
The Impact of Culture on Learner Behavior in
Visual Debuggers

Kyle Thayer
Paul G. Allen School of

Computer Science & Engineering
University of Washington

Seattle, WA, USA
kthayer@cs.washington.edu

Philip J. Guo
Dept. of Cognitive Science

UC San Diego
La Jolla, CA, USA

pg@ucsd.edu

Katharina Reinecke
Paul G. Allen School of

Computer Science & Engineering
University of Washington

Seattle, WA, USA
reinecke@cs.washington.edu

Abstract—People around the world are learning to code using
online resources. However, research has found that these learners
might not gain equal benefit from such resources, in particular
because culture may affect how people learn from and use online
resources. We therefore expect to see cultural differences in how
people use and benefit from visual debuggers. We investigated the
use of one popular online debugger which allows users to execute
Python code and navigate bidirectionally through the execution
using forward-steps and back-steps. We examined behavioral logs
of 78,369 users from 69 countries and conducted an experiment
with 522 participants from 82 countries. We found that people
from countries that tend to prefer self-directed learning (such
as those from countries with a low Power Distance, which tend
to be less hierarchical than others) used about twice as many
back-steps. We also found that for individuals whose values
aligned with instructor-directed learning (those who scored high
on a “Conservation” scale), back-steps were associated with less
debugging success.

Index Terms—program visualization, cross-cultural studies,
non-linear learning

I. INTRODUCTION

People from over 180 countries are learning computer
programming from online resources [1], [2]. Though interest
in learning to code is widespread internationally, the domi-
nant programming education tools and MOOC platforms that
teach such skills (e.g., edX, Coursera, Udacity, Codecademy,
Code.org) were developed by people in the United States.
This creates a risk that designers may have unconsciously
embedded their cultural values into these platforms, making
them less suitable for people in other countries. Indeed,
researchers have raised concerns about whether MOOC and
programming education resources are optimized for, and pri-
marily benefit, those who come from more privileged Western-
centric backgrounds [3]–[7]. One of the reasons for these
concerns is that a country’s national culture has been found
to influence how people learn [7]–[9]. For example, prior
work found that countries with a high power distance—an
indicator of strong hierarchies, such as found in India and
China [10]—often employ instructor-directed education [8].
Students who grow up in these countries are thought to be
more used to and may prefer step-by-step instructions and
more linear navigation [2], [11]. In contrast, students from

countries with a low power distance, such as the U.S. and
Denmark, exhibit more self-directed learning and might prefer
more self-guided and less linear navigation. This phenomenon
has been seen in MOOCs, where students from low power
distance countries navigate the content more non-linearly (i.e.,
jumping back and forth between different sections) than those
from high power distance countries [2].

Our main question in this work is whether such differences
can also be found among users of visual debuggers. Do people
from different cultures use and benefit from visual debuggers
in distinct ways? and more specifically, Does a propensity
for self-directed learning explain some of these differences?
If yes, this would suggest that visual debuggers might have to
be adjusted to optimally support users from different cultural
backgrounds. It would also indicate that cultural differences
in behavior prevail even within a relatively homogeneous
group of users who seek out online debugging tools to learn
programming.

As a first concrete step toward investigating these ques-
tions, we evaluate how learners from over 60 countries en-
gage with a specific feature within Python Tutor, a popular
visualization-based online debugger often used in conjunction
with programming tutorials [12]. Central to Python Tutor is the
beginner-friendly feature of bidirectional navigation of code
executions [13]. This feature allows users to jump both to
earlier steps (“back-steps”) and later steps (“forward-steps”) of
the code execution while running a piece of code (Figure 1).
Given the prior work on the influence of culture on the level of
self-directed learning [2], [8], we hypothesize cultural levels of
self-directed learning will correlate with navigation by back-
steps in Python Tutor. We conducted two quantitative studies to
probe this hypothesis, using two proxy measures for instructor-
directed learning: Power Distance Indicator (PDI, a measure
of how hierarchical a country is) and Conservation (a measure
of how much an individual values tradition, conformity, and
security) [10], [14].

In our first study, we analyzed behavioral log data from
78,369 users of Python Tutor over six months. We found sig-
nificant differences between countries in how many back-steps
their users took. In particular, users from low and medium PDI
countries, such as Israel, Germany or the US, took more back-978-1-5386-4235-1/18/$31.00 ©2018 IEEE

Fig. 1. Python Tutor [12] lets learners navigate through example programs and visually debug their code. The large green arrows annotate the three ways of
performing back-steps to jump back to earlier execution points.

steps when following code executions on Python Tutor than
those from high PDI countries, such as India, China, or Russia.
People in the most egalitarian countries (with low PDI and
self-directed education, where students are often encouraged
to find their own way to solve problems) took about twice as
many backward steps through code executions than those from
the most hierarchical countries (with high PDI and instructor-
directed education).

Since individuals’ culture and their propensity for self-
directed learning varies within countries, we conducted a
second study to investigate the relationship between back-steps
and self-directed learning at an individual level. For this study
we recruited 522 participants to perform a debugging activity
on Python Tutor and asked them to answer a questionnaire
to assess Conservation as an individual measure of cultural
values. Participants’ Conservation scores were marginally cor-
related with the number of back-steps. We did not find a
correlation between PDI and back-steps as in the first study,
but we again found differences between some countries in the
use of back-steps. In addition, contrary to our expectations,
back-steps correlated negatively with debugging success, but
this effect varied with Conservation score.

Altogether, our results show that people do not uniformly
use visual debuggers and do not equally benefit from certain
functionalities. The national cultural dimension Power Dis-
tance and individual’s Conservation score can predict some
of these differences. Our study makes the following new
contributions to the research area of cross-cultural influences
on learning technologies:

1) We contribute the first studies of the effects of learners’
culture on their use of visual debuggers. We found
differences in how learners from various countries use
the back-step feature in Python Tutor, a widely-used
online debugger commonly used with tutorials. Our
studies suggest that these differences can be partially
explained by users’ level of self-directed learning as
measured by Power Distance and Conservation.

2) Our results showed that for individuals whose values

aligned with instructor-directed learning (high Conser-
vation), back-steps were associated with less debugging
success.

