Students do not need to follow a rubric to get credit, which
gives them more creative freedom. From a student review: “I
also liked that the class gave you points as long as you clearly
put in effort. It took away the stress of trying to make the case
study fit a certain mold rather than make it our own.”

• It fosters inclusion by not putting those with less design
skills at a disadvantage. From a student review: “The grading
scale for this class was really generous because it relieved a lot
of the stress and worries I had coming into this class because
I’ve never done a case study this complicated before.”

• Finally, having TAs not spend an inordinate amount of time
on weekly grading has been a very effective way for us to
scale to larger enrollments without overburdening our TAs.

Informal assessment: Why would students put in the effort to do
a good job when they can still get an A grade with minimal effort?
We encouraged students to put in their best effort by reminding
them that they are working toward making a real case study that
can land them real jobs; we presented direct evidence of their TAs
and other former students getting jobs using these sorts of case
studies, so that often provided sufficient motivation.

As a preliminary assessment, after the Fall 2020 term ended, TAs
looked over all 112 students’ final case studies and judged their
quality (this was not part of their grade). They determined that
21 case studies were top-notch, with 9 more earning ‘honorable
mention.’ That means 30 out of 112 students (27% of the class) did
outstanding work even without grades as a motivator. On the flip
side, our TAs found only 7 case studies that were very sub-par in
quality. This is not a formal assessment by any means, but at least
it gives us some indication that the majority of students were still
motivated to put in effort despite not being graded.

4.5 Weekly feedback and chances for revisions
TAs give feedback to students eachweek both synchronously during
Friday studio sections [15] (each TA has around 20 students) and
asynchronously via comments left on their milestone Google Docs.

In addition, when students turn in each weekly milestone, they
must also give feedback to two of their classmates about their
prior milestone (they get assigned a different set of classmates each
week). To prime students to give peer feedback that is specific,
actionable, and constructive, we demonstrate examples of good and
bad feedback in class. To guard against rude comments, we also
have a Code of Conduct that counts for a few points in their grade.

We leave Weeks 6 and 9 free for students to revise milestones
based on feedback from prior weeks (see Table 1); this ensures that
they have enough time to act on the feedback they have been given.
Theoretical rationale: The process of continual formative feed-
back, reflection, and revision is core to the theory of studio-based
design education [15, 25, 31]. We extend those ideas online by hav-
ing students and TAs leave feedback asynchronously via Google
Docs comments. In addition, prior work has shown that the act of



giving feedback to peers helps students to indirectly reflect on and
improve their own work [13]. Our students give feedback to 20 of
their classmates throughout the term (2 each week x 10 weeks).
Potential benefits: Instead of just seeing a grade and then hur-
riedly moving onto the next assignment, students get a chance to
revise based on feedback to apply what they learned. From a review:

“I wish other college courses were similar to this format
because you get to revise your work through the TA’s
critique, without it hurting your grade. Far too many
college courses deduct points without telling you why,
and are paced in a way that you can’t even reflect on
your mistakes.”

Students also benefit from their classmates’ perspectives (again
without it affecting their own milestone grades). During the ten-
week term, each student sees feedback from 20 classmates (two
each week). Note that this means each student also looks at 20
classmates’ projects throughout the term, which may indirectly
give them design inspiration for their own projects.

Finally, peer feedback helps with scale since students can get
feedback from a large cohort of classmates in addition to TAs [13].

5 INFORMAL ASSESSMENT FROM STUDENTS
Since this is an experience report and not a formal research paper,
we do not have a rigorous assessment of course outcomes. That
said, we have provided student anecdotes from course reviews
throughout this paper to give some indicators of potential benefits.
Many student comments praised the pragmatic nature of our course:

“Dear Future Students, TAKE THIS CLASS! It is hands-
down the most practical class I have taken in my three
years at [university]. [...] This is the only class I’ve taken
so far in my three years at [university] that might ac-
tually help me find a job as it guides you through the
process of writing a case study for your portfolio.”

