
Taking ASCII Drawings Seriously:
How Programmers Diagram Code

Devamardeep Hayatpur
University of California, San Diego

La Jolla, California, USA
dshayatpur@ucsd.edu

Brian Hempel
University of California, San Diego

La Jolla, California, USA
bhempel@ucsd.edu

Kathy Chen
University of California, San Diego

La Jolla, California, USA
ktchen@ucsd.edu

William Duan
University of California, San Diego

La Jolla, California, USA
widuan@ucsd.edu

Philip J. Guo
University of California, San Diego

La Jolla, California, USA
pg@ucsd.edu

Haijun Xia
University of California, San Diego

La Jolla, California, USA
haijunxia@ucsd.edu

+------------+

| board info |

+------------+	 +--------------------------------+

| compt 1 |------>| type, rev, diaginfo, size ... |

+------------+	 +--------------------------------+

| compt 2 |--+

+------------+	 | +--------------------------------+

| ...	 |	 +--->| type, rev, diaginfo, size ... |

+------------+	 +--------------------------------+

| errinfo |

+------------+	

linux/.../klconfig.h

Wrap around with an IRQ

-------<--------<---------<-------<------

|					 |

------->-------->--------->------->------

+---------------+-----------------------+

|	 	|			 |

+---------------+-----------------------+

Base Pointer	 Write Pointer		 Limit

linux/.../coresight-trbe.c

From: To:

 Head Head

 / | CmpBB

 / | / |

 | CmpBB / |

 | / | Tail |

 | / | | |

 Tail | | |

 | | | |

llvm/.../AArch64ConditionalCompares.cpp

Figure 1: Examples of ASCII diagrams from the Linux Kernel and LLVM codebases [1, 3, 6].

ABSTRACT
Documentation in codebases facilitates knowledge transfer. But
tools for programming are largely text-based, and so developers
resort to creating ASCII diagrams—graphical artifacts approximated
with text—to show visual ideas within their code. Despite real-world
use, little is known about these diagrams. We interviewed nine
authors of ASCII diagrams, learning why they use ASCII and what
roles the diagrams play.We also compile and analyze a corpus of 507
ASCII diagrams from four open source projects, deriving a design
space with seven dimensions that classify what these diagrams
show, how they show it, and ways they connect to code. These
investigations reveal that ASCII diagrams are professional artifacts
used across many steps in the development lifecycle, diverse in
role and content, and used because they visualize ideas within the
variety of programming tools in use. Our findings highlight the
importance of visualization within code and lay a foundation for
future programming tools that tightly couple text and graphics.

CCS CONCEPTS
• Human-centered computing → Empirical studies in visual-
ization; Graphical user interfaces.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642683

KEYWORDS
programming, graphical representations

ACM Reference Format:
Devamardeep Hayatpur, Brian Hempel, Kathy Chen, William Duan, Philip J.
Guo, and Haijun Xia. 2024. Taking ASCII Drawings Seriously: How Program-
mers Diagram Code. In Proceedings of the CHI Conference on Human Factors
in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3613904.3642683

1 INTRODUCTION
Computer code is a form of human communication, and most code
today is written as text. However, text is a limited media, especially
when trying to describe inherently visual ideas. Programmers thus
resort to visuals to articulate design decisions to their colleagues,
e.g. by drawing a diagram on a whiteboard to illustrate relationships
and procedures [45]. But these visual artifacts are ephemeral—they
are rarely archived or documented digitally [21]. This fragmentation
implies that text-based computer code can effectively convey only
a portion of its author’s thought processes that went into writing
that code, thus placing burden on the reader to reconstruct its
underlying ideas.

We envision a future of programming where graphics sits along-
side text and tightly integrate with it—where developers can use
the most fitting representation for any given task. As a first step
towards this vision, we wish to understand how text and graphics
currently integrate within source code.

To date, the primary media of code is monospace text, tradition-
ally nicknamed “ASCII” after the influential and widespread “Amer-
ican Standard Code for Information Interchange” text encoding

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642683
https://doi.org/10.1145/3613904.3642683

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.

format [16, 47], of which more flexible modern encodings such as
UTF-8 are a superset [24]. Historically, typewriters and teletypes1
were monospace for mechanical simplicity: each character used
the exact same amount of space on the page [30]. The monospace
tradition continues in modern text editors for programming.

Given that programming continues to be a text-based activ-
ity [14], one may expect there to be few, if any, graphical artifacts
within real-world codebases. But instead, the simple grid-like ar-
rangement of monospace text allows for robust alignment between
lines of text. Thus we find frequent anecdotes of developers who
appropriate text through creative uses of monospace text characters
to approximate line drawings, which are commonly referred to as
ASCII diagrams [54], such as the examples shown in Figure 1.

However, beyond anecdotes, little is known about these diagrams
in code. We can only speculate about why and how they are created,
what roles they serve, and what information they display. In this
work, we seek to reveal the world of ASCII diagrams. We base our
inquiry around three research questions:
RQ1 Characteristics. What are the key characteristics of the

media of ASCII diagrams?
RQ2 Roles. How are ASCII diagrams used in the software devel-

opment workflow?
RQ3 Content.What do ASCII diagrams show and how do they

show it?
We approach these RQs through qualitative interviews with nine
programmers who authored these diagrams, followed by a content
analysis of ASCII diagrams gathered from four large open source
repositories: Linux, Chromium, LLVM, and Tensorflow. Through
the content analysis, we create a design space that summarizes
what the diagrams show and how they show it. To our knowledge,
this is the first systematic empirical analysis of ASCII diagrams in
code. Specifically, we contribute:

(1) A characterization of the media of ASCII diagrams: what are
the features of monospace text and why it is used despite its
limitations.

(2) An account of the roles that ASCII diagrams play in the
software development lifecycle.

(3) A design space that reveals the diversity of ASCII diagrams
found across four large open source projects.

Our work provides a deeper understanding of visual representa-
tions in programming and their role in facilitating communication
and knowledge transfer. We hope this study lays a foundation not
only for designing future tools for code documentation, but also for
tools that use visualizations as interfaces for program construction.

2 RELATEDWORK
While text remains the dominant medium for programming, sig-
nificant research has investigated the use of visuals for assisting,
explaining, teaching, and even doing programming. These investi-
gations are rooted in the thesis that text and visuals, as two different
media, have complimentary representational capabilities which can
be integrated simultaneously to amplify problem-solving, learn-
ing, and communication [22, 46, 60]. Below, we review prior work

1Of teletype machines, Kjell [38] remarks: “The better ones smelled of fresh machine oil
and chattered pleasantly as they worked.”

that uses visual artifacts to assist in problem-solving for software
development, as communication and educational tools to teach pro-
gramming, and as part or as the whole of a programming language.

2.1 Visuals as Reasoning Tools for
Programming and Software Development

Developers use diagrams to make sense of and communicate in
software-related tasks [18, 21, 26, 45, 67]. In an interview-based
study, Cherubini et al. [21] found that diagrams serve various pur-
poses, including to understand, design and refractor. Yatani et al.
[67] reaffirmed many of Cherubini et al. [21]’s findings for open
source developers, however, participants did not use diagrams to
understand existing code, and rarely used diagrams for design re-
view, whichmay be because “design review usually involves updating
diagrams, which most of our participants tried to avoid” [67]. We also
know that most diagrams are ad-hoc, improvised, and ephemeral:
they rarely find their way into documentation [18, 21]. While inter-
views with software developers have shown the multifaceted roles
diagrams play in software development workflow, a systematic un-
derstanding of their representation is impractical from interviews
alone, given that many sketches are unintelligible to an outsider and
they rely on the author’s memory, speech, and contextual cues [27].
Meanwhile ASCII diagrams, being permanent artifacts in large col-
laborative codebases, should have enough contextual information
in the surrounding code file for a viewer to understand them.

Prior work has also studied design activities as they unfold.
Mangano et al. [45] found a diversity of visual artifacts created
during collaboration on software tasks. These included lists, tables,
GUIs, entity-relationship (ER) diagrams, class diagrams, code, draw-
ings, and domain-specific sketches [45]. Dekel and Herbsleb [27]
studied 3-6 hours of design activity, and discovered how developers
deviate from UML notation, e.g. class diagrams were frequently aug-
mented with control- and data-flow [27]. These observational stud-
ies are necessarily small scale and self-contained sessions: Dekel
and Herbsleb [27] studied seven pairs, and Mangano et al. [45] stud-
ied eight groups. As Dekel and Herbsleb [27] note their goal was
not to “catalogue them [diagrams] or to elicit quantitative informa-
tion, which would have little use in these restricted and unique small
settings”. ASCII diagrams provide an opportunity for large-scale
investigations sourced from a diverse population of authors, e.g.
the diagrams we sourced were from 965 distinct authors.

2.2 Visuals as Communication and Education
Tools for Programming

Software visualization systems [17, 28, 50] seek to aid program
understanding by representing either static information about code
or dynamic information about runtime in a graphical form. These
tools are prevalent in pedagogical contexts, where they may help
students develop useful mental models of how programs work
[33, 34, 43]. For example, Python Tutor visualizes the step-by-step
execution of programs by showing the manipulation of variables
in memory to help students learn the execution mechanisms of
programming languages [33]. Although some ASCII diagrams may
be curated snapshots of software visualizations, e.g. examples of
runtime values, we find that not all are. Unlike software visualiza-
tion tools, which only surface specific types of program information

Taking ASCII Drawings Seriously: How Programmers Diagram Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

in specific representations determined by the developers of visual-
ization systems, programmers use ASCII diagrams to communicate
any information that they consider important and relevant to the
readers. As we will show, the concepts depicted in ASCII diagrams
vary widely, examples include: description of the targeted problems,
specific data structures, the execution logic, and specific test cases.
Moreover, ASCII diagrams can document outside information, e.g.
external specifications, whereas software visualizations can only
re-represent information already present in the codebase.

2.3 Visual as Programming Language
Visuals have also been integrated into programming environments.
Some environments have replaced portions of code with richer
graphics, e.g. prettified math notation [40], or even domain-specific
GUIs such as color pickers [48] or circuit editors [12, 15]. Other
systems visualize runtime objects that may be directly manipulated
to edit the program, as in Pygmalion [56] and the many works
on “programming by demonstration” that followed [25, 44]. The
representations in ASCII diagrams may serve as models for what
programmers believe are salient representations so that future “pro-
gramming by demonstration” systems might adapt these represen-
tations into novel interfaces for editing code.

In the “literate programming” paradigm [39], a program is con-
sidered to be primarily an explanatory essay for the human rather
than merely code for a computer. In line with this ideal, some en-
vironments allow rich formatting of comments. Computational
notebooks systems [41] often allow flexible formatting for exposi-
tion. For example Markdown [32] cells in Jupyter [51] notebooks
allow programmers to freely incorporate images within rich text,
although in practice the visualizations in notebooks are more of-
ten the output of code rather than diagrams for explaining it. The
ASCII diagrams we examined seem more often to be the opposite:
an explanation for code rather than merely its output. As another
example, although more like a traditional editor than a notebook,
the Dr. Racket IDE [29] allows users to paste images anywhere in
the text, including in comments. This is an intriguing ability, as
it allows for richer and more detailed diagrams than ASCII can
provide. Nevertheless, as we discuss later, embedded images in
source code may need to be supported by all the tooling in a team’s
programming workflow before it can be viable.