3) Our findings also point to how users from different
cultures may benefit from different presentations of
non-linear navigation features in online programming
education tools. The Power Distance Index, which can
be easily derived from IP addresses without any ad-
ditional input from the user, can be used as a rough
approximation of culture when doing these adaptations.

II. THE PYTHON TUTOR WEBSITE

The Python Tutor website [12], [15] is an open-source code
visualization system that allows learners to edit and debug
code directly in their web browser. The system has two views:
1) a code editor view allows users to write code and press
a button to run their code, which opens 2) a run-time state
visualization view (Figure 1) that lets users debug their code
by allowing them to navigate all of the steps of program
execution, both forwards and backwards, using a slider or
buttons. At each step the user sees all variables, values, stack,
heap, and textual output at that point in execution.

The Python Tutor website hosts a set of basic programming
examples where learners can execute the example code and
step through visualizations of its run-time state. In addition,
many users copy and paste code from other websites (e.g.,
MOOCs, blogs) into Python Tutor’s code editor to understand
and debug it using the visualizations of its run-time state.

III. BACKGROUND AND HYPOTHESIS DEVELOPMENT

We developed hypotheses based on prior work on cultural
measures and how those relate to people’s behavior.

A. Culture and Back-Steps

According to Hofstede, culture describes a shared “program-
ming of the mind” [16], which results in groups of people
having shared values and preferences [17]. Culture is not easily
defined; in fact, researchers debate what exactly it describes
and what influences culture has. Culture cannot be constrained

to country borders [18], but people from the same country can
still share a national culture and might often adhere to certain
behavioral trends [10], [16].

Grappling with the issue of trying to define cultures,
researchers have attempted to quantify differences between
cultures, while acknowledging that any differences can only
describe trends and are not going to generalize to all members
of a specific culture. Two notable efforts to measure culture
are by Hofstede [10] and Schwartz [14]. Hofstede’s cultural di-
mensions measures culture at a national level, while Schwartz
found a universal structure to the value trade-offs individual
people make, holding true across different countries.

From Hofstede’s cultural dimensions, his Power Distance
Index (PDI) is the most relevant to the aspect of self-directed
learning that we are investigating. PDI measures “the extent to
which the less powerful persons in a society accept inequality
in power and consider it normal” [8]. Societies with a higher
PDI (e.g., India or China) tend to have more “teacher-centered
education (premium on order),” where the “students expect
the teacher to outline paths to follow,” the “teacher is never
contradicted nor publicly criticized,” and the “effectiveness
of learning [is] related to the excellence of the teacher” [8].
Learning in these high PDI environments is centered on the
authority of the instructor and thus is instructor-directed. In
contrast, societies with a lower PDI (e.g., the US or many
Western European countries) have more “student-centered
education (premium on initiative),” where the “teacher expects
students to find their own path,” the “students [are] allowed
to contradict or criticize the teacher,” and the “effectiveness
of learning [is] related to amount of two-way communication
in class” [8]. Education in these low PDI environments is
centered on each student’s individual authority and thus is
more self-directed. Lower PDI countries also tend to have
more resources available to put toward education: they have
smaller class sizes1 and higher GDP per capita2 (see also [2]).

Such differences in day-to-day education likely translate
into people’s learning behavior online, even after they have
finished school. Indeed, low student-teacher ratios in a country
(which is associated with self-directed learning [8]), was
found to correlate with students making more “backjumps”
in MOOCs, where they navigate to earlier course content [2].
For those in high PDI countries, prior research has suggested
providing linear navigation, reducing navigation choices and
providing support through wizard interfaces [11], [21].

Inspired by this line of work, we expect programming
learners to view Python Tutor as a computerized “instructor”
and thus that learners from high PDI countries (with more
instructor-directed learning) will view individual steps in the
code visualization as the canonical intended path offered by
Python Tutor. Since Python Tutor gives no explicit instructions
to step either forward or backwards, we expect these users to

1PDI is correlated with student-teacher ratio (using data provided by [19]),
r(47) = .37, p < .01

2PDI is negatively correlated with GDP per capita (using data from [20]),
r(65) = −.62, p < .0001.

assume any steps, from the first to last execution step, were
intended to be followed forward in a linear order.

Conversely, we expect users from low PDI countries (with
more self-directed learning) assume that Python Tutor (as a
computerized “instructor”) gives them a space of options to
explore, and that they will see the execution steps as intended
to be navigated in whatever order best fits their needs. Thus,
we hypothesize that users from higher PDI countries will take
fewer back-steps, and users from lower PDI countries will take
more back-steps:

[H.1] PDI negatively correlates with the number of back-
steps that users take in Python Tutor’s code visualizations.

Since national cultural measures (like PDI) do not take
individual differences into account, we also wanted to investi-
gate how personal values of self-directed learning relate to
using back-steps. We wanted to use a validated individual
cultural measure for this, so we chose the one most relevant
to the aspects self-directed learning that we are investigating:
Conservation vs. Openness-to-change from Schwartz’s univer-
sal values work [14]. Schwartz’s values have been shown to
correlate with decision making, political views, and observed
behavior [22]–[24], with those who score higher on openness-
to-change being more willing to follow their own interests
in unpredictable directions [14]. Since Conservation can be
an appropriate proxy measure of self-directed learning like
PDI, we assume it will relate to how back-steps are used. Our
second hypothesis is therefore:

[H.2] Conservation score will negatively correlate with
back-steps in Python Tutor code visualizations.

B. The Efficacy of Back-Steps for Code Debugging

The closest related technical systems to Python Tutor are
backwards-in-time debuggers that allow a user to navigate
from a given point in code execution back to earlier execution
steps. This feature allows programmers to find the causes of
bugs without guessing where to set breakpoints [25]–[27].
Most research on backwards-in-time debuggers has focused on
the debugging techniques and technical implementations [25]–
[31]. To our knowledge, there have been no prior studies of
how users’ national culture and personal values affect their
use of code debuggers.

Since backwards-in-time debuggers were specifically built
to help with debugging (and one study on a specific variant
found them to be beneficial [31]), we hypothesize that back-
stepping will generally correlate with more debugging success
(in terms of how many tests the modified user code passes):

[H.3] Back-steps in code visualizations will correlate with
debugging success.