Perhaps the best indicator of success is if students actually get
jobs using the case studies they created in our course. We have
some anecdotal evidence of this happening via a few student emails
sent to us so far, but we have not done a formal study.

Even though student evaluations are biased [5, 6, 9], we present
an overview here for reference: 97% of students in our first offering
chose Yes for ‘I recommend this course’ and 100% did for our second
offering (which is rare for courses with over 100 students). In those
years, the most similar project-based HCI/UX design courses in our
department had ‘I recommend this course’ votes of 61%, 67%, 89%,
and 92%. And our department average over all courses was 85%.
Critiques from student reviews: While not requiring coding
opens up opportunities for more creative and ambitious projects,
some advanced CS students wanted the opportunity to learn more
about the implementation details of coding up user interfaces. Also,
not having a real implementation makes it harder to do authentic
usability testing; students can only test using mock-up prototypes.
Some students found the workload to be uneven across different
weeks, so we could do a better job at smoothing out the pace. Finally,
TAs varied in their design and pedagogical expertise, so we are now
exploring ways of having students get personalized attention from
multiple TAs rather than only their one assigned TA.

6 CALLS TO ACTION FOR CS INSTRUCTORS
Even though our course was on HCI, we believe that the five peda-
gogical principles we implemented can apply to other project-based
computing courses as well. These include courses in sub-fields in-
cluding (but not limited to) software engineering, computer sys-
tems, A.I., graphics, security, and data science. Although the specific
technical content, project prompts, and concrete deliverables will
differ widely across computing sub-fields, the spirit behind these
principles can transfer well. Thus, here are our calls to action:

(1) Industry-relevant project prompts:We encourage instruc-
tors to ask the top-performing alumni of their courses (who
are now in relevant industry jobs) for what the most com-
pelling modern trends are in their field. What would alumni
like to see in resumes and portfolios when hiring new col-
leagues at their organizations? Use these insights to create
course project prompts that can help students get those jobs.

(2) Final deliverable optimized for job-seeking: We encour-
age instructors to address the “last-mile” problem by teaching
students how to turn their projects into a final deliverable
that can be directly presented to employers. This will take
different forms for different CS sub-fields (e.g., in HCI it is a
design case study), but again recent course alumni will have
a good sense of what is required for a strong portfolio entry.

(3) No coding required: Consider not requiring coding as a
way to lower barriers to entry and to make the course more
inclusive to people with less experience. We acknowledge
that programming is essential for some CS courses, but con-
sider the use of alternative non-coding tools when possible.

(4) Effort-based grading: To improve inclusiveness, consider
a low-stress effort-based grading policy. We have found that
students can still do excellent work on projects if they are
motivated by the outcome (e.g., if it helps them to get intern-
ships and jobs). This will also help your class scale better by
enabling fewer TAs to manage higher enrollments without
burning out from spending so much time on grading.

(5) Weekly feedback and chances for revisions: Train stu-
dents to give good peer feedback to one another and provide
them with time to revise assignments based on feedback.
Also, it is important to decouple feedback from grades (e.g.,
using effort-based grading) so TAs can feel comfortable giv-
ing critical feedback without worrying about harming their
students’ grades. Doing so also fosters a collaborative (rather
than judgmental) relationship between TAs and students.

7 CONCLUSION
We have presented a novel user-centered design course that guides
students through a computing-related design project that they write
up as a case study in an industry-standard format. Our course inno-
vates upon prior HCI electives with its explicit focus on job prepa-
ration, inclusion, and scale. Our students have used these projects
to get software industry jobs as UI/UX designers and product man-
agers. While creating this course, we developed five pedagogical
principles based on research in authenticity [12, 32], inclusion [20],
effort-based grading [16], and peer feedback [13]. We encourage
computing education researchers to use the ideas presented in this
experience report as the basis for more formal studies of efficacy.