2.4 Software Documentation at Large
and ASCII Drawings

Software documentation includes a diverse range of materials,
from technical standards and design documents to user manu-
als, all aimed at supporting effective software development and
use [57]. Our focus here is on source code documentation. High-
quality comments in source code improve program comprehension,
maintenance, and debugging activities [59]. Successful open-source
projects are consistently well documented, regardless of team size
or project scope [13]. However, comments are typically written
in freeform natural language, with no tool support. The onus of
authoring and maintaining high quality comments is left to the
programmers, who often forget to, or ignore them [53, 59, 66]. To
address this, various computational approaches have been pro-
posed, including techniques for detecting inconsistencies between

code and comment (e.g., JavaDocs [62]) and techniques for generat-
ing comments directly from source code [36, 52, 58]. These range
from manually-defined templates [58] to neural machine transla-
tions [36]. ASCII diagrams differ from natural language because
of their visual nature. By understanding the content and practices
surrounding ASCII diagrams, we can inform the development of
similar computational approaches for diagramming of code.

The study of ASCII drawings themselves is niche. The closest
work we find is Yatani et al. [67]’s study, as mentioned earlier,
in which they briefly noted that open-source developers turn to
ASCII art because it “can be edited by anyone and handled by current
version control systems.” Similarly, Isaacs and Gamblin [37] exploit
ASCII’s in situ nature to “meet command line users where they are” by
rendering compact, interactive, package dependency visualizations
in ASCII. Our work aims to significantly expand on these passing
observations via a systematic investigation into ASCII drawing’s
media, roles, and content. Other works include Twidale and Nichols
[64] analysis of bug reports of user interface (UI) development from
several open-source projects, in which they found that ASCII art
was included to show elements of the UI alongside text. Building
on the idea of utilizing ASCII drawings for UI sketches, Simpson
and Terry [55] embed tools in Visual Studio for creating and editing
ASCII drawings of UI sketches.

3 INTERVIEW STUDY OF OPEN-SOURCE
DEVELOPERS WHO CREATED ASCII
DIAGRAMS

We first seek to find the key media characteristics (RQ1) and roles
(RQ2) of ASCII diagrams in software development. To do so, we
collect a corpus of ASCII diagrams in open-source codebases and
interviewed nine of their creators.

3.1 Methods
3.1.1 Data Collection. To collect ASCII diagrams, we performed
an initial search within each codebase2 for single-line and multi-
line comments containing at least 20% whitespace characters. This
heuristic was based on an observation that ASCII drawings often
utilize whitespace for spatial alignment. Our search yielded a total
of 141,099 comments. We concatenated these comments into four
long files, one for each codebase. The first author, leveraging their
initial enthusiasm for this project, scrolled through the entirety of
the four files and manually extracted the comments that resembled
ASCII drawings, resulting in a selection of 2,162 ASCII diagrams.

What defines an ASCII diagram? A precise definition of an ASCII
diagram is difficult. In general, we looked for deliberate use of
2D space. We extracted a diagram when normal text characters
were aligned to represent a structure (e.g. Figure 1). However, we
excluded artifacts that were auto-generated (e.g. of function argu-
ments), and code snippets that solely differed in indentation or
alignment. Our final sample consisted of 2,156 unique ASCII dia-
grams. Our process is not exhaustive of all ASCII diagrams due to
the initial 20% whitespace filter and human error, but it provides a
sizable sample for study. The sample can tell us about the kinds of

2The four code-bases (Linux, Chromium, LLVM, Tensorflow) were chosen for being
large, open-source, projects, and having a sizable number of diagrams to study. See
Appendix B for code-bases that were searched but not included.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.

Table 1: Interview participants. Participants were from seven different countries and from three different codebases. Professional
programming experience is stated in years. The average years of experience programming in a professional setting was 10.4
years, and the average number of years contributing to open source codebases was 6.7 years.

ID Repository Profession Country Gender Professional
Programming
Experience

P1 linux Principal Software Architect Israel Male 20
P2 llvm Principal Software Engineer US Male 15
P3 llvm Software Engineer US Male 3
P4 linux Software Engineer Poland Female 4
P5 llvm Research Assistant Switzerland Male 1
P6 tensorflow Senior Software Engineer UK Female 8
P7 linux Principal Software Engineer Canada Male 11
P8 linux Consulting Member of the Technical Staff Canada Male 21
P9 linux Principal Software Engineer Germany Male 15

things that exist in the wild, but we cannot say the frequency that
different kinds of diagrams might have.

3.1.2 Participants. We contacted 58 of the authors of the ASCII
diagrams, and 9 agreed to be interviewed (see Table 1).We contacted
authors who committed their diagrams to the codebase after 2022 to
promote recall since our goal was to gain specific insights into their
workflow and the creation process. We also filtered out mundane
diagrams like simple tables or lists. The time and author of each
diagram was sourced from the associated Git commit log message.

3.1.3 Study Procedure. The first author conducted all interviews.
Each interview lasted approximately 30 minutes using videocon-
ferencing applications (Zoom and Google Meet). Interviews were
semi-structured. Participation was voluntary, and compensation
was not promised or provided. Our semi-structured protocol was
as follows (see Appendix A for the exact questions asked):

• (5 min) Introduction. The interviewer introduced themselves
and obtained informed consent to record and transcribe the
interview.

• (10-15 min) Recall. Participants were asked to read through
their ASCII diagram and its surrounding code to re-contextualize
themselves to their motivation and process at the time of
making the diagram. We asked participants to provide a brief
explanation of the diagram, their workflow in creating it,
and the diagram’s intended audience.

• (5-10 min) Beyond. Participants were asked about diagrams
other than the one we interviewed them on that they also
authored, if the diagram they made were typical or unusual,
and on their experience in consuming these diagrams in
codebases rather than authoring them.

3.1.4 Analysis. The first author transcribed and coded the inter-
view results. They then synthesized the results into themes. The
second and last author reviewed and provided feedback on the
codes, the transcript associated with it, and iterated on the themes
to synthesize the presentation below.

3.1.5 Reporting. Identifiable information in excerpts from partici-
pant transcripts has been removed. We have received permission

from the participants whose diagrams we show (as the diagrams are
potentially de-anonymizing). The following sections are the themes
derived from our analysis. In the interest of clarity and concision,
the quotes in the paper are lightly edited to remove filler words.

3.2 Results Overview
Our interviews revealed the key media characteristics (RQ1) and
roles (RQ2) of ASCII diagrams in software development workflows.
We synthesized the themes that emerged as follows:

(1) Key Characteristics: The Duality of Text and Visual (RQ1). Per-
haps unsurprisingly, but importantly, the key characteristics
of ASCII diagrams are their dual nature as text and as visuals.
As text, the diagrams live in situ within the code and tools
already in use. As visuals, they illustrate particular concepts
more clearly than code or natural language.

(a) Text: Living Naturally in the Media of Code.ASCII diagrams
appropriate existing textual media by living in situ in the
source code within all the tooling already in use when
developing software. Thus, there is low friction to creating
ASCII diagrams, but, because they are an appropriation
of text, participants reported they are tedious to edit (e.g.
aligning edges).

(b) Visual: Adept for Explanations and Overviews. Participants
explained that visual diagrams were often a better represen-
tation of their mental model of the problem compared to
code. Although a diagram is necessarily less detailed than
code, this allows a diagram to serve as a sort of thumbnail
for the code to let the reader quickly get their bearings.

(2) Roles in the Software Development Lifecycle (RQ2). Partici-
pants reported using the diagrams for four roles within the
software development lifecycle:

(a) to reify offline work, such as previously undocumented
behavior or offline sketches,

(b) for code review and to help their colleagues verify their
work,

(c) to document for others, and
(d) to help their future self recall context.

We expand on each of these themes below.

Taking ASCII Drawings Seriously: How Programmers Diagram Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

3.3 ASCII Diagrams: The Duality of Text and
Visual (RQ1).

Our interviews revealed the singlemost important, and perhaps also
the most obvious nature of ASCII diagrams: they are simultaneously
text and visual. ASCII diagrams are text and, therefore, can live
freely in the entire infrastructure developed to support text-based
programming; they are also visuals and, therefore, can be leveraged
to assist in explaining and communicating complex visual concepts
hidden in the textual code. We elaborate on the diagrams’ dual
textual and visual natures in turn.

3.3.1 ASCII Diagrams are Text: They Live Naturally in the Media of
Code. Text is the “lowest common denominator” (P1) in program-
ming tools, and as text, ASCII diagrams live in situ within the pro-
gramming tools already in use. Diagram authoring is thus easy—it
uses the tools at hand—but can still be tedious. Programming tools,
optimized for code, occasionally mangle the display of ASCII di-
agrams. Nevertheless, the benefits of the media at hand caused
participants to create the diagrams in ASCII instead of e.g. leaving
a link in the comments to a richer document.

P1, P2, P5, and P9 all noted the universality of ASCII diagrams
textual nature. ASCII diagrams can be rendered in any context fea-
turing a monospace font, including text editors, version control
commit messages, bug tracking tools, and terminal interfaces, re-
gardless of the programming language being used, “the raw file is
the view” (P2). No special tools are needed to make them—these
diagrams appropriate the tools already in use: “all you need is a text
editor with a monospace font and the spacebar” (P9). This integration
makes them a natural form of visual expression in codebases:

“I didn’t even consider [making a rich external graph-
ical image and linking to it] because I felt like ASCII
diagrams are just very, very natural...it starts within
the comments and with all the tools that you already
have with monospace, slashes and stuff.” (P5)

ASCII diagrams exist in places where images cannot, in situ with
the developer’s workflow:

“Most of my world is in a text editor through the ter-
minal, so, to have a picture wouldn’t be useful to me
because I would then have to have a browser open to
point at that or some, you know, heavier program.” (P8)

The appropriation of text means that ASCII diagrams are simul-
taneously easy and hard to author. They are easy to author in that
the same set of text-editing tools that developers use in their ev-
eryday work can be used to make these diagrams (P5, P7, P8), one
can “just copy paste it basically...copy paste it down, edit the next
line...there’s so many things that are hard to do. I feel like ASCII art
isn’t necessarily one of them.” (P8).

But diagrams are also hard to author in that editing them can be
tedious (P2, P3, P6, P8). Maintaining spatial alignment is a manual
process: “Especially with aligning all the borders, I think that’s very
time-consuming to make sure everything is aligned” (P6). For this
reason, P6, for example, preferred to draw their diagrams without
borders (i.e. just arrows pointing at text). The brittle monospace
structure also makes diagrams a poor fit for parts of the codebase
that change often: “I think is really useful for places where you’re
documenting something that’s going to be fairly static. ASCII art is

/*

 * Control channel position:

 * For legacy set bit means upper channel, otherwise lower.

 * For VHT - bit-2 marks if the control is lower/upper relative to center-freq

 * bits-1:0 mark the distance from the center freq. for 20Mhz, offset is 0.

 * center_freq

 * For EHT - bit-3 is used for extended distance

 * |

 * 40Mhz |____|____|

 * 80Mhz |____|____|____|____|

 * 160Mhz |____|____|____|____|____|____|____|____|

 * 320MHz |____|____|____|____|____|____|____|____|____|____|____|____|____|____|____|____|

 * code 1011 1010 1001 1000 0011 0010 0001 0000 0100 0101 0110 0111 1100 1101 1110 1111

 */

Figure 2: P9’s diagram of Wi-Fi channel band mappings to
control channels. It captures the mental reasoning about
WiFi channels: “The channels that we’re using are [...] blocked
into like 20 megahertz chunks...mentally you always have this
thing [notion], that these are not really like one large channel.
They’re like chunked into bit into pieces of 20 megahertz.” [7]

really terrible at documenting something that’s living because ASCII
art diagrams are not friendly to update” (P2).