We also hypothesize that self-directed learners (low Conser-
vation) will have had more experience choosing their own path
and be more comfortable breaking from linear orders. These
learners might be more prepared and able to make effective
use of back-steps. Therefore we expect the use of back-steps
by self-directed learners to more likely result in debugging
success than the back-steps of instructor-directed learners.
Thus, we expect an interaction effect: Self-directed learners

Fig. 2. Hypothesis H.4: We expect an interaction effect between self-directed
learning, back-steps, and debugging success. We expect debugging success
to positively correlate with back-steps for all learners. But we expect self-
directed learners benefit more from any back-steps they take, and thus will
have a larger positive correlation between back-steps and debugging success.

(low Conservation) benefit more from back-steps (thus a larger
correlation between back-steps and debugging success) than
those participants who are used to instructor-directed learning
(see Figure 2):

[H.4] Conservation interacts with the correlation between
back-steps and debugging success. For lower Conservation
learners, the correlation will be stronger, while for higher
Conservation learners, the correlation will be weaker.

IV. STUDY 1: PYTHON TUTOR BEHAVIORAL LOG
ANALYSIS

For our first study, we examined behavioral log data from
Python Tutor in order to test if back-steps are negatively
correlated with Power Distance (H.1).

A. Methods

To test our hypothesis, we retrieved six months of behavioral
log data from Python Tutor and supplemented the dataset with
the Power Distance scores for each user’s country. The dataset
comprised the following:

• User events, allowing us to calculate features such as
back-steps, forward-steps, time spent, and code length;

• 78,369 unique user IDs (UUIDs);
• Browser sessions, allowing us to track user events across

multiple code visualizations in a session;
• User country, deduced from their IP address using the

GeoLite2 Free database [32];
• The Power Distance Index for each user based on their

country and Hofstede’s official country PDI scores [33].
Python Tutor does not ask users to sign up or provide any

demographic information, so we were unable to control for
possible effects of demographics.

1) Users: Our dataset included 147,847 users who visited
the Python Tutor website from 166 countries. We removed
users who did not use code visualizations, who did not take any
steps in a code visualization, or whose country was not part
of Hofstede’s study and therefore could not be linked to PDI.

The final dataset included 1,236,863 code visualizations run
by 78,369 unique users from 69 countries. The US accounted
for 32% of the data, India for 7.8%, and the UK for 5.3%.
The average PDI for users was 50.4 (SD = 17.8), which is
roughly half of the maximum possible PDI value of 120.

2) Analysis: We conducted a series of mixed-model anal-
ysis of variances on code execution visualizations, with the
back-step count as the dependent variable.3. We modelled
PDI as an independent factor. Because we wanted to do our
analysis on individual code execution visualizations and a
large numbers of users who interacted with multiple code
visualizations, we modelled user ID as a random factor. Since
Python Tutor users’ exact tasks were unknown to us (users
were free to follow any example on the site or copy and paste
in any code from elsewhere), we controlled for 13 additional
variables (see Table I) that measured either engagement (such
as time spent and forward-steps) or code properties (such as
length of code and number of exceptions thrown when running
the code). To further understand user’s tasks and the code
they were running, we also examined all code executions for
20 random browser sessions in four different countries with
at least 10,000 code executions: two with high PDI and few
average back-steps (Russia and India), and two with low PDI
and more average back-steps (Israel and Australia).

B. Results

Our linear regression confirmed H.1: Power Distance was
negatively correlated with the number of back-steps in a
code execution visualization (F(1,47489) = 84, p < .0001,
β = −.052, t-value = −9.1) (Figure 3). For example,
picking the most and fewest average back-steps per code
execution for countries with at least 10,000 code executions,
we found significant differences between Israel (M = 1.7,
SD = 4.2, PDI = 13) and India (M = 0.38, SD = 1.7,
PDI = 77); t(−49) = 26206, p < .0001.4 For the other
variables, higher engagement with the Python Tutor tool
correlated with more back-steps; most notably with forward-
steps taken (F(1,1235156) = 178878, p < .0001, β = 1.2, t-
value = 423), time spent in the visualization (F(1,1191571) =
7090, p < .0001, β = 0.23, t-value = 84) and length of the
code (in characters) (F(1,881703) = 2201, p < .0001, β = 0.15,
t-value = 46). The full regression table is shown in Table I.

Examining all code executions for randomly selected
browser sessions allowed us to see how users were modifying
and executing code. Our observations included that code and
apparent task varied greatly within countries; in addition, we
saw few differences between the countries. Code being edited
ranged widely, from apparent tests of how python list functions
worked to sorting functions to dice rolling games to string
processing, all with no apparent difference between the high

3While back-steps were not normally distributed, linear regressions are
thought to be robust to outliers and other violations of assumptions for large
samples such as ours [34]

4While these are the medians of skewed data, the large sample size still
allow for comparison. [34]

TABLE I
ANALYSIS OF VARIANCE RESULTS FOR ALL FACTORS IN THE REGRESSION MODEL FOR back-steps (STUDY 1), EXCLUDING USERID, WHICH WAS A

RANDOM FACTOR. FACTORS CAN BE AT ONE OF THREE SCOPES: User IS A VALUE THAT IS CONSTANT FOR A USER ACROSS ALL TIME; Execution IS A
VARIABLE SCOPED TO A SINGLE CODE VISUALIZATION EXECUTION; Session IS A VARIABLE THAT IS SHARED ACROSS A BROWSER SESSION BY A USER

WHERE THE USER MAY HAVE RUN MULTIPLE CODE VISUALIZATION EXECUTIONS. THIS MODEL SHOWS THAT PDI NEGATIVELY CORRELATED WITH
back-steps, AND THAT MANY FACTORS MEASURING ENGAGEMENT (SUCH AS T ime) WERE POSITIVELY CORRELATED WITH BACK-STEPS. WE ALSO

INCLUDED THE COEFFICIENTS FROM THE LINEAR MODEL TO ALLOW COMPARISON (ALL NON-BOOLEAN INDEPENDENT VARIABLES WERE
NORMALIZED). MARGINAL R2 = .18 (VARIANCE EXPLAINED BY FIXED FACTORS), CONDITIONAL R2 = .28 (THE VARIANCE EXPLAINED BY FIXED AND

RANDOM FACTORS COMBINED).