ACKNOWLEDGMENTS
Special thanks to Rajiv Sancheti and David Wu for helping us co-
create the first iteration of this course in Fall 2019 and to Judy Chun
and Kendall Nakai for their valuable feedback on the materials
surrounding this course. Also thanks to all of the undergraduate
TAs (past, present, and future!) who continually contribute to the
ongoing evolution of this course.

This material is based upon work supported by the National
Science Foundation under Grant No. NSF IIS-1845900 and from a
grant from the Alfred P. Sloan Foundation.

REFERENCES
[1] [n.d.]. Parsons School of Design. https://www.newschool.edu/parsons/. Accessed:

2021-08-10.
[2] [n.d.]. Rhode Island School of Design. https://www.risd.edu/. Accessed: 2021-08-

10.
[3] Johan Aberg. 2010. Challenges with Teaching HCI Early to Computer Students.

In Proceedings of the Fifteenth Annual Conference on Innovation and Technology in
Computer Science Education (Bilkent, Ankara, Turkey) (ITiCSE ’10). Association
for Computing Machinery, New York, NY, USA, 3–7. https://doi.org/10.1145/
1822090.1822094

[4] Julie Barnes, Rob Bryant, Daniel D. McCracken, and Susan Reiser. 2003. Teaching
Human-Computer Interaction: Reports from the Trenches. In Proceedings of the
34th SIGCSE Technical Symposium on Computer Science Education (Reno, Nevada,
USA) (SIGCSE ’03). Association for Computing Machinery, New York, NY, USA,
125–126. https://doi.org/10.1145/611892.611901

[5] Anne Boring, Kellie Ottoboni, and Philip Stark. 2016. Student evaluations of
teaching (mostly) do not measure teaching effectiveness. ScienceOpen Research
(2016).

[6] Kerry Chávez and Kristina M.W. Mitchell. 2020. Exploring Bias in Student
Evaluations: Gender, Race, and Ethnicity. PS: Political Science amp; Politics 53, 2
(2020), 270–274. https://doi.org/10.1017/S1049096519001744

[7] Elizabeth F. Churchill, Anne Bowser, and Jennifer Preece. 2013. Teaching and
Learning Human-Computer Interaction: Past, Present, and Future. Interactions
20, 2 (March 2013), 44–53. https://doi.org/10.1145/2427076.2427086

[8] Sarah Douglas, Marilyn Tremaine, Laura Leventhal, Craig E. Wills, and Bill
Manaris. 2002. Incorporating Human-Computer Interaction into the Under-
graduate Computer Science Curriculum. In Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education (Cincinnati, Kentucky)
(SIGCSE ’02). Association for ComputingMachinery, New York, NY, USA, 211–212.
https://doi.org/10.1145/563340.563419

[9] Justin Esarey and Natalie Valdes. 2020. Unbiased, reliable, and valid student
evaluations can still be unfair. Assessment & Evaluation in Higher Educa-
tion 45, 8 (2020), 1106–1120. https://doi.org/10.1080/02602938.2020.1724875
arXiv:https://doi.org/10.1080/02602938.2020.1724875

[10] Guiseppe Getto and Fred Beecher. 2016. Toward a Model of UX Education:
Training UX Designers Within the Academy. IEEE Transactions on Professional
Communication 59, 2 (2016), 153–164. https://doi.org/10.1109/TPC.2016.2561139

[11] Colin M. Gray. 2014. Evolution of Design Competence in UX Practice. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto,
Ontario, Canada) (CHI ’14). Association for Computing Machinery, New York,
NY, USA, 1645–1654. https://doi.org/10.1145/2556288.2557264

[12] Mark Guzdial. 2015. Learner-centered design of computing education: Research
on computing for everyone. Synthesis Lectures on Human-Centered Informatics 8,
6 (2015), 1–165.