Although 7 of the 9 participants used only their normal text
editor to make their diagram, P2 and P7 leveraged special tools to
mitigate the tedium of editing. P2 gladly paid $10 for Monodraw, a
diagram editor specifically for ASCII. It allowed them to edit the
diagram after-the-fact, provided they had saved the Monodraw file,
which proved helpful in a codebase where many contributors were
authoring these diagrams: “the best $10 I could ever spend was having
Monodraw...if I want to like enlarge a box, I can enlarge a box, I can
move things around...I usually keep the Monodraw files sitting around
so that if someone’s gonna come along and ‘Oh I’m gonna have to
update this diagram.”’ Meanwhile, P7 used Org Mode for Emacs
which allows structured editing of ASCII tables.

Ordinary textual tools in software development are optimized
for code and may mess up the display of diagrams. Autoformatters
may re-indent text (P5) and some tools show commit messages in
non-monospace font: “I’ve never put [an ASCII diagram] in commit
messages myself...it’s probably a product of the tools that I use, I don’t
think commit messages are an ideal place to put them because a lot
of commit messages end up getting rendered in non-monospace fonts”
(P2). Change diffs of wide ASCII diagrams can be difficult to make
sense of, “if the ASCII diagrams are too broad...they’re gonna wrap
the lines and then it’s gonna look awful” (P5).

As an alternative to ASCII, both P1 and P2 mentioned Mer-
maid [61], a simple textual language for describing and rendering
diagrams. The popular code collaboration site GitHub renders Mer-
maid automatically, so P1 now uses it instead of ASCII art when
writing README files. P2’s team also uses Mermaid regularly on
GitHub, particularly for charts that are updated often, as updating
ASCII is tedious. Nevertheless, P2 remarked that code diffs of Mer-
maid were hard to understand and P1 still used ASCII in tools that
didn’t support Mermaid (e.g. terminals and text editors).

To elucidate benefits and drawbacks of the textual medium, we
asked the diagram authors why they didn’t instead make their dia-
gram in a richer medium (e.g. a Google doc) and leave a URL in the
code pointing to the richer visualization. Participants were gener-
ally negative about this idea for their diagram in question: external

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause

/*

 * Topology:

 * ---------

 * NS0 namespace | NS1 namespace | NS2 namespace

 * | |

 * +---------------+ | +---------------+ |

 * | ipsec0 |---------| ipsec0 | |

 * | 192.168.1.100 | | | 192.168.1.200 | |

 * | if_id: bpf | | +---------------+ |

 * +---------------+ | |

 * | | | +---------------+

 * | | | | ipsec0 |

 * \--| 192.168.1.200 |

 * | | +---------------+

 * | |

 * | | (overlay network)

 * --

 * | | (underlay network)

 * +--------------+ | +--------------+ |

 * | veth01 |----------| veth10 | |

 * | 172.16.1.100 | | | 172.16.1.200 | |

 * ---------------+ | +--------------+ |

 * | |

 * +--------------+ | | +--------------+

 * | veth02 |-----------------------------------| veth20 |

 * | 172.16.2.100 | | | | 172.16.2.200 |

 * +--------------+ | | +--------------+

 *

 *

 * Test Packet flow

 * -----------

 * The tests perform 'ping 192.168.1.200' from the NS0 namespace:

 * 1) request is routed to NS0 ipsec0

 * 2) NS0 ipsec0 tc egress BPF program is triggered and sets the if_id based

 * on the requested value. This makes the ipsec0 device in external mode

 * select the destination tunnel

 * 3) ping reaches the other namespace (NS1 or NS2 based on which if_id was

 * used) and response is sent

 * 4) response is received on NS0 ipsec0, tc ingress program is triggered and

 * records the response if_id

 * 5) requested if_id is compared with received if_id

 */

Figure 3: Some ideas are better illustrated by a visualization
than by raw code. P1’s diagram of a network scenario would
be much harder to comprehend if written only in code [8].

/*

 * A test that tries to allocate memory next to a reserved region that starts at

 * the misaligned address. Expect to create two separate entries, with the new

 * entry aligned to the provided alignment:

 *

 * +

 * | +--------+ +--------|

 * | | rgn2 | | rgn1 |

 * +------------+--------+---------+--------+

 * ^

 * |

 * Aligned address boundary

 *

 * The allocation direction is top-down and region arrays are sorted from lower

 * to higher addresses, so the new region will be the first entry in

 * memory.reserved array. The previously reserved region does not get modified.

 * Region counter and total size get updated.

 */

/*

 * A test that tries to allocate memory when there is enough space at the end

 * of the previously reserved block (i.e. first fit):

 *

 * | +--------+--------------|

 * | | r1 | r2 |

 * +--------------+--------+--------------+

 *

 * Expect a merge of both regions. Only the region size gets updated.

 */

/*

 * A test that tries to allocate memory when there is not enough space at the

 * end of the previously reserved block (i.e. second fit):

 *

 * | +-----------+------+ |

 * | | r2 | r1 | |

 * +------------+-----------+------+-----+

 *

 * Expect a merge of both regions. Both the base address and size of the region

 * get updated.

 */

static int alloc_top_down_after_check(void)

{

	struct memblock_region *rgn = &memblock.reserved.regions[0];

	struct region r1;

	void *allocated_ptr = NULL;

	phys_addr_t r2_size = SZ_512;

	phys_addr_t total_size;

	PREFIX_PUSH();

	setup_memblock();

	/*

	 * The first region starts at the aligned address to test region merging

	 */

	r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES;

	r1.size = SZ_8;

	total_size = r1.size + r2_size;

	memblock_reserve(r1.base, r1.size);

	allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES);

	ASSERT_NE(allocated_ptr, NULL);

	assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);

	ASSERT_EQ(rgn->size, total_size);

	ASSERT_EQ(rgn->base, r1.base - r2_size);

	ASSERT_EQ(memblock.reserved.cnt, 1);

	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;

}

/*

 * A test that tries to allocate memory when there are two reserved regions with

 * a gap too small to fit the new region:

 *

 * | +--------+----------+ +------|

 * | | r3 | r2 | | r1 |

 * +-------+--------+----------+---+------+

 *

 * Expect to allocate a region before the one that starts at the lower address,

 * and merge them into one. The region counter and total size fields get

 * updated.

 */

static int alloc_top_down_second_fit_check(void)

{

	struct memblock_region *rgn = &memblock.reserved.regions[0];

	struct region r1, r2;

	void *allocated_ptr = NULL;

	phys_addr_t r3_size = SZ_1K;

	phys_addr_t total_size;

	PREFIX_PUSH();

	setup_memblock();

	r1.base = memblock_end_of_DRAM() - SZ_512;

	r1.size = SZ_512;

	r2.base = r1.base - SZ_512;

	r2.size = SZ_256;

	total_size = r1.size + r2.size + r3_size;

	memblock_reserve(r1.base, r1.size);

	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES);

	ASSERT_NE(allocated_ptr, NULL);

	assert_mem_content(allocated_ptr, r3_size, alloc_test_flags);

	ASSERT_EQ(rgn->size, r2.size + r3_size);

	ASSERT_EQ(rgn->base, r2.base - r3_size);

	ASSERT_EQ(memblock.reserved.cnt, 2);

	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;

}

static int alloc_top_down_disjoint_check(void){ ... }

static int alloc_top_down_before_check(void){ ...}

Figure 4: Diagrams are lower detail than code, allowing them
to serve as thumbnails to orient the reader. P4 diagrammed
test cases so that readers could just glance at the diagrams to
understand the memory layout tested in each scenario [9].

diagrams would be not worth the complication (P4, P5) particularly
for simpler concepts (P6, P7), harder to share, e.g. the need to setup
permissions (P3, P4, P6, P9), at risk of going out of sync with the
code (P2, P8, P9), harder to author (P8, P9), and incompatible with
the tools they already use (P1, P8). These responses suggest they
used ASCII for the opposite reasons: in situ text was simpler, easier
to share, and less likely to rot compared to external documentation.

Takeaway: ASCII diagrams are text: they are naturally
viewed, created, and manipulated in situ within one’s ex-
isting programming workflow and collaboration tools.

3.3.2 ASCII Diagrams are Visual: Adept for Explanations andOverviews.
Due to their textual nature, the dual characteristic of ASCII dia-
grams is that they are visual. Compared to natural language or code
alone, the visual nature of diagrams makes them a better vehicle to
convey certain programming ideas, and to summarize code.

P1, P2, P4–9 reported that diagrams were more direct represen-
tations for their problem domain than natural language or code: “It
helps visualize what this test is for, because when I try to explain it in
words, it was really complicated and I thought that this is an easier
way for me to convey what I wanted to do with these tests” (P4). Dia-
grams better portray the author’s mental model so that readers can
see the same view as the author of the code—the diagram should
“record the mental model I used when I created this” (P1).

For example, Figure 2 shows a diagram of Wi-Fi bands that P9
helped author. It shows a “critical part of how an expert would have a
mental picture...physically it’s a little more complex, but that’s sort of

the mental image you would have” (P9). P8 and P4 also specifically
mentioned how visualizations clarify their problem domain:

“Especially in my area, memory management, we want
to explain race conditions...columns and spacing is used
to show the ordering in which something could go awry,
and having that spacing and the columns really helps
in the race condition explanation. Often people write
it and it is very difficult to follow if done correctly and
impossible to understand otherwise.” (P8)

“I’m really referring to these blocks because I’m seeing
them as blocks and how they lay in memory.” (P4)

Code itself is not a suitable representation for some concepts, for ex-
ample P6, looking at a program graph as a diagram makes it “pretty
clear to me how the graph looks like. I mean if I look at the code I can
figure it out, but it would be much more time consuming.” Similarly,
P1 said “if you look at the code [under the diagram], it looks pretty
horrible...it is not very palatable” , thus they drew out the network
topology diagram shown in Figure 3. Different kinds of code may
be more suitable for diagrams: “there’s certain areas of the codebase
that definitely benefit from having small diagrams embedded in the
code. Especially like when we look at things like...optimizations that
manipulate the control flow graph or manipulate the SSA instruction
graphs and these are all just graphs” (P2).

Despite its flexibility, ASCII is not a full-featured graphicalmedium.
For example, P5 wished to show overlapping shapes, where “some
color would actually help in understanding what’s happening to be
able to distinguish the two polytopes” (P5), but ASCII lacks color.

Taking ASCII Drawings Seriously: How Programmers Diagram Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Recall
Reifying External

Information
Documentation

Illustrating
Test Cases

Code Review and
Verification

“I had to
... because I knew that this

format was poorly documented, I
included it in the open source
code” -P2

reverse engineer the file
format

“…it helps
, because when I try to

explain it in words, it was really
complicated…” - P4

visualize what this
test is for

“

... they need to convey...
 that

people had when they wrote the
code.” -P1

These diagrams are very
common... mostly in the commit
messages
all the mental imaging

“I realized that maybe

 ...instead of having to read
through large amounts of code... I wanted
to have just a .” -P8

other people
wouldn't have the same view into how
this worked

small diagram

“It was mostly

, ...
.” -P3

for when I need
to deal with it again in the
future I don't really want to
rediscover all of it

Figure 5: Participants mentioned five roles in the software development lifecycle for which ASCII diagrams are useful: (1)
to reify offline information, (2) for illustrating test cases, (3) for code review, and to document both (4) for others and (5)
themselves. Shown are representative quotations from participants for each role.