Scope Variable Coeff. df F p-value
User PDI -0.052 1 84 < .0001 ***
Execution Time 0.23 1 7090 < .0001 ***
Execution # steps available 0.024 1 55 < .0001 ***
Execution # of forward-steps 1.2 1 178878 < .0001 ***
Execution Length of code (# chars) 0.15 1 2201 < .0001 ***
Execution Edit-dist. from previous execution -0.041 1 240 < .0001 ***
Execution Execution number in session 0.0052 1 1 = .22 (n.s.)
Execution Was code just edited? -0.0028 1 15 < .0001 ***
Execution # of function calls 0.0060 1 0 = .05 *
Execution # of exceptions 0.063 1 598 < .0001 ***
Session Total forward-steps -0.017 1 13 = .0004 ***
Session Total edit-distance 0.015 1 16 < .0001 ***
Session # of executions -0.030 1 23 < .0001 ***
Session Was code ever edited? 0.067 1 0 = .66 (n.s)
Session Did any code in session match code

from another user?
-0.042 1 22 < .0001 ***

Fig. 3. Average back-steps per visualization vs. PDI , labeled by country,
for countries with at least 10,000 code executions. Linear regression line with
confidence bands included.

and low PDI countries. Some observations we made about
potential confounds were:

• Each country had multiple sessions with only one code
execution and multiple with over 5. We control for this
with # of executions and execution number in session.

• Each country had both short one or two line programs,
and longer 20+ line programs. We control for this with
Length of code (# chars).

• Each country had programs that were simple and had no
functions, and ones that used functions in a complicated
way, such as recursion. We control for this with # steps
available and # of function calls.

• Israel, India, and Russia each had one program that
implemented a class. We did not control for this because
we do not expect it to make a difference.

• Each country had at least one program that matched
another program from the dataset. We control for this
with Did any code in session match code from another

user?.
• The programs across all 80 of our chosen sessions did not

match each other, except two for Australia who had very
similar text processing code on the same tongue twister.
One of these was marked as true for Did any code in
session match code from another user?.

• Each country had some users making no edits between
executions, making small edits between executions, and
completely replacing the program between executions.
We try to control for this with Edit-dist. from previous
execution, Was code just edited?, and total edit-distance.

Given that the programming tasks did not appear to be
tied to countries and that we controlled for many of the
differences that might exist, we believe our regression analysis
to be valid. Therefore our findings suggest that (1) there are
significant differences between the use of Python Tutor’s back-
stepping feature across people from various countries, and (2)
a country’s Power Distance, which has been previously related
to a tendency for self-directed learning, can explain some of
these differences.

V. STUDY 2: INDIVIDUAL VALUES AND CODE DEBUGGING

Study 1 showed that users from countries with a low PDI
(associated with more self-directed learning) were more likely
to back-step in code visualizations than users from countries
with a high PDI (H.1). Next we wanted to investigate the role
of individually-reported values as opposed to only country-
level generalities and do so in a more controlled setting. We
therefore launched a second study to investigate how culture
relates to back-steps (H.1, H.2), and how back-steps and
personal values relate to debugging success (H.3, H.4).

A. Methods

We designed an online experiment as a debugging activity
and we embedded the Python Tutor editor and visualizer into
our experiment page for participants to use. We advertised
our study with a banner on the main Python Tutor website.
In our study, all users were given the same content and tasks.
We collected demographics and values information from each
participant and measured their behaviour in stepping through
the debugger and modifying their code. Participants did not
receive financial compensation.

1) Procedure: Participants provided consent, demographic
information, values information (using the 10 question Short
Schwartz Value Survey [35]) and then engaged in two time
constrained (six-minute) debugging activities by attempting to
fix buggy Python code: fixing a broken function to reverse
an array, and extracting data from an array of dictionaries.
They then were asked follow-up questions about how they used
Python Tutor, how they used back-steps, how easy and useful
they perceived Python Tutor to be, and how important back-
steps were. After completing these questions, participants were
shown a score of how many tests their code passed and they
could continue working on the problems using Python Tutor
if they wished. We included this additional data for testing
use of back-steps (H.1 and H.2), but excluded it when testing
debugging success (H.3 and H.4).

2) Analysis: We conducted mixed-model analyses of vari-
ance to test the correlation between back-steps and PDI (H.1)
and back-steps and Conservation (H.2). Because 88% of
the code execution visualizations had no back-steps and the
rest of the data was skewed, we used zero-inflated negative
binomial models [36]. Our analysis level was, as in Study 1,
on code execution visualizations, with the number of back-
steps as the dependent variable. We modeled participantId as
a random variable and added either PDI or Conservation as
an independent variable (for H.1 and H.2 respectively). We
included four more independent variables: number of forward-
steps, age,5 gender6, and reported programming experience
(which could influence how they used Python Tutor).

For correlations with debugging success (H.3 and H.4) we
conducted mixed-model analyses of variance using Gaussian
models. We set the unit of analysis on code execution visu-
alizations with the change in code tests passed for the next
visualization as the dependent variable (∆tests passed)7. For
independent variables, we used the previous run’s passed code
tests, the number of forward-steps and the number of back-
steps as well as programming experience, which we expected
to affect the changes in tests passed. To test for differentiated
effects of values aligned with self-learning, we added Conser-
vation along with the interaction between Conservation and
back-steps.

5Age has previously been shown to influence non-linear navigation [2]
6 Gender has previously been shown to influence non-linear navigation [2],

tinkering [37], [38], and using new features [39]
7We also did this with the unit of analysis on problem numbers with the

dependent variable as final tests passed, with comparable results.

TABLE II
RESULTS OF back-step (H.2) REGRESSION FOR STUDY 2. WE FOUND

THAT CONSERVATION WAS MARGINALLY NEGATIVELY CORRELATED WITH
THE NUMBER OF BACK-STEPS (β = −0.11, p < .089).

variable coeff. z p
Conservation -0.11 -1.7 .089 .
of forward-steps 0.077 12.34 ≤ .0001 ***
age -0.011 -1.7 .089 .
gender-Female -0.36 -1.7 .084 .
gender-Other 0.41 -0.61 .50
Prog. Experience (Linear) -0.23 -1.2 .23
Prog. Experience
(Quadratic)

-0.38 -2.1 .039 *

Prog. Experience (Cubic) -0.091 0.53 .60
Prog. Experience (4) -0.26 -1.55 .12

3) Participants: We ran the study between July and
September 2017. During this time, 857 participants completed
the demographics and values survey, 522 finished the first
problem, and 348 finished the entire activity, providing us
with 2,697 visualization sessions. Of those sessions, 2,003 had
forward-steps (458 users), and 504 had back-steps (276 users).
The average age of users was 27 years (SD = 12 years) and
17% identified as female. Users were fairly evenly distributed
across five levels of self-reported programming background
(Little or none, ≤ 3 months, ≤ 6 months, ≤ 1 year, more).
The average Conservation score was -0.71 (SD = 1.2) and the
country averages ranged from -2.1 to 2.5, representing large
differences along the Conservation vs. Openness-to-change
dimension. Most participants were from the US (17%), India
(17%), China (8.2%), and Russia (4.9%). The average PDI
was 61 (SD = 20.5), roughly half the highest PDI of 120.