[13] Catherine M. Hicks, Vineet Pandey, C. Ailie Fraser, and Scott Klemmer. 2016.
Framing Feedback: Choosing Review Environment Features That Support High
Quality Peer Assessment. Association for Computing Machinery, New York, NY,
USA, 458–469. https://doi.org/10.1145/2858036.2858195

[14] Bowen Hui. 2020. Lessons from Teaching HCI for a Diverse Student Population.
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3428029.3428054

[15] Christopher D. Hundhausen, N Hari Narayanan, and Martha E. Crosby. 2008.
Exploring Studio-Based Instructional Models for Computing Education. In Pro-
ceedings of the 39th SIGCSE Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’08). Association for Computing Machinery, New

York, NY, USA, 392–396. https://doi.org/10.1145/1352135.1352271
[16] Asao B Inoue. 2019. Labor-based grading contracts: Building equity and inclusion

in the compassionate writing classroom. WAC Clearinghouse.
[17] Association for Computing Machinery (ACM) Joint Task Force on Comput-

ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[18] Steve Krug. 2014. Don’t Make Me Think, Revisited: A Common Sense Approach to
Web Usability (3rd ed.). New Riders Publishing, USA.

[19] Chinmay E. Kulkarni, Michael S. Bernstein, and Scott R. Klemmer. 2015. PeerStu-
dio: Rapid Peer Feedback Emphasizes Revision and Improves Performance. In
Proceedings of the Second (2015) ACM Conference on Learning @ Scale (Vancouver,
BC, Canada) (L@S ’15). Association for Computing Machinery, New York, NY,
USA, 75–84. https://doi.org/10.1145/2724660.2724670

[20] Colleen M. Lewis, Ruth E. Anderson, and Ken Yasuhara. 2016. "I Don’t Code All
Day": Fitting in Computer Science When the Stereotypes Don’t Fit. In Proceed-
ings of the 2016 ACM Conference on International Computing Education Research
(Melbourne, VIC, Australia) (ICER ’16). Association for Computing Machinery,
New York, NY, USA, 23–32. https://doi.org/10.1145/2960310.2960332

[21] Julia M. Markel and Philip J. Guo. 2021. Inside the Mind of a CS Undergraduate
TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New
York, NY, USA, 502–508. https://doi.org/10.1145/3408877.3432533

[22] D. Scott McCrickard, C. M. Chewar, and Jacob Somervell. 2004. Design, Science,
and Engineering Topics? Teaching HCI with a Unified Method. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer Science Education (Norfolk,
Virginia, USA) (SIGCSE ’04). Association for Computing Machinery, New York,
NY, USA, 31–35. https://doi.org/10.1145/971300.971314

[23] DibaMirza, Phillip T. Conrad, Christian Lloyd, ZiadMatni, and Arthur Gatin. 2019.
Undergraduate Teaching Assistants in Computer Science: A Systematic Literature
Review. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (Toronto ON, Canada) (ICER ’19). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3291279.3339422

[24] Alannah Oleson, Meron Solomon, and Amy J. Ko. 2020. Computing Students’
Learning Difficulties in HCI Education. Association for Computing Machinery,
New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376149

[25] Yolanda Jacobs Reimer and SarahA. Douglas. 2003. TeachingHCI DesignWith the
Studio Approach. Computer Science Education 13, 3 (2003), 191–205. https://doi.
org/10.1076/csed.13.3.191.14945 arXiv:https://doi.org/10.1076/csed.13.3.191.14945

[26] Helen Sharp, Yvonne Rogers, and Jenny Preece. 2007. Interaction Design: Beyond
Human Computer Interaction. John Wiley amp; Sons, Inc., Hoboken, NJ, USA.

[27] Stigo. 2017. The Last Mile – the term, the problem and the odd solu-
tions. https://medium.com/the-stigo-blog/the-last-mile-the-term-the-problem-
and-the-odd-solutions-28b6969d5af8. Accessed: 2021-08-10.

[28] Fabricio Teixeira and Caio Braga. [n.d.]. The Case Study Factory. https://essays.
uxdesign.cc/case-study-factory/. Accessed: 2021-08-10.