Another theme that emerged was that diagrams do not convey
the same level of detail as code, but this also makes them ideal for
helping orient the reader with needed higher-level context. P1, P4–9
reported that diagrams are more inviting and accessible than code.
They help convey the gist and act as a sort of thumbnail for the
code. For example, P4, who documented a series of test cases shown
in Figure 4, wanted each test case in the file to be approachable:

“This [diagram] is also for understanding the big pic-
ture...this is the first impression that allows you to dig
deeper...I wanted people just to scroll and see ‘Okay. So
this is this scenario’, or maybe that one. So, instead of
reading through a paragraph of text, people can just
look and see ‘Okay, that’s that.’ ” (P4)

Similarly, P8 drew their diagram because they did not want fu-
ture readers to have to scrutinize all the code to understand its
functionality. The diagram was small in comparison to the code:

“So instead of [other people] having to read through
large amounts of code to to try and piece together what’s
going on, I wanted to have just a small diagram.” (P8)

Diagrams serve as “simplified versions” (P4) that help readers orient.

Takeaway: ASCII diagrams are visual: visualizations are
often a better projection of the developer’s mental model
than code or natural language. They are necessarily less
detailed than code and thus can serve as an approachable
entrance to it, as a sort of thumbnail for the code.

3.4 Roles of ASCII Diagrams in the Software
Development Lifecycle (RQ2)

Participants reported that ASCII diagrams served a variety of roles
within the software development lifecycle. Figure 5 provides a birds-
eye overview of how they used diagrams (1) to reify offline work,
(2) to illustrate test cases, (3) for code review and verification from
colleagues, and to document both (4) for others and (5) themselves.
We elaborate on each of these in turn.

3.4.1 Role 1: Reifying External Information Gained During Prob-
lem Understanding. Participants reported two kinds of scenarios
where information in their ASCII diagram originated from outside
the code: (a) sketches they created in notebooks or whiteboards to

understand problems were sometimes reified into ASCII, and (b) dia-
grams were also used to note undocumented external behaviors the
developers had carefully deduced (e.g. by reverse-engineering a file
format). Interestingly, the participants did not mention using ASCII
as a medium for initially working out ideas. We speculate that white-
boards or notebooks are better thanASCII for exploratory sketching,
perhaps because e.g. aligning ASCII text can be tedious. But because
of our small sample size we cannot definitively rule out the possi-
bility of ASCII being used for working out ideas in earlier design
phases. We discuss the two kinds of scenarios reported—reifying
offline sketches and undocumented information—below.

P3, P4, P5, and P8 each reported diagramming in an external
medium, such as a whiteboard or a notebook, and then translating
into an ASCII diagram. P3 experimentally worked out the bit-by-
bit behavior of a memory region, writing down their findings in
a notebook. Later, “almost certainly...after I wrote the code” they
translated their findings into the ASCII diagram shown in Figure 6.
P8 additionally noted that they collaborated with their colleague
on a whiteboard to develop a data structure that was later written
in code and diagrammed in ASCII. Here, the developers worked on
an offline drawing medium first before creating the ASCII diagram.

An unexpected use of ASCII diagrams reported by P2 and P3
was to document some undocumented external information. More
than once, P2 found they needed to reverse engineer the layouts of
undocumented file formats. Similarly, P3 discovered undocumented
differences in floating point exception handling behavior between
Windows and Linux, which they manually tested to characterize the
details. The results of P2’s and P3’s experiments were documented
in ASCII. Figure 7 shows one file format P2 reverse engineered, and
the previously mentioned Figure 6 is the ASCII documentation of
the bit-level configuration deduced by P3.

3.4.2 Role 2: Illustrating Test Cases. Both P1’s and P4’s diagrams
(Figure 3 and Figure 4) were attached to test cases. The diagram
served to describe the setup under test. P1 made the diagram be-
cause the setup “isn’t trivial to understand from the code.” And, P4
wanted readers to quickly see what was tested in each case: “I really
wanted people just to scroll and see ‘Ah, okay, so this is this scenario,
or maybe that one!’ ". Diagramming of tests is not uncommon: in our
content analysis described later, 11% of the diagrams we examined
had to do with a test case.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.

 The MXCSR format is the same information, just organized differently.

 the fenv_t struct for windows doesn't include the mxcsr bits, they mu

 generated from the control word bits.

 Exception Masks---+ +---Exception Flags

 | |

 Flush-to-zero---+ +----+ +----+

 | | | | |

 FRRMMMMMMDEEEEEE

 || |

 ++ +---Denormals-are-zero

 |

 +---Rounding Mode

Figure 6: P3’s diagram of a region of memory that stores infor-
mation about floating point exception handling in operating
systems. This information was originally worked out on paper
and reverse-engineered via trial-and-error: “When testing, I did
not find any like documentation on it. I just went through it...I
actually tried setting different bits, and running it and seeing
what changed” (P3) [10].

// The DXContainer file format is arranged as a

// parts are similar to sections in other objec

// structure is roughly:

// ┌────────────────────────────────┐

// │ Header │

// ├────────────────────────────────┤

// │ Part │

// ├────────────────────────────────┤

// │ Part │

// ├────────────────────────────────┤

// │ ... │

// └────────────────────────────────┘

Figure 7: P2’s diagram of a previously undocumented file for-
mat they reverse engineered: “I’ll have one window open of a
hex dump of the file and be looking at the hex codes of what’s
where and trying to draw out boxes...it really helps me to be able
to visually construct how these things go sequentially” (P2) [11].

3.4.3 Role 3: Code Review and Verification from Colleagues. P1, P2,
P4, P7, and P8 reported the importance of ASCII diagrams for code
reviews and eliciting feedback. For example, after understanding
the problem and formulating an implementation, P2 and P4 each
used their diagram to communicate their understanding of the
problem for code reviewers to be able to understand and verify:

“Someone had to review that code change and I spent
three weeks or something reverse engineering this com-
plicated binary encoding [...] Well now I need to explain
it well enough to someone else that they can look over
my code and verify that my code does the right thing
and that my understanding of the problem matches
reality.” (P2)

P1 noted that ASCII diagrams, at least in the networking sub-area of
the Linux kernel, are commonplace in commit messages to commu-
nicate to reviewers the reasoning behind changes.3 ASCII diagrams
can also be used to elicit feedback in asynchronous emails, like in
an RFC,4 rather than presenting something as just uninviting code:

“Like if this [code associated with P8’s diagram] went
out as an RFC, and I was really expecting people to be
like: ‘I don’t know...I’m not reading...like 10,000 lines of
code to see if your idea is worth doing.’ Whereas if you
say, ‘Hey, here’s 5 lines of a picture,’ they’re like, ‘Oh, a
picture, okay!’ ” (P8)

3.4.4 Role 4: Documentation for Others. P1, P2, P4, P7–P9 reported
authoring their diagram to document the technical ideas for col-
leagues and other readers of the code. For example, P2 worked on
a proprietary compiler project in which many collaborators were
using ASCII to document graph-like data structures:

3P1 demonstrated this commonality by scrolling through the most recent
commits in the networking sub-area of the Linux kernel and quickly found one:
https://github.com/torvalds/linux/commit/f9c4bb0b245cee35ef66f75bf409c9573d934cf9
4RFC stands for “Request for Comments,” a kind of technical document for proposing
standards and discussing development and operation.

“[we] did a whole lot of graph transformation algorithms
and we were very aggressive about documenting the
program state graphs in our code and at each trans-
formation step. That was something that was really
useful for our team to be able to to communicate and
understand.” (P2)

As another example, P4 chose to include variable names in their
diagram so “someone who’s looking at the diagram can later use it
while reading the code. So, I’m including R1 or R2 which are the names
of the variables.” P8, who created a novel data structure with their
colleague, added the ASCII diagram for other readers because “I
realized that maybe other people wouldn’t have the same view into
how this worked.”

Documentation is only useful if it is correct (“wrong documenta-
tion is worse than no documentation” - P8). We asked P2 and P6–P8
if the tedium of updating ASCII diagrams might make them more
likely to be neglected and become stale. P6 and P7 disagreed that
updating ASCII diagrams was difficult and they expected discrep-
ancies would be caught in code review. P2 agreed that updating
was difficult, but later explained that in situ diagrams were less at
risk of going stale compared to external docs, “if I change the code
and I change the behavior, the documentation is right there and so I
can update that documentation.” Similarly, P8 observed that when
you review a patch for parts of a codebase you are familiar with
then “you’re not looking at the documentation” so you may forget to
check if it is updated. Indeed, P8 recalled an instance as a reviewer
where they missed that a patch did not update the documentation.
The importance of developer attention to documentation was also
highlighted by P9, in response to a different question they noted
that “documentation and comments generally, unless someone’s ac-
tually paying attention, become stale.” Staleness is certainly a risk
for documentation external to the code. Both P2 and P8 noted that
the external documentation of their projects (LLVM and the linux
kernel, respectively) had some information that was old, “like a

https://github.com/torvalds/linux/commit/f9c4bb0b245cee35ef66f75bf409c9573d934cf9

Taking ASCII Drawings Seriously: How Programmers Diagram Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Concepts Visual Encodings Abstractions Annotations Subdiagrams Scope

Visual Forms

References

Correspondences

Figure 8: An iconographic overview of our design space’s seven dimensions.

decade out of date” (P2). P2 opined that this may in part be because
developers care more about code than prose:

“If you put documentation apart from the code, one of
the problems that you get is that they’re two living
independent things...the people that become software
engineers and become successful as software engineers
like to write code. They don’t want to write documen-
tation...if you have documentation over there and code
over here, they’re going to change the code. They’re not
going to remember that the docs exist.” (P2)

As mentioned previously, in situ documentation such as ASCII dia-
grams might be less prone to rot than external documentation (P2).
P8 opined on another potential difference with in situ documenta-
tion: external documentation should perhaps be targeted at users
of code, whereas in situ documentation may be more appropriate
for the code’s developers:

“I believe in the first patch that perhaps this [diagram]
was in the kernel docs, but as the [implementation of
this] tree matured, it became apparent that I needed a
separation between users of the tree versus developers
of the tree for the documentation...One that says this is
how you use it, this is how it’s supposed to be used, and
another set that says this is how it works.” (P8)

3.4.5 Role 5: Self-Recall. ASCII diagrams were not just for authors
to convey an idea to other people. P3, P6, P7, P8, and P9 also specif-
ically mentioned their diagram was useful for themselves to regain
context when they revisit the code months or years later:

“Even if I wrote the code, after like twomonths I probably
won’t remember how the graph looks like.” (P6)

“[I made the diagram] mostly for when I need to deal
with it again in the future, because I know that I’m not
going to be able to remember all of it and I don’t really
want to rediscover all of it...I’m not gonna remember in
like a year how all this stuff is organized.” (P3)

These participants created diagrams to help themselves remember.