B. Results

For H.2, Conservation was marginally negatively correlated
with the number of back-steps in a code execution visualiza-
tion (β = −0.11, p < .089, see Table II). We also tested
the relation between PDI and back-steps (H.1) using a similar
model, but with PDI in the place of Conservation. PDI and
the number of back-steps were not significantly correlated
(β = 0.0034, p < .39).

PDI and Conservation were weakly correlated (r(735) = .17,
p < .0001), though the correlation was much smaller than
we expected. This may be due to high variance of participants’
values within countries, since when we averaged Conservation
values by country, the correlation was higher (r(55) = .31,
p < .02).

While PDI did not explain the differences in the number of
back-steps between countries, we did find significant differ-
ences between countries, such as between Canada (M = 1.1,
SD = 4.0) and Japan (M = 0.31, SD = 1.1); t(185) = 2.02,
p < .044.

Our analysis of debugging progress (Table III) showed
that back-steps correlate negatively with ∆tests passed
(F(1,1692) = 5.8, p = .016), the opposite of what we
predicted in H.3 . We additionally found a significant negative
coefficient for the interaction of back-step and Conservation

TABLE III
RESULTS OF ∆tests passed (H.3, H.4) REGRESSION FOR STUDY 2.

variable coeff. df F p
Previous Run Tests Passed -0.19 1 33 ≤ .0001 ***
of forward-steps 0.0059 1 8.5 .0036 **
of back-steps -0.023 1 5.8 .016 *
Conservation -0.014 1 0.30 .59
Programming Experience N/A 4 13 ≤ .0001 ***
of back-steps : Conserva-
tion

-0.012 1 4.3 .038 *

Fig. 4. Average ∆tests passed by number of back-steps and
Conservation (mean split) for code executions with at least one forward-
step. Bars indicate standard error. Compare to Figure 2 showing H.4.

(F(1,1701) = 4.3, p = .038), confirming H.4 when the negative
result of H.3 is accounted for (see Figure 4).

In free-response answers, participants mentioned taking
back-steps to check their understanding of code, find the
source of bugs, view a set of steps again, and go back to
a step they had accidentally skipped over. Some who did not
take back-steps mentioned running out of time, finding the
problem too easy to require back-steps, or finding forward-
steps sufficient.

VI. DISCUSSION

A. Power Distance Negatively Correlates with Back-Steps

Our results demonstrate that the use of non-linear navigation
within an online visual debugger varies with national culture:
the more a country’s people tend to value self-directed learn-
ing, the more back-steps they will take. Study 1 confirmed
that Power Distance (PDI) negatively correlated with back-
steps (H.1), meaning that users in countries with a higher PDI
were less self-directed in their use of Python Tutor. This is
consistent with the results of a previous MOOC study [2],
where users from more student-centered countries were more
likely to navigate with non-linear “backjumps”. It is also
consistent with prior literature on culture and PDI, supporting
the claim that PDI is related to self-directed learning [8].

Study 2 revealed no correlation between PDI and back-
steps, but showed that Conservation and back-steps are
marginally negatively correlated (H.2). This suggests that a

TABLE IV
RESULTS FOR EACH HYPOTHESIS.

Hypothesis Outcome
H.1 PDI of a user’s country will

negatively correlate with
the number of back-steps
that user takes.

Supported by Study 1.
Not supported by Study 2.

H.2 Conservation will nega-
tively correlate with back-
steps.

Marginally supported by
Study 2.

H.3 Back-steps in code visual-
izations will correlate with
debugging success.

Study 2 found negative cor-
relation instead.

H.4 Conservation will interact
with the correlation be-
tween back-steps and de-
bugging success.

Supported by Study 2.

user’s Conservation score has a larger effect than national
culture on the use of back-stepping.

We also found several significant differences between coun-
tries in the use of back-stepping. Because the cultural measures
PDI and Conservation could not fully explain these differ-
ences, it is likely many differences are due to factors other
than self-directedness, such national and individual differences
in background, experience, socioeconomic status and math
competency, and reason for using Python Tutor. PDI and
Conservation also may not be sufficient measures of self-
directedness to account for the variation we saw.

B. Back-Steps Correlate With Less Debugging Success (De-
pending on Personal Values)

We were surprised to see that back-steps were negatively
correlated with debugging success, the opposite of our hy-
pothesis (H.3). The finding raises doubts about whether back-
stepping is helpful in debugging (though there may be other
learning benefits to back-stepping that we did not capture). It
is possible that instead of measuring back-steps being used in
a helpful, intentional way, the back-steps we measured were
instead a symptom of struggle [40]. For example, back-steps
may have been used in a haphazard way by someone having
trouble [41], [42], or as a way of verifying a result they did
not believe at first [41].

Finally, we confirmed our last hypothesis (H.4), though
we have to modify the phrasing given the result of H.3: For
higher Conservation learners, the negative correlation between
back-steps and debugging success was stronger, and for lower
Conservation learners the negative correlation was weaker.
That is, for instructor-directed learners, many back-steps meant
less debugging success, while self-directed learners saw less
of a relationship between back-steps and debugging success
(Figure 4). These results demonstrate that the benefits of some
debugging features may vary with personal values for self-
directed or instructor-directed learning.

C. Relations to Research on Tinkering and Gender

Our study shares a number of parallels with a previous study
on tinkering and gender [37]. Our study supports this prior
work in finding a marginally significant trend of females taking

fewer back-steps in Study 2. We then extend that work by
showing similar effects to what they found, but with different
groups (countries in ours, gender in theirs) varying along
different measures of independence (self-directed learning in
ours, self-efficacy in theirs) and varying in feature use (back-
steps in ours, tinkering in theirs).