[29] Sander Valstar, Sophia Krause-Levy, Alexandra Macedo, William G. Griswold,
and Leo Porter. 2020. Faculty Views on the Goals of an Undergraduate CS
Education and the Academia-Industry Gap. In Proceedings of the 51st ACM Techni-
cal Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE
’20). Association for Computing Machinery, New York, NY, USA, 577–583.
https://doi.org/10.1145/3328778.3366834

[30] Sander Valstar, Caroline Sih, Sophia Krause-Levy, Leo Porter, and William G.
Griswold. 2020. A Quantitative Study of Faculty Views on the Goals of an
Undergraduate CS Program and Preparing Students for Industry. In Proceedings of
the 2020 ACM Conference on International Computing Education Research (Virtual
Event, New Zealand) (ICER ’20). Association for Computing Machinery, New
York, NY, USA, 113–123. https://doi.org/10.1145/3372782.3406277

[31] Mihaela Vorvoreanu, Colin M. Gray, Paul Parsons, and Nancy Rasche. 2017.
Advancing UX Education: A Model for Integrated Studio Pedagogy. Association for
Computing Machinery, New York, NY, USA, 1441–1446. https://doi.org/10.1145/
3025453.3025726

[32] Allan Wigfield and Jacquelynne S Eccles. 2000. Expectancy–value theory of
achievement motivation. Contemporary educational psychology 25, 1 (2000),
68–81.

[33] Lauren Wilcox, Betsy DiSalvo, Dick Henneman, and Qiaosi Wang. 2019. Design
in the HCI Classroom: Setting a Research Agenda. In Proceedings of the 2019
on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19).
Association for Computing Machinery, New York, NY, USA, 871–883. https:
//doi.org/10.1145/3322276.3322381

https://www.newschool.edu/parsons/
https://www.risd.edu/
https://doi.org/10.1145/1822090.1822094
https://doi.org/10.1145/1822090.1822094
https://doi.org/10.1145/611892.611901
https://doi.org/10.1017/S1049096519001744
https://doi.org/10.1145/2427076.2427086
https://doi.org/10.1145/563340.563419
https://doi.org/10.1080/02602938.2020.1724875
https://arxiv.org/abs/https://doi.org/10.1080/02602938.2020.1724875
https://doi.org/10.1109/TPC.2016.2561139
https://doi.org/10.1145/2556288.2557264
https://doi.org/10.1145/2858036.2858195
https://doi.org/10.1145/3428029.3428054
https://doi.org/10.1145/3428029.3428054
https://doi.org/10.1145/1352135.1352271
https://doi.org/10.1145/2724660.2724670
https://doi.org/10.1145/2960310.2960332
https://doi.org/10.1145/3408877.3432533
https://doi.org/10.1145/971300.971314
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/3313831.3376149
https://doi.org/10.1076/csed.13.3.191.14945
https://doi.org/10.1076/csed.13.3.191.14945
https://arxiv.org/abs/https://doi.org/10.1076/csed.13.3.191.14945
https://medium.com/the-stigo-blog/the-last-mile-the-term-the-problem-and-the-odd-solutions-28b6969d5af8
https://medium.com/the-stigo-blog/the-last-mile-the-term-the-problem-and-the-odd-solutions-28b6969d5af8
https://essays.uxdesign.cc/case-study-factory/
https://essays.uxdesign.cc/case-study-factory/
https://doi.org/10.1145/3328778.3366834
https://doi.org/10.1145/3372782.3406277
https://doi.org/10.1145/3025453.3025726
https://doi.org/10.1145/3025453.3025726
https://doi.org/10.1145/3322276.3322381
https://doi.org/10.1145/3322276.3322381

	Abstract
	1 Introduction
	2 Related Work
	3 Course Overview
	4 Five Pedagogical Principles
	4.1 Industry-relevant project prompts
	4.2 Final deliverable optimized for job-seeking
	4.3 No coding required
	4.4 Effort-based grading
	4.5 Weekly feedback and chances for revisions

	5 Informal Assessment from Students
	6 Calls to Action for CS Instructors
	7 Conclusion
	Acknowledgments
	References