Takeaway: Developers create ASCII diagrams for several
roles in the software development life cycle: (1) to bring in
outside knowledge (either from offline sketches or to reify
undocumented behavior), (2) to illustrate test cases, (3) for
code review, (4) for documentation for others, and (5) to help
themselves remember.

4 DESIGN SPACE OF ASCII DIAGRAMS
Having understood the characteristics of ASCII diagrams as a
medium—the duality of text and visual for tool agnostic diagramming—
and the roles that ASCII diagrams play in the software development
cycle—for documentation and explanation for various stakeholders—
we now seek to understand the design of diagrams in this unique
medium. We opt for a thematic analysis [20] to map the design
space of these diagrams, using a sample of the aforementioned
2,156 ASCII diagrams for our analysis. We aim to answer the fol-
lowing questions with our analysis:

(1) What concepts are illustrated?
(2) What visual forms are used?
(3) How do diagrams correspond to the surrounding code?
The output of our analysis is a design space for classifying ASCII

diagrams’ concepts, visual forms, and correspondences to code.
Our dataset of coded diagrams is available publicly at https://
asciidiagrams.github.io/.

Table 2: Repository statistics. The Linux kernel contained
the largest number as well as the largest ratio of diagrams to
lines of code. Note: the LOC includes blank lines.

Repo LOC Diagrams LOC/Diagram

Chromium 56,697,921 428 132,471
Linux 35,415,763 1,386 25,552
LLVM 28,275,527 220 128,525
Tensorflow 6,618,475 122 54,249

4.1 Methods
Fourmembers of the research team (hereafter referred to as "coders")
collaborated on the analysis. All coders had backgrounds in com-
puter science.

4.1.1 Theoretical Sampling. To establish a smaller sample from
which to develop a codebook, the 2,156 diagrams (see Table 2)
were narrowed down as follows. The first author categorized each
diagram into one of 15 visual types, such as memory layout, table,
plot, state machine, and "unknown" for unique diagrams. These
tentative categories were developed inductively and refined through
multiple reviews of the dataset. We then randomly sampled up to 20
diagrams from each category, along with all 334 unknown diagrams.
This resulted in a smaller sample of 507 ASCII diagrams that was
less skewed towards any particular visual form.

https://asciidiagrams.github.io/
https://asciidiagrams.github.io/

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.

Figure 9: Our design space for ASCII diagrams, listing the possible codings for each of the seven dimensions.

4.1.2 Developing a Codebook. We employed thematic analysis to
analyze the diagrams, inductively grouping them into coherent
categories along the dimensions outlined: concepts, visual forms,

and correspondences. To establish a coding guide, we initially set
aside 100 diagrams from the 507. Over a six-week period, each coder
independently analyzed subsets of 20 diagrams. We held regular

Taking ASCII Drawings Seriously: How Programmers Diagram Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

meetings to share interpretations and discuss emerging themes.
The first author consolidated these insights into a coding guide,
resolving any conflicts through discussion.

Given specificity of each diagram to a particular problem and
domain, the concept dimension was handled specially. The four
coders examined the remaining 407 diagrams (∼100 per coder) to
discern the specific concepts illustrated (e.g., abstract syntax tree,
IPC connections, graph partitioning). The coders then indepen-
dently clustered these concepts and then convened over lengthy
discussions to distill them into the overall concept categories.

The dimensions, including specific concepts, were not derived
from prior work but established inductively in the data collected.

4.1.3 Coding. The primary contribution of the content analysis is
the codebook itself, since it summarizes what exists in the ASCII
diagrams. We cannot make precise claims about the frequencies.
Regardless, for establishing inspection in the online dataset and
for exercising the codebook, three coders independently coded
different subsets of the diagrams. In total, 504 of the 507 diagrams
were coded (three machine-generated diagrams were excluded).
Diagrams that any coder was uncertain about were flagged and
discussed until consensus was reached. Prior to coding, a sample
of 20 diagrams was coded by all three coders to calibrate their
interpretations and resolve any potential coding discrepancies. The
coding process took approximately 14 hours per coder, with each
coder making approximately 10k judgments (168 diagrams per
coder × 59 sub-dimensions).

4.2 Design Space Summary
We converged upon seven top-level dimensions for our design
space, summarized iconographically in Figure 8. Together, the seven
dimensions describe a diagram’s concepts (1 dimension), visual
forms (4 dimensions), and correspondences to code (2 dimensions),
as explained below. The complete listing of possible codes for each
dimension are shown in Figure 9.

What concepts does the diagram convey?
(1) Concepts (25 codes) characterizes the technical ideas that

the diagram illustrates, e.g. synchronization, an architecture
layout, a hardware description, etc.

What visual forms are used to describe the concept?
(2) Visual Encodings (12 codes) describe the basic visual patterns

used, e.g. a directed graph or a linear sequence.
(3) Annotations (4 codes) are labels connected to the main dia-

gram with explicit arrows or symbols.
(4) Abstractions (4 codes) characterizes elision of information

with e.g. ellipses.
(5) Subdiagrams (3 codes) indicates the use of multiple sub-

diagrams to e.g. show before and after.

How does the diagram correspond to the surrounding code?
(6) Scope (6 codes) characterizes whether a diagram applies to

e.g. a whole file or just a single function.
(7) References (3 codes) notes whether the diagram refers to any

identifiers, constants, or expressions in the code.
The most salient finding highlighted by our design space is that

ASCII diagrams are diverse, despite the medium itself being

primitive. They are diverse in both in the concepts they illustrate
and the visual forms they use. Although each concept in Figure 9
is rather generic, we still discovered a large variety among the
diagrams. Similarly, the visual forms are also diverse, particularly
the possible visual encoding. ASCII diagrams may be made from a
simple medium, but they are not just one thing.

Takeaway: ASCII diagrams are not just one thing. They
represent diverse concepts with diverse visual forms. ASCII
diagrams are connected to the code explicitly by references
and implicitly by juxtaposition.

4.3 Illustrative Examples
Let us illustrate how our design space describes three ASCII dia-
grams. Taken together, these three diagrams meaningfully exercise
all seven of our design framework’s dimensions. Specific codings for
a diagram (drawn from the possible codes in Figure 9) are indicated
by a filled background.

4.3.1 Frame Graph. Figure 10 is a diagram from the Chromium
project depicting a test for whether a traversal through a data
structure happens as expected. The structure represents nested web
pages and is quite complicated: four separate trees are connected
via special edges that form a directed graph between the trees. The
labels root1, root2, root3, and root4 are the roots of the four trees,
the numbers below are each tree’s children, and the remaining
lines and arrows are the special edges forming the directed graph.
(Semantically, each tree represents the nested iframe structure
of a web page, while the special edges between trees represent
another kind of web page nesting that has stricter communication
permissions than iframes.5)

What concepts does the diagram convey? At the most specific,
this diagram depicts an “opener graph” of “FrameTrees,” but among
the more general Concepts of our design space, this diagram depicts
a Data :: Data Structure and a Test Case.

What visual forms are used to describe the concept? This diagram
uses lines to show connection relations: both the Connection :: Tree
pattern for the four trees and the Connection :: Graph :: Directed
pattern between the trees—these are the Visual Encodings, the ba-
sic visual patterns, of this diagram. The remaining three visual
dimensions are not represented in this diagram. All the labels in
this diagram are in place (i.e. lack a connecting arrow) and so are
not considered Annotations, the diagram does not indicate any Ab-
stractions by hiding information with e.g. ellipses, and it does not
contain multiple Subdiagrams.

How does the diagram correspond to the surrounding code? In this
case, the diagram only describes the situation for a single Function,
that is its only Scope. The diagram also uses specific text that Ref-
erences the code: the names root1 etc. are Identifiers also used in
the code, as are the Constants 12, 13 etc. used to refer to the tree
children.

5https://chromium.googlesource.com/chromium/src.git/+/refs/heads/main/docs/
frame_trees.md

https://chromium.googlesource.com/chromium/src.git/+/refs/heads/main/docs/frame_trees.md
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/main/docs/frame_trees.md

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.

// Build the following frame opener graph and see that it can be properly

// traversed when creating opener proxies:

//

// +-> root4 <--+ root3 <---- root2 +--- root1

// | / | ^ / \ | / \

// | 42 +-----|------- 22 23 <--+ 12 13

// | +------------+ | | ^

// +-------------------------------+ +-+

...

 ...

TEST_P(RenderFrameHostManagerTest, TraverseComplexOpenerChain) {

 contents()->NavigateAndCommit(GURL("http://tab1.com"));

 FrameTree* tree1 = &contents()->GetPrimaryFrameTree();

 FrameTreeNode* root1 = tree1->root();

root1->current_frame_host(), process_id, 13,

chromium/content/.../render_frame_host_manager_unittest.c
Concepts

Data::Data Structure Test Case

Visual Encodings

Connection::Graph::Directed

Connection::Tree

Scope

References

Function

Identifiers

Constants

Figure 10: Test case to check if a graph can be correctly traversed in Chromium, with the codes under our design space [4].

// Multi-output fusion of sibling and producer-consumer instructions for the

// GPU backend to reduce memory bandwidth requirements.

//

// 0) Before multi- 1) Sibling multi- 2) Producer-consumer

// output fusion output fusion multi-output fusion

//

// p p p

// | | |

// v v v

// A A +-fusion--+

// / \ | | A |

// | | +-fusion--+ | / \ |

// v v | / \ | | B | |

// B C | B C | | | | |

// \ / | | | | | v v |

// v v | v v | | tuple |

// ROOT | tuple | +---------+

// +---------+ / \

// / \ gte_b gte_a

// gte_b gte_c | |

// | | | v

// \ / | C

// v v \ /

// ROOT v v

// ROOT

...

class GpuMultiOutputFusion : public HloModulePass {

tensorflow/compiler/.../multi_output_fusion.h Concepts

Information Flow::Data Flow

Information Flow::Programs

Algorithms

Visual Encodings

Connection::Graph::Directed

Scope

Class

Annotations
Range

Sub-diagrams
Over time

Figure 11: A diagram in the Tensorflow codebase depicting how a computation graph changes when operations are fused
together for efficiency on the GPU, with the codes under our design space [5].

4.3.2 Multi-Output Fusion. For our second example, we consider
the ASCII diagram from Tensorflow in Figure 11, which depicts how
operation fusion changes a computation graph. Unlike the prior
example, this diagram contains Annotations and Subdiagrams. For
Annotations, the fusion label uses a box to select a Range of nodes

in the graph. This diagram also has three Subdiagrams: the first
depicts an initial scenario, while the other two depict two versions
of fusion applied to that initial scenario. We coded such before and
after snapshots as Multiple Scenarios :: Over Time. The codings for
the remaining dimensions for this diagram are given in Figure 11.

Taking ASCII Drawings Seriously: How Programmers Diagram Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

/*

 * CD/DVDs are error prone. When a medium error occurs, the driver may fail

 * a _large_ part of the i/o request. Imagine the worst scenario:

 *

 * ---R__B__________

 * ^ reading here ^ bad block(assume 4k)

 */

 ...

static void shrink_readahead_size_eio(struct file_ra_state *ra) {

	ra->ra_pages /= 4;

}

linux/mm/filemap.c Concepts

Data::Memory Layout Hardware

Visual Encodings

Sequence::Single

Annotations

Point

Scope

Function

Unpatterned Elision::Fragment

Abstraction

Figure 12: An ASCII diagram from the memory-management sub-part of the Linux kernel handling disk read errors, labeled
with the categories from our design space [2].