The prior work raises further questions about ours, such
as: To what extent are back-steps used in a way that can
be considered tinkering? How does membership in different
groups interact (e.g., females in India)? The prior work
showed different benefits for exploratory tinkering vs. repeated
tinkering, so: Are there similar different uses of back-steps?

D. Design Implications

Our results suggest several implications for when back-
steps (and other non-linear navigation features) may need to
be emphasized, de-emphasized or scaffolded for instructor-
directed learners (i.e., those who prefer instructors to direct
their learning). Back-steps (and potentially other non-linear
navigation) are either detrimental to users or a symptom of
struggle. Whatever the cause, this relationship was especially
strong for instructor-directed learners. If backward navigation
is in fact detrimental to instructor-directed learners, designers
may want to de-emphasize or hide backward navigation for
those users. Alternatively, if backward navigation is a symptom
of struggle for instructor-directed learners, designers may want
to provide support and intervention when they detect those
learners navigating backwards.

Designers who want to help users across cultures make
effective and efficient use of back-steps (or other non-linear
navigation features) may need to make these features more
prominent. They may also want to provide tutorials or wizards
to give instructor-directed users a forward path for learning
to navigate backwards (in line with previous suggestions for
high PDI countries [21]). Additionally back-steps could be
augmented with additional information, such as suggested
relevant backward slices of steps for user-selected variables or
output (following Whyline [31]), or higher-level holistic views
showing context at a glance, providing an alternative way
of learning that doesn’t involve taking back-steps (follwing
Omnicode [43]).

As evident from the above, programming education tools
are unlikely to optimize learning if they are developed in a
one-size-fits-all manner. Instead, our results show that people
from different countries make different use of key features,
suggesting that programming education tools should adapt to
preferences and behaviors to optimally support the learner.
We showed that PDI and Conservation can be useful as proxy
measures for self-directed learning to guide such adaptations,
even though they only partially explain the variance between
countries. PDI is particularly convenient for designers because
it can be derived based on a user’s IP address, needing no extra
input from learners. Still, designers should be aware that the
trends we found for PDI are averaged across large samples,
and individual variations may make appropriate adaptation
challenging. Prior efforts have worked around this issue by

bootstrapping an initial adaptation with the help of PDI (and
other dimensions) before extracting individual information
about a user’s behavior and preferences from behavioral
data [21]. Such an adaptive system circumvents the problem
of data sparseness, preventing initial shortcomings for most
people, but still updating its priors over time.

VII. LIMITATIONS AND FUTURE WORK

Our study compared use of a single debugger interface
feature with one national cultural measure and one individual
value measure. Testing only one feature of one code visual-
ization tool limits our ability to generalize to other interfaces.
In the future, we plan to further investigate other features
of programming education environments, such as information
density, cooperative programming, or prominent achievement
scores, to evaluate possible effects of country and culture.

In our two studies, we did not directly measure self-directed
learning but used proxy measures which may not adequately
capture this concept. This is particularly the case with the
national measure of PDI, since generalizing by country col-
lapses many meaningful variations between groups of people
and individuals. While prior work has repeatedly suggested
a link between self-directed learning, PDI, and Conservation,
more research is needed to investigate whether these cultural
dimensions indeed predict different levels of self-directed
learning. This was further complicated by potential bias in
our sample from each country. In particular, the subset of
visitors to Python Tutor who chose to participate in Study 2
might have different demographics and levels of self-directed
learning than those who did not chose to participate.

Future work should also further investigate the benefits,
detriments and uses of non-linear navigation, such as back-
stepping, especially since our results contradicted our hypothe-
sis that back-steps use would correlate with debugging success.
We especially hope to see more work evaluating alternative
functionalities that enable users to better learn programming,
and evaluate whether such functionalities have a differential
effect on debugging success depending on a user’s culture.

VIII. CONCLUSION

Our findings show that visual debuggers are used differently
by different groups and do not equally benefit all learners.
Importantly, we found that these differences can be measured
and predicted. We hope that our work will inspire designers
and developers to create programming education tools that
adapt to their user’s cultural backgrounds.

IX. DATA SET

To enable replication and extension of our work, all of
the code and data sets from both studies are on GitHub:
https://github.com/kylethayer/culture-debugging-study-data

ACKNOWLEDGMENT

Special thanks to Jacob O. Wobbrock, Nigini A. Oliveira,
Daniel Epstein, Amanda Swearngin, Eunice Jun, Kurtis
Heimerl, and Rahul Banerjee.

REFERENCES

[1] “Code.Org: About Us,” 2018. [Online]. Available: https://code.org/about
[2] P. J. Guo and K. Reinecke, “Demographic differences in how students

navigate through MOOCs,” in Proceedings of the first ACM conference
on Learning@ scale conference. ACM, 2014, pp. 21–30. [Online].
Available: http://dl.acm.org/citation.cfm?id=2566247

[3] J. D. Hansen and J. Reich, “Democratizing education? Examining
access and usage patterns in massive open online courses,” Science, vol.
350, no. 6265, pp. 1245–1248, Dec. 2015, 00000. [Online]. Available:
http://www.sciencemag.org/content/350/6265/1245

[4] C. Sturm, A. Oh, S. Linxen, J. Abdelnour Nocera, S. Dray, and
K. Reinecke, “How WEIRD is HCI?: Extending HCI Principles to
other Countries and Cultures,” in Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors in Computing
Systems. ACM, 2015, pp. 2425–2428, 00000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2702656

[5] M. Guzdial, “Limitations of moocs for computing education- addressing
our needs: Moocs and technology to advance learning and learning
research (ubiquity symposium),” Ubiquity, vol. 2014, no. July, pp. 1:1–
1:9, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/2591683

[6] P. J. Guo, “Non-native english speakers learning computer programming:
Barriers, desires, and design opportunities,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, ser. CHI ’18,
2018.