4.3.3 Disk Read Error Handling. As a final example, the diagram
in Figure 12 from the Linux kernel illustrates a potential disk read
error when reading from a CD/DVD. It depicts a scenario where
there is a read operation at (R) with a bad block (B) within the
read-ahead distance after (R), causing the read for (R) to fail. The as-
sociated function simply reduces the size of the read-ahead window
in hopes that will cause the read to succeed. The full coding of this
diagram is given in Figure 12. Most notably, this diagram involves
Abstractions: the diagram explicitly indicates the presence of elided
information. Here, the diagram indicates that the sequence shown
is only a fragment of the larger memory sequence. This “fragment
of a larger thing” scenario, with elision on the edges, is coded as
Unpatterned Elision :: Fragment.

4.4 Summary and Implications
It should be noted that certain dimensions within our design space
overlap with existing categorizations. For example, Visual Encod-
ings overlaps with classifications of graphical representations, e.g.
Engelhardt’s different types of graphics like link diagrams, ta-
bles, text, maps [65]. Recently, BlueFish, a relational grammar of
graphics, operationalized Gestalt relations (e.g. nesting and links)
to provide a grammar for describing data-driven graphics [49].
Multiple Scenarios closely aligns with Tufte’s small multiples, where
different datasets share the same visual encoding and are positioned
adjacent to one another for effective comparison [63]. In a content
analysis of mathematical formulas, Head et al. identified various
annotation mechanisms, including extent, pointer, and border in
augmented math formulas [35].

Our categorization also surfaces the in situ nature of ASCII dia-
grams. They are diagrams attached to the code both by juxtaposition
(Scope) and, often, by explicitly sharing the same identifiers, con-
stants, and expressions (References). Because they are close to code
they can reference it, and because they can reference the code they
can better describe it. As such, our design space provides a common
ground and suggests new possibilities for tools integrating code and
visual elements. For example, the de facto live programming system
shows output of Data (e.g. a list as nums: [1,1,2,4,2]), but none,
to our knowledge, show Abstractions of the Data displays them-
selves (e.g. displays like nums: [x,...,y], which capture entire
classes of output). Similar exercises in extrapolation can be made

by mixing static, user-created Annotations with dynamic runtime
displays of Data. Or, linking live programming output to various
Scope code structures beyond statement-level, such as to function
calls, multiple statements, classes, and entire files.

4.5 Limitations and Threats to Validity
The coders were all from a computer science background. Concepts
that were in other domains e.g. hardware or electrical engineering,
may not be as carefully represented by the design space. Moreover,
we only sampled four codebases, coding a subset of diagrams that
were deliberately selected for their diversity of forms. We therefore
cannot make generalizable claims about the frequency of different
traits, only that these traits exist.

5 DISCUSSION
Our interviews have revealed the prevalence, benefits, and limita-
tions of ASCII diagrams, while our design space provides a shared
ground for tools that couple visuals in software development work-
flows. Most immediately, these investigations suggest (1) the dia-
grams have a close but tenuous relationship to their code, (2) their
appeal and use is heavily dependent not merely on the author’s text
editor, but on multiple collaboration tools throughout the software
development lifecycle, and (3) design opportunities for moving
beyond ASCII while preserving the universality.

5.1 Code and Diagram are (Dis-)Connected
ASCII diagrams have a close but tenuous relationship to code. Part of
their utility is that they live next to the code they describe. This lets
them specifically reference snippets of the code to better explain its
behavior. But this close connectionwith code is also, simultaneously,
a risk for disconnection. Our interviewees expressed concerns about
documentation becoming out of sync with the code—even though
ASCII diagrams are perhaps more likely to be updated because
they are close to the code, programmers may still forget about
them because of hyper-focus on scrutinizing the code’s function.
IDEs are little help: they are oblivious to ASCII diagrams. A rename
refactoring, for example, will ignore comments by default. Providing
better tooling for making and maintaining connections between
code and diagram may prove pertinent for using diagrams at scale.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.

Similar concerns of disconnection apply to code comments in
general, as documented in previous research [53, 59, 66]. How-
ever, the structured nature of diagrams, compared to natural lan-
guage comments, may make them more amenable to preserving
connections between code and documentation. Beyond the corre-
spondences identified in our design space, one specific situation
we encountered in both our interviews and content analysis was
using the diagram to illustrate the expected result of a test case.
Extrapolating from this, a tool could potentially regenerate live
visual documentation based on the outcomes of test cases. Bigelow
et al. [19] demonstrate similar bidirectional linkages between user-
editing and data-driven chart visualizations.

5.2 Beyond ASCII? Or Will ASCII Live Forever?
As a thought experiment, let’s ponder: could a richer tool replace
ASCII for diagramming? For example, what if the programmer’s
IDE let them embed high-resolution diagrams in situ with the code,
and provided an in-editor interface for editing those diagrams?
Would that be enough? Maybe. What our investigation highlights
is that ASCII works because it is supported across a wide variety of
the tooling already in place—how uniform is the tooling across the
entire development team? The entire team would need to use our
hypothetical IDE. Moreover, all the collaboration tools in between
would need to support the rich diagrams as well: the diff viewer, the
version control, the bug tracker, and the team chat application. It is
hard to imagine that all these tools would agree on a standardized
format for diagrams in code. Some kind of in-browser cloud-based
development environment is most likely to succeed at integrating
rich diagrams. Like existing cloud-based software suites for “office”
tasks, a cloud-based system offers a unified tool set for the entire
team. A promising example is computational notebooks [41], which
juxtapose code with rich documentation. The popular Jupyter [51]
notebook system is in-browser and is already sometimes offered
as a cloud service. But, again, it seems that the stickiness of ASCII
diagrams arises from of the diversity of tools programmers use.
Existing tools are diverse, but they all support ASCII.

5.3 Design Opportunities
We synthesize these insights into a hypothetical proposal for mov-
ing beyond ASCII while maintaining its universal power, without
resorting to a shared cloud-based IDE. Our imaginary editor would
support bidirectional editing of ordinary ASCII art as rich objects
and would infer and leverage the connections between the ASCII
diagram and its corresponding code.

Bidirectional editing of diagrams as both rich graphic objects and
ASCII diagrams. As noted by the interviews, ASCII is the “lowest
common denominator” (P1). An improved ASCII diagram editor
must respect this: its canonical underlying data format must be
ordinary ASCII art so that all other viewers and editors can operate
as normal. Our idealized editor would therefore store its diagrams
as ordinary ASCII in the code, but would be able to interpret the
ASCII as rich shapes and lines. That is, users equipped with the
editor would be able to view ad hoc ASCII diagrams as clean vector
graphics, as well as edit them as a rich diagram, with the editor
bidirectionally saving raw ASCII into the file. Users without the
tool can see (and edit) the normal raw ASCII art.

Our design space suggests that our rich editor should support the
easy creation and rich editing of common visual structures already
in use, such as sequences, graphs, tables, and annotations (Fig-
ure 9). This aligns with existing research on bidirectional editing of
graphics and code [23], and recent tools like Lorgnette [31], which
allows projecting code into more user-friendly representations (e.g.,
editing an ASCII table as an interactive table).

Reify connections between the diagram and code. ASCII diagrams
relate to the code they describe. Our hypothetical editor could
leverage this to e.g. generate an ASCII graph diagram from the de-
pendency structure of the code. In the other direction, if the editor
can infer the relationships between an arbitrary ASCII diagram and
the code, that would open up many interface possibilities. The edi-
tor might highlight when the structure of the visualization seems
to no longer correspond to the code. Or, mousing over the diagram
can highlight the corresponding part of the code, while clicking the
diagram could take the user to that code. Renaming in the diagram
might simultaneously rename in the code. Automatic inference
of these correspondences for arbitrary ASCII diagrams is, admit-
tedly, a dicey suggestion. Smart inference can break down [42].
Nevertheless, the recent stunning progress in large language mod-
els does paint some hope that smart tools of the future might be
more capable than smart tools of the past.

6 CONCLUSION
To learn the key characteristics, roles, and content of ASCII dia-
grams, we interviewed nine ASCII diagram authors and synthesized
a design space of diagrams from four large open-source codebases.
ASCII diagrams are dually text and visual. As text, they are naturally
viewed, created, and manipulated in situ in the programming work-
flow. As visuals, they are often a better explanatory representation
than code or natural language. They are less detailed than code and
can be an approachable “thumbnail” for code to orient the reader.
Developers create ASCII diagrams for several roles in the software
development life cycle: to reify outside knowledge, to illustrate test
cases, for code review, for documentation for others, and to help
themselves remember. The design space we derived from content
analysis on ASCII diagrams highlights that they represent diverse
concepts with diverse visual forms. ASCII diagrams are connected
to the code, often incorporating code snippets in the diagram.

As mentioned at the beginning of the paper, our longer term
research goal is not to supplant ASCII for documentation, but to
re-imagine how text and graphics might work together to support
the construction of code. Ultimately, we envision rich diagrams that
are graphical interfaces for editing code. (Unlike a post-ASCII tool
for documentation, these interfaces would be transient for a single
developer and would not need to be supported by all existing tools
in use.) The diverse uses and forms of in situ diagramming revealed
by our studies lay a foundation for realizing this future vision.

ACKNOWLEDGMENTS
Kevin Chang contributed to initial development of the codebook
in section 4. We thank our interviewees who generously shared
their time and expertise, and the anonymous reviewers for their
thoughtful feedback. This material is based uponwork supported by
the National Science Foundation under Grant No. NSF IIS-1845900.

Taking ASCII Drawings Seriously: How Programmers Diagram Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

REFERENCES
[1] 2000. The Linux Kernel. See https://elixir.bootlin.com/linux/v6.6.8/source/arch/

mips/include/asm/sn/klconfig.h#L217.
[2] 2006. The Linux Kernel. See https://elixir.bootlin.com/linux/v6.6.8/source/mm/

filemap.c#L2300.
[3] 2014. The LLVM Compiler Infrastructure. See https://elixir.

bootlin.com/llvm/llvmorg-17.0.6/source/llvm/lib/Target/AArch64/
AArch64ConditionalCompares.cpp#L71.

[4] 2015. Chromium. See https://source.chromium.org/chromium/chromium/src/+/
9ca452be82f2d6569a026729825ec747a05cd573:content/browser/renderer_host/
render_frame_host_manager_unittest.cc;l=2639-2652.

[5] 2020. Tensorflow. See https://github.com/tensorflow/tensorflow/blob/
5f3b48c8283266df2e17cfc2f1868397405cb5d0/tensorflow/compiler/xla/service/
gpu/multi_output_fusion.h#L36-L92.

[6] 2021. The Linux Kernel. See https://elixir.bootlin.com/linux/v6.6.8/source/
drivers/hwtracing/coresight/coresight-trbe.c#L298.

[7] 2022. The Linux Kernel. See https://elixir.bootlin.com/linux/v6.6.8/source/
drivers/net/wireless/intel/iwlwifi/fw/api/phy-ctxt.h#L23.

[8] 2022. The Linux Kernel. See https://elixir.bootlin.com/linux/v6.6.8/source/tools/
testing/selftests/bpf/prog_tests/xfrm_info.c#L3.

[9] 2022. The Linux Kernel. See https://elixir.bootlin.com/linux/v6.6.8/source/tools/
testing/memblock/tests/alloc_api.c#L52.

[10] 2022. The LLVM Compiler Infrastructure. See https://elixir.bootlin.com/llvm/
llvmorg-17.0.6/source/libc/src/__support/FPUtil/x86_64/FEnvImpl.h#L404.

[11] 2022. The LLVM Compiler Infrastructure. See https://elixir.bootlin.com/llvm/
llvmorg-17.0.6/source/llvm/include/llvm/BinaryFormat/DXContainer.h#L28.

[12] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding Inter-
active Visual Syntax To Textual Code. Proceedings of the ACM on Programming
Languages (PACMPL), Issue OOPSLA (2020). https://doi.org/10.1145/3428290

[13] Oliver Arafat and Dirk Riehle. 2009. The commenting practice of open source.
In Companion to the 24th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-
29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens (Eds.). ACM,
857–864. https://doi.org/10.1145/1639950.1640047

[14] Ian Arawjo. 2020. To Write Code: The Cultural Fabrication of Programming
Notation and Practice. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3313831.3376731

[15] Ian Arawjo, Anthony DeArmas, Michael Roberts, Shrutarshi Basu, and Tapan S.
Parikh. 2022. Notational Programming for Notebook Environments: A Case Study
with Quantum Circuits. In The 35th Annual ACM Symposium on User Interface
Software and Technology, UIST 2022, Bend, OR, USA, 29 October 2022 - 2 November
2022, Maneesh Agrawala, Jacob O. Wobbrock, Eytan Adar, and Vidya Setlur (Eds.).
ACM, 62:1–62:20. https://doi.org/10.1145/3526113.3545619

[16] American Standards Association. 1963. American Standard Code for Informa-
tion Interchange, X3.4-1963. See https://www.sensitiveresearch.com/Archive/
CharCodeHist/X3.4-1963/index.html.

[17] Thomas Ball and Stephen G. Eick. 1996. Software Visualization In the Large.
Computer 29, 4 (1996), 33–43. https://doi.org/10.1109/2.488299

[18] Sebastian Baltes and Stephan Diehl. 2017. Sketches and Diagrams in Practice.
CoRR abs/1706.09172 (2017). arXiv:1706.09172 http://arxiv.org/abs/1706.09172

[19] Alex Bigelow, Steven Mark Drucker, Danyel Fisher, and Miriah D. Meyer. 2017.
Iterating between Tools to Create and Edit Visualizations. IEEE Trans. Vis. Comput.
Graph. 23, 1 (2017), 481–490. https://doi.org/10.1109/TVCG.2016.2598609

[20] Virginia Braun and Victoria Clarke. 2006. Using thematic
analysis in psychology. Qualitative Research in Psychology 3,
2 (2006), 77–101. https://doi.org/10.1191/1478088706qp063oa
arXiv:https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa

[21] Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J. Ko. 2007. Let’s Go to the
Whiteboard: How and Why Software Developers Use Drawings. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’07). Association for Computing Machinery, New York, NY,
USA, 557–566. https://doi.org/10.1145/1240624.1240714

[22] Johnny Chuah, Jiajie Zhang, and Todd R. Johnson. 2000. The Representational
Effect in Complex Systems: A Distributed Representation Approach. https:
//api.semanticscholar.org/CorpusID:56413506

[23] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Program-
matic and direct manipulation, together at last. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery D.
Berger (Eds.). ACM, 341–354. https://doi.org/10.1145/2908080.2908103

[24] Unicode Consortium. 2022. 2.5 Encoding Forms. Unicode Consortium, Chap-
ter Chapter 2: General Structure, 33–38. https://www.unicode.org/versions/
Unicode15.0.0/ch02.pdf

[25] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David
Maulsby, Brad A. Myers, and Alan Turransky (Eds.). 1993. Watch What I Do:
Programming by Demonstration. MIT Press.

[26] Eduardo Santana de Almeida, Iftekhar Ahmed, and André van der Hoek. 2022.
Let’s Go to the Whiteboard (Again): Perceptions from Software Architects on
Whiteboard Architecture Meetings. CoRR abs/2210.16089 (2022). https://doi.org/
10.48550/arXiv.2210.16089 arXiv:2210.16089

[27] Uri Dekel and James D. Herbsleb. 2007. Notation and representation in col-
laborative object-oriented design: an observational study. In Proceedings of the
22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy
L. Steele Jr. (Eds.). ACM, 261–280. https://doi.org/10.1145/1297027.1297047

[28] Stephan Diehl. 2007. Software Visualization - Visualizing the Structure, Behaviour,
and Evolution of Software. Springer. https://doi.org/10.1007/978-3-540-46505-8

[29] Robert Bruce Findler and PLT. 2023. Graphical Syntax. InDrRacket: The Racket Pro-
gramming Environment v8.10. https://docs.racket-lang.org/drracket/Graphical_
Syntax.html

[30] David Gesswein. 2004. ASR 33 Teletype Information. https://www.pdp8online.
com/asr33/asr33.shtml [Accessed 14-Sep-2023].

[31] Camille Gobert andMichel Beaudouin-Lafon. 2023. Lorgnette: CreatingMalleable
Code Projections. In Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology, UIST 2023, San Francisco, CA, USA, 29 October
2023- 1 November 2023, Sean Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry
Riche (Eds.). ACM, 71:1–71:16. https://doi.org/10.1145/3586183.3606817

[32] John Gruber. 2004. Markdown: Syntax. https://daringfireball.net/projects/
markdown/syntax

[33] Philip J. Guo. 2013. Online python tutor: embeddable web-based program vi-
sualization for cs education. In The 44th ACM Technical Symposium on Com-
puter Science Education, SIGCSE 2013, Denver, CO, USA, March 6-9, 2013, Tracy
Camp, Paul T. Tymann, J. D. Dougherty, and Kris Nagel (Eds.). ACM, 579–584.
https://doi.org/10.1145/2445196.2445368

[34] Devamardeep Hayatpur, Daniel Wigdor, and Haijun Xia. 2023. CrossCode: Multi-
level Visualization of Program Execution. In Proceedings of the 2023 CHI Confer-
ence on Human Factors in Computing Systems, CHI 2023, Hamburg, Germany, April
23-28, 2023, Albrecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola Kristensson,
Anicia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson (Eds.).
ACM, 593:1–593:13. https://doi.org/10.1145/3544548.3581390

[35] Andrew Head, Amber Xie, and Marti A. Hearst. 2022. Math Augmentation: How
Authors Enhance the Readability of Formulas UsingNovel Visual Design Practices.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 491, 18 pages. https://doi.org/10.1145/3491102.3501932

[36] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment
generation with hybrid lexical and syntactical information. Empir. Softw. Eng. 25,
3 (2020), 2179–2217. https://doi.org/10.1007/S10664-019-09730-9

[37] Katherine E. Isaacs and Todd Gamblin. 2019. Preserving Command Line Work-
flow for a Package Management System Using ASCII DAG Visualization. IEEE
Transactions on Visualization and Computer Graphics 25, 9 (2019), 2804–2820.
https://doi.org/10.1109/TVCG.2018.2859974

[38] Bradley Kjell. 2020. Teletype Machines. https://chortle.ccsu.edu/
AssemblyTutorial/Chapter-05/ass05_06.html [Accessed 14-Sep-2023].

[39] Donald Ervin Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97–111.
[40] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework

for Enabling New Tools, Interaction Techniques and Views in Code Editors. In
Human Factors in Computing Systems (CHI).

[41] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space of
Computational Notebooks: An Analysis of 60 Systems In Academia and Industry.
In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
https://doi.org/10.1109/VL/HCC50065.2020.9127201

[42] Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons
Learned for Usable AI. AI Magazine (2009). http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2262

[43] Sorin Lerner. 2020. Projection Boxes: On-the-Fly Reconfigurable Visualization for
Live Programming. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3313831.3376494

[44] H. Lieberman (Ed.). 2001. Your Wish is My Command: Programming by Example.
Morgan Kaufmann Publishers Inc.

[45] NicolasMangano, ThomasD. LaToza,Marian Petre, andAndré van derHoek. 2015.
How Software Designers Interact with Sketches at the Whiteboard. IEEE Trans.
Software Eng. 41, 2 (2015), 135–156. https://doi.org/10.1109/TSE.2014.2362924

[46] Richard E. Mayer. 2014. Cognitive Theory of Multimedia Learning (2 ed.). Cam-
bridge University Press, 43–71. https://doi.org/10.1017/CBO9781139547369.005

[47] United States of America Standards Institute. 1968. USA Standard Code for
Information Interchange, X3.4-1968. See https://ia800800.us.archive.org/35/
items/enf-ascii-1968-1970/Image070917151315.pdf.

[48] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling Typed Holes with Live GUIs. In Conference on Programming
Language Design and Implementation (PLDI). https://doi.org/10.1145/3453483.
3454059