[7] R. F. Kizilcec, A. J. Saltarelli, J. Reich, and G. L. Cohen,
“Closing global achievement gaps in MOOCs,” Science, vol. 355,
no. 6322, pp. 251–252, Jan. 2017. [Online]. Available: http:
//science.sciencemag.org/content/355/6322/251

[8] G. Hofstede, “Cultural differences in teaching and learning,”
International Journal of Intercultural Relations, vol. 10,
no. 3, pp. 301–320, Jan. 1986. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0147176786900155

[9] R. F. Kizilcec and G. L. Cohen, “Eight-minute self-regulation
intervention raises educational attainment at scale in individualist
but not collectivist cultures,” Proceedings of the National Academy
of Sciences, p. 201611898, Apr. 2017. [Online]. Available: http:
//www.pnas.org/content/early/2017/04/07/1611898114

[10] G. Hofstede, Culture’s Consequences: International Differences in
Work-Related Values. SAGE, Jan. 1984.

[11] A. Marcus and E. W. Gould, “Crosscurrents: cultural dimensions and
global Web user-interface design,” interactions, vol. 7, no. 4, pp. 32–46,
2000. [Online]. Available: http://dl.acm.org/citation.cfm?id=345238

[12] P. J. Guo, “Online Python Tutor: Embeddable web-based program
visualization for CS education,” in Proceedings of the 44th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE
’13. New York, NY, USA: ACM, 2013, pp. 579–584. [Online].
Available: http://doi.acm.org/10.1145/2445196.2445368

[13] J. Sorva, Visual program simulation in introductory programming
education. Aalto University, 2012. [Online]. Available: https:
//aaltodoc.aalto.fi:443/handle/123456789/3534

[14] S. H. Schwartz, “Universals in the content and structure of
values: Theoretical advances and empirical tests in 20 countries,”
Advances in experimental social psychology, vol. 25, pp. 1–65,
1992. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0065260108602816

[15] P. Guo, “Visualize python, java, javascript, typescript, ruby, c, and c,”
2018. [Online]. Available: http://pythontutor.com/

[16] G. Hofstede, “Cultures and organizations: Software of the mind, inter-
cultural co-operation and its implications for survival,” 1997.

[17] E. Callahan, “Cultural similarities and differences in the design of
university web sites,” Journal of Computer-Mediated Communication,
vol. 11, no. 1, pp. 239–273, 2005.

[18] B. McSweeney, “Hofstedes model of national cultural differences and
their consequences: A triumph of faith-a failure of analysis,” Human
relations, vol. 55, no. 1, pp. 89–118, 2002.

[19] “Pupil-teacher ratio in primary education (headcount basis) | Data,”
2017. [Online]. Available: https://data.worldbank.org/indicator/SE.PRM.
ENRL.TC.ZS

[20] “GDP per capita (current US$) | Data,” 2017. [Online]. Available:
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD

[21] K. Reinecke and A. Bernstein, “Knowing what a user likes:
A design science approach to interfaces that automatically adapt
to culture,” Mis Quarterly, vol. 37, no. 2, pp. 427–453, 2013.

[Online]. Available: http://www.misq.org/skin/frontend/default/misq/pdf/
V37I2/ReineckeBernstein.pdf

[22] A. Bardi and S. H. Schwartz, “Values and Behavior: Strength and
Structure of Relations,” Personality and Social Psychology Bulletin,
vol. 29, no. 10, pp. 1207–1220, Oct. 2003. [Online]. Available:
http://psp.sagepub.com/content/29/10/1207

[23] N. T. Feather, “Values, valences, and choice: The influences
of values on the perceived attractiveness and choice of
alternatives,” Journal of Personality and Social Psychology,
vol. 68, no. 6, pp. 1135–1151, Jun. 1995. [Online].
Available: http://offcampus.lib.washington.edu/login?url=http:
//search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1995-
32996-001&site=ehost-live

[24] S. Schwartz, “Value priorities and behavior: Applying a Theory
of Integrated Value Systems,” in The psychology of values:
The Ontario symposium, vol. 8, 2013. [Online]. Available:
https://books.google.com/books?hl=en&lr=&id=DACsdMk7qqoC&oi=
fnd&pg=PA1&dq=schwartz+values+behavior&ots=u3nzArGxx6&sig=
oe4XQPtH6yS2Rea6qkcYRGLs5h8

[25] C. Hofer, M. Denker, and S. Ducasse, “Design and implementation of
a backward-in-time debugger,” in NODe 2006. GI, 2006, pp. 17–32.
[Online]. Available: https://hal.archives-ouvertes.fr/inria-00555768/

[26] B. Lewis, “Debugging Backwards in Time,” arXiv:cs/0310016, Oct.
2003, arXiv: cs/0310016. [Online]. Available: http://arxiv.org/abs/cs/
0310016

[27] G. Pothier and E. Tanter, “Back to the future: Omniscient
debugging,” IEEE software, vol. 26, no. 6, 2009. [Online]. Available:
http://ieeexplore.ieee.org/abstract/document/5287015/

[28] Z. Azar, “PECCit: An Omniscient Debugger for Web Development,”
Electronic Theses and Dissertations, Jan. 2016. [Online]. Available:
http://digitalcommons.du.edu/etd/1099

[29] S. P. Booth and S. B. Jones, “Walk backwards to happiness:
debugging by time travel,” in Proceedings of the 3rd International
Workshop on Automatic Debugging; 1997 (AADEBUG-97). Linköping
University Electronic Press, 1997, pp. 171–184. [Online]. Available:
http://www.ep.liu.se/ecp/article.asp?issue=001&article=014

[30] J. Engblom, “A review of reverse debugging,” in System, Software,
SoC and Silicon Debug Conference (S4D), 2012. IEEE, 2012, pp.
1–6. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/
6338149/

[31] A. J. Ko and B. A. Myers, “Finding Causes of Program Output
with the Java Whyline,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’09. New
York, NY, USA: ACM, 2009, pp. 1569–1578. [Online]. Available:
http://doi.acm.org/10.1145/1518701.1518942

[32] “GeoLite2 Free Downloadable Databases ¡¡ Maxmind Developer
Site,” 2015, 00000. [Online]. Available: http://dev.maxmind.com/geoip/
geoip2/geolite2/

[33] “Geert Hofstede | Hofstede Dimension Data Matrix,” 2015, 00002.
[Online]. Available: http://www.geerthofstede.nl/dimension-data-matrix

[34] T. Lumley, P. Diehr, S. Emerson, and a. L. Chen, “The Importance
of the Normality Assumption in Large Public Health Data Sets,”
Annual Review of Public Health, vol. 23, no. 1, pp. 151–169,
2002. [Online]. Available: http://dx.doi.org/10.1146/annurev.publhealth.
23.100901.140546