https://elixir.bootlin.com/linux/v6.6.8/source/arch/mips/include/asm/sn/klconfig.h#L217
https://elixir.bootlin.com/linux/v6.6.8/source/arch/mips/include/asm/sn/klconfig.h#L217
https://elixir.bootlin.com/linux/v6.6.8/source/mm/filemap.c#L2300
https://elixir.bootlin.com/linux/v6.6.8/source/mm/filemap.c#L2300
https://elixir.bootlin.com/llvm/llvmorg-17.0.6/source/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp#L71
https://elixir.bootlin.com/llvm/llvmorg-17.0.6/source/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp#L71
https://elixir.bootlin.com/llvm/llvmorg-17.0.6/source/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp#L71
https://source.chromium.org/chromium/chromium/src/+/9ca452be82f2d6569a026729825ec747a05cd573:content/browser/renderer_host/render_frame_host_manager_unittest.cc;l=2639-2652
https://source.chromium.org/chromium/chromium/src/+/9ca452be82f2d6569a026729825ec747a05cd573:content/browser/renderer_host/render_frame_host_manager_unittest.cc;l=2639-2652
https://source.chromium.org/chromium/chromium/src/+/9ca452be82f2d6569a026729825ec747a05cd573:content/browser/renderer_host/render_frame_host_manager_unittest.cc;l=2639-2652
https://github.com/tensorflow/tensorflow/blob/5f3b48c8283266df2e17cfc2f1868397405cb5d0/tensorflow/compiler/xla/service/gpu/multi_output_fusion.h#L36-L92
https://github.com/tensorflow/tensorflow/blob/5f3b48c8283266df2e17cfc2f1868397405cb5d0/tensorflow/compiler/xla/service/gpu/multi_output_fusion.h#L36-L92
https://github.com/tensorflow/tensorflow/blob/5f3b48c8283266df2e17cfc2f1868397405cb5d0/tensorflow/compiler/xla/service/gpu/multi_output_fusion.h#L36-L92
https://elixir.bootlin.com/linux/v6.6.8/source/drivers/hwtracing/coresight/coresight-trbe.c#L298
https://elixir.bootlin.com/linux/v6.6.8/source/drivers/hwtracing/coresight/coresight-trbe.c#L298
https://elixir.bootlin.com/linux/v6.6.8/source/drivers/net/wireless/intel/iwlwifi/fw/api/phy-ctxt.h#L23
https://elixir.bootlin.com/linux/v6.6.8/source/drivers/net/wireless/intel/iwlwifi/fw/api/phy-ctxt.h#L23
https://elixir.bootlin.com/linux/v6.6.8/source/tools/testing/selftests/bpf/prog_tests/xfrm_info.c#L3
https://elixir.bootlin.com/linux/v6.6.8/source/tools/testing/selftests/bpf/prog_tests/xfrm_info.c#L3
https://elixir.bootlin.com/linux/v6.6.8/source/tools/testing/memblock/tests/alloc_api.c#L52
https://elixir.bootlin.com/linux/v6.6.8/source/tools/testing/memblock/tests/alloc_api.c#L52
https://elixir.bootlin.com/llvm/llvmorg-17.0.6/source/libc/src/__support/FPUtil/x86_64/FEnvImpl.h#L404
https://elixir.bootlin.com/llvm/llvmorg-17.0.6/source/libc/src/__support/FPUtil/x86_64/FEnvImpl.h#L404
https://elixir.bootlin.com/llvm/llvmorg-17.0.6/source/llvm/include/llvm/BinaryFormat/DXContainer.h#L28
https://elixir.bootlin.com/llvm/llvmorg-17.0.6/source/llvm/include/llvm/BinaryFormat/DXContainer.h#L28
https://doi.org/10.1145/3428290
https://doi.org/10.1145/1639950.1640047
https://doi.org/10.1145/3313831.3376731
https://doi.org/10.1145/3526113.3545619
https://www.sensitiveresearch.com/Archive/CharCodeHist/X3.4-1963/index.html
https://www.sensitiveresearch.com/Archive/CharCodeHist/X3.4-1963/index.html
https://doi.org/10.1109/2.488299
https://arxiv.org/abs/1706.09172
http://arxiv.org/abs/1706.09172
https://doi.org/10.1109/TVCG.2016.2598609
https://doi.org/10.1191/1478088706qp063oa
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
https://doi.org/10.1145/1240624.1240714
https://api.semanticscholar.org/CorpusID:56413506
https://api.semanticscholar.org/CorpusID:56413506
https://doi.org/10.1145/2908080.2908103
https://www.unicode.org/versions/Unicode15.0.0/ch02.pdf
https://www.unicode.org/versions/Unicode15.0.0/ch02.pdf
https://doi.org/10.48550/arXiv.2210.16089
https://doi.org/10.48550/arXiv.2210.16089
https://arxiv.org/abs/2210.16089
https://doi.org/10.1145/1297027.1297047
https://doi.org/10.1007/978-3-540-46505-8
https://docs.racket-lang.org/drracket/Graphical_Syntax.html
https://docs.racket-lang.org/drracket/Graphical_Syntax.html
https://www.pdp8online.com/asr33/asr33.shtml
https://www.pdp8online.com/asr33/asr33.shtml
https://doi.org/10.1145/3586183.3606817
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/3544548.3581390
https://doi.org/10.1145/3491102.3501932
https://doi.org/10.1007/S10664-019-09730-9
https://doi.org/10.1109/TVCG.2018.2859974
https://chortle.ccsu.edu/AssemblyTutorial/Chapter-05/ass05_06.html
https://chortle.ccsu.edu/AssemblyTutorial/Chapter-05/ass05_06.html
https://doi.org/10.1109/VL/HCC50065.2020.9127201
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1109/TSE.2014.2362924
https://doi.org/10.1017/CBO9781139547369.005
https://ia800800.us.archive.org/35/items/enf-ascii-1968-1970/Image070917151315.pdf
https://ia800800.us.archive.org/35/items/enf-ascii-1968-1970/Image070917151315.pdf
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3453483.3454059

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hayatpur et al.

[49] Josh Pollock, Catherine Mei, Grace Huang, Daniel Jackson, and Arvind Satya-
narayan. 2023. Bluefish: A Relational Grammar of Graphics. CoRR abs/2307.00146
(2023). https://doi.org/10.48550/arXiv.2307.00146 arXiv:2307.00146

[50] Blaine A. Price, Ronald Baecker, and Ian S. Small. 1993. A Principled Taxonomy
of Software Visualization. J. Vis. Lang. Comput. 4, 3 (1993), 211–266. https:
//doi.org/10.1006/jvlc.1993.1015

[51] M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver, P. Ivanov, J. Frederic, and M.
Bussonnier. 2014. The Jupyter/IPython architecture. In Fall Meeting Abstracts.
American Geophysical Union, Article H44D-07.

[52] Sawan Rai, Ramesh Chandra Belwal, and Atul Gupta. 2022. A Review on Source
Code Documentation. ACM Trans. Intell. Syst. Technol. 13, 5 (2022), 84:1–84:44.
https://doi.org/10.1145/3519312

[53] Pooja Rani, Arianna Blasi, Nataliia Stulova, Sebastiano Panichella, Alessandra
Gorla, and Oscar Nierstrasz. 2023. A decade of code comment quality assessment:
A systematic literature review. J. Syst. Softw. 195 (2023), 111515. https://doi.org/
10.1016/J.JSS.2022.111515

[54] John Regehr. 2019. Explaining Code using ASCII Art. https://blog.regehr.org/
archives/1653 [Accessed 02-Jun-2023].

[55] James Simpson and Michael Terry. 2011. Embedding Interface Sketches in Code.
In Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface
Software and Technology (Santa Barbara, California, USA) (UIST ’11 Adjunct).
Association for Computing Machinery, New York, NY, USA, 91–92. https://doi.
org/10.1145/2046396.2046438

[56] David Canfield Smith. 1975. Pygmalion: A Creative Programming Environment.
Ph. D. Dissertation. Stanford University.

[57] Ian Sommerville. 2011. Software engineering 9th. (2011).
[58] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-

Shanker. 2010. Towards automatically generating summary comments for Java
methods. In ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010, Charles Pecheur,
Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 43–52. https://doi.org/10.
1145/1858996.1859006

[59] Daniela Steidl, Benjamin Hummel, and Elmar Jürgens. 2013. Quality analysis of
source code comments. In IEEE 21st International Conference on Program Com-
prehension, ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. IEEE Computer
Society, 83–92. https://doi.org/10.1109/ICPC.2013.6613836

[60] Masaki Suwa and Barbara Tversky. 2002. External Representations Contribute to
the Dynamic Construction of Ideas. InDiagrammatic Representation and Inference,
Mary Hegarty, Bernd Meyer, and N. Hari Narayanan (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 341–343.

[61] Knut Sveidqvist. 2014. Mermaid. https://github.com/mermaid-js/mermaid
[62] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:

Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In Fifth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2012, Montreal, QC, Canada, April 17-21, 2012, Giuliano Antoniol, Antonia
Bertolino, and Yvan Labiche (Eds.). IEEE Computer Society, 260–269. https:
//doi.org/10.1109/ICST.2012.106

[63] Edward R Tufte. 1991. Envisioning information. Optometry and Vision Science 68,
4 (1991), 322–324.

[64] Michael B. Twidale and David M. Nichols. 2005. Exploring Usability Discussions
in Open Source Development. In 38th Hawaii International Conference on System
Sciences (HICSS-38 2005), CD-ROM / Abstracts Proceedings, 3-6 January 2005, Big
Island, HI, USA. IEEE Computer Society. https://doi.org/10.1109/HICSS.2005.266

[65] Jörg von Engelhardt. 2002. The Language of Graphics: A Framework for the
Analysis of Syntax and Meaning in Maps, Charts and Diagrams. Ph. D. Dissertation.
University of Amsterdam.

[66] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-
scale empirical study on code-comment inconsistencies. In Proceedings of the 27th
International Conference on Program Comprehension, ICPC 2019, Montreal, QC,
Canada, May 25-31, 2019, Yann-Gaël Guéhéneuc, Foutse Khomh, and Federica
Sarro (Eds.). IEEE / ACM, 53–64. https://doi.org/10.1109/ICPC.2019.00019

[67] Koji Yatani, Eunyoung Chung, Carlos Jensen, and Khai N. Truong. 2009. Under-
standing How and Why Open Source Contributors Use Diagrams in the Devel-
opment of Ubuntu. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing Ma-
chinery, New York, NY, USA, 995–1004. https://doi.org/10.1145/1518701.1518853

A INTERVIEW QUESTIONS
Below is the series of questions asked in the semi-structured inter-
view study:

(1) Can you provide me with a brief explanation of what the
diagram is for?

(2) Why did you want to include the diagram as an ASCII draw-
ing (as opposed to comments or external documentation)?

(3) What was your workflow for creating the diagram?
(4) Did you follow any guidelines or standards?
(5) What are the specific things about the code you are trying

to explain with the diagram? How are those represented in
the diagram?

(6) Who did you make the diagram for? For yourself (as refer-
ence)? For others?

(7) Have you made other diagrams in the past, was this diagram
typical or unusual?

(8) Have you contributed to others’ diagrams?
(9) Are there diagrams you’ve recently seen, which you found

memorable?
(10) Are there other important aspects of these diagrams that are

not reflected in our interview?

B CODEBASE SELECTION
Table 3 shows the code-bases we searched. They were filtered as
follows: Git and FFmpeg did not have as substantial number of
ASCII diagrams, and Gecko and Chromium had a similar domain,
therefore only one of them (Chromium) was selected. These were
the codebases we initially searched for, andwe concluded our search
having found a representative sample to study.

Table 3: Repository statistics of all searched code-bases.

Repo LOC Diagrams LOC/Diagram

Chromium 56,697,921 428 132,471
Linux 35,415,763 1,386 25,552
LLVM 28,275,527 220 128,525
Tensorflow 6,618,475 122 54,249
FFmpeg 1,799,773 64 28,121
Gecko 52,194,803 579 90,146
Git 3,201,991 21 152,475

https://doi.org/10.48550/arXiv.2307.00146
https://arxiv.org/abs/2307.00146
https://doi.org/10.1006/jvlc.1993.1015
https://doi.org/10.1006/jvlc.1993.1015
https://doi.org/10.1145/3519312
https://doi.org/10.1016/J.JSS.2022.111515
https://doi.org/10.1016/J.JSS.2022.111515
https://blog.regehr.org/archives/1653
https://blog.regehr.org/archives/1653
https://doi.org/10.1145/2046396.2046438
https://doi.org/10.1145/2046396.2046438
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1109/ICPC.2013.6613836
https://github.com/mermaid-js/mermaid
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.1109/HICSS.2005.266
https://doi.org/10.1109/ICPC.2019.00019
https://doi.org/10.1145/1518701.1518853

	Abstract
	1 Introduction
	2 Related Work
	2.1 Visuals as Reasoning Tools for Programming and Software Development
	2.2 Visuals as Communication and Education Tools for Programming
	2.3 Visual as Programming Language
	2.4 Software Documentation at Large and ASCII Drawings

	3 Interview Study of Open-Source Developers who Created ASCII Diagrams
	3.1 Methods
	3.2 Results Overview
	3.3 ASCII Diagrams: The Duality of Text and Visual (RQ1).
	3.4 Roles of ASCII Diagrams in the Software Development Lifecycle (RQ2)

	4 Design Space of ASCII Diagrams
	4.1 Methods
	4.2 Design Space Summary
	4.3 Illustrative Examples
	4.4 Summary and Implications
	4.5 Limitations and Threats to Validity

	5 Discussion
	5.1 Code and Diagram are (Dis-)Connected
	5.2 Beyond ASCII? Or Will ASCII Live Forever?
	5.3 Design Opportunities

	6 Conclusion
	Acknowledgments
	References
	A Interview Questions
	B Codebase Selection