[35] M. Lindeman and M. Verkasalo, “Measuring Values With the
Short Schwartz’s Value Survey,” Journal of Personality Assessment,
vol. 85, no. 2, pp. 170–178, Oct. 2005. [Online]. Available:
http://dx.doi.org/10.1207/s15327752jpa8502 09

[36] J. S. Preisser, J. W. Stamm, D. L. Long, and M. E. Kincade,
“Review and Recommendations for Zero-inflated Count Regression
Modeling of Dental Caries Indices in Epidemiological Studies,” Caries
research, vol. 46, no. 4, pp. 413–423, 2012. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424072/

[37] L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook, “Tinkering and gender in end-user
programmers’ debugging,” in Proceedings of the SIGCHI conference
on Human Factors in computing systems. ACM, 2006, pp. 231–240.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1124808

[38] M. G. Jones, L. Brader-Araje, L. W. Carboni, G. Carter, M. J. Rua,
E. Banilower, and H. Hatch, “Tool time: Gender and students’ use of
tools, control, and authority,” Journal of Research in Science Teaching:
The Official Journal of the National Association for Research in Science
Teaching, vol. 37, no. 8, pp. 760–783, 2000.

https://code.org/about
http://dl.acm.org/citation.cfm?id=2566247
http://www.sciencemag.org/content/350/6265/1245
http://dl.acm.org/citation.cfm?id=2702656
http://doi.acm.org/10.1145/2591683
http://science.sciencemag.org/content/355/6322/251
http://science.sciencemag.org/content/355/6322/251
http://www.sciencedirect.com/science/article/pii/0147176786900155
http://www.pnas.org/content/early/2017/04/07/1611898114
http://www.pnas.org/content/early/2017/04/07/1611898114
http://dl.acm.org/citation.cfm?id=345238
http://doi.acm.org/10.1145/2445196.2445368
https://aaltodoc.aalto.fi:443/handle/123456789/3534
https://aaltodoc.aalto.fi:443/handle/123456789/3534
http://www.sciencedirect.com/science/article/pii/S0065260108602816
http://www.sciencedirect.com/science/article/pii/S0065260108602816
http://pythontutor.com/
https://data.worldbank.org/indicator/SE.PRM.ENRL.TC.ZS
https://data.worldbank.org/indicator/SE.PRM.ENRL.TC.ZS
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
http://www.misq.org/skin/frontend/default/misq/pdf/V37I2/ReineckeBernstein.pdf
http://www.misq.org/skin/frontend/default/misq/pdf/V37I2/ReineckeBernstein.pdf
http://psp.sagepub.com/content/29/10/1207
http://offcampus.lib.washington.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1995-32996-001&site=ehost-live
http://offcampus.lib.washington.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1995-32996-001&site=ehost-live
http://offcampus.lib.washington.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1995-32996-001&site=ehost-live
https://books.google.com/books?hl=en&lr=&id=DACsdMk7qqoC&oi=fnd&pg=PA1&dq=schwartz+values+behavior&ots=u3nzArGxx6&sig=oe4XQPtH6yS2Rea6qkcYRGLs5h8
https://books.google.com/books?hl=en&lr=&id=DACsdMk7qqoC&oi=fnd&pg=PA1&dq=schwartz+values+behavior&ots=u3nzArGxx6&sig=oe4XQPtH6yS2Rea6qkcYRGLs5h8
https://books.google.com/books?hl=en&lr=&id=DACsdMk7qqoC&oi=fnd&pg=PA1&dq=schwartz+values+behavior&ots=u3nzArGxx6&sig=oe4XQPtH6yS2Rea6qkcYRGLs5h8
https://hal.archives-ouvertes.fr/inria-00555768/
http://arxiv.org/abs/cs/0310016
http://arxiv.org/abs/cs/0310016
http://ieeexplore.ieee.org/abstract/document/5287015/
http://digitalcommons.du.edu/etd/1099
http://www.ep.liu.se/ecp/article.asp?issue=001&article=014
http://ieeexplore.ieee.org/abstract/document/6338149/
http://ieeexplore.ieee.org/abstract/document/6338149/
http://doi.acm.org/10.1145/1518701.1518942
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://www.geerthofstede.nl/dimension-data-matrix
http://dx.doi.org/10.1146/annurev.publhealth.23.100901.140546
http://dx.doi.org/10.1146/annurev.publhealth.23.100901.140546
http://dx.doi.org/10.1207/s15327752jpa8502_09
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424072/
http://dl.acm.org/citation.cfm?id=1124808

[39] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte, and
M. Hastings, “Effectiveness of end-user debugging software features:
Are there gender issues?” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2005, pp. 869–878.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1055094

[40] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud, “Predicting
At-risk Novice Java Programmers Through the Analysis of Online
Protocols,” in Proceedings of the Seventh International Workshop
on Computing Education Research, ser. ICER ’11. New York,
NY, USA: ACM, 2011, pp. 85–92. [Online]. Available: http:
//doi.acm.org/10.1145/2016911.2016930

[41] M. C. Jadud, “A First Look at Novice Compilation Behaviour Using
BlueJ,” Computer Science Education, vol. 15, no. 1, pp. 25–40, Mar.
2005. [Online]. Available: https://doi.org/10.1080/08993400500056530

[42] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons,
“Conditions of Learning in Novice Programmers,” Journal of
Educational Computing Research, vol. 2, no. 1, pp. 37–55, Feb.
1986. [Online]. Available: http://journals.sagepub.com/doi/10.2190/
GUJT-JCBJ-Q6QU-Q9PL

[43] H. Kang and P. J. Guo, “Omnicode: A Novice-Oriented Live Program-
ming Environment with Always-On Run-Time Value Visualizations,” in
Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. ACM, 2017, pp. 737–745.

http://dl.acm.org/citation.cfm?id=1055094
http://doi.acm.org/10.1145/2016911.2016930
http://doi.acm.org/10.1145/2016911.2016930
https://doi.org/10.1080/08993400500056530
http://journals.sagepub.com/doi/10.2190/GUJT-JCBJ-Q6QU-Q9PL
http://journals.sagepub.com/doi/10.2190/GUJT-JCBJ-Q6QU-Q9PL

