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Abstract—In recent years, more people from different back-
grounds are trying to informally learn Machine Learning (ML)
using a plethora of online resources, yet we know little about their
motivations and learning strategies. We carried out interviews
with 22 informal learners of ML from diverse job roles and
backgrounds, including Computer Science, Medicine, Finance,
and others, to understand their approaches, preferences, and
challenges in locating and interacting with different resources
to manage their learning. We analyzed our findings using the
framework of self-directed learning and found that these infor-
mal learners struggled in all stages of self-direction, including
identifying learning goals and selecting resources, and that their
challenges were most acute in the last stage of gauging progress
and evaluating outcomes. We identify several opportunities for
future research to better understand and support informal
learners of ML (and other complex technical skills). In particular,
there is a need to foster more self-monitoring and self-reflection
techniques that can help informal learners become more self-
aware and effective in directing their learning.

Index Terms—informal learning, learning ML, self-directed
learning

I. INTRODUCTION

Advancements in Machine Learning (ML) are increasingly
changing the nature of many work processes [1, 2]. Profes-
sional ML specialists usually have formal training in computer
science (CS) or applied math. However, in recent years a
growing number of non-ML specialists such as scientists [3,
4], web developers [5], UX designers [6], hobbyists, artists,
and other creative practitioners [7] are informally learning ML
to apply it to their respective domains. As ML solutions are
being sought in areas ranging from medicine to journalism,
the population of informal learners of ML will continue to
grow [8]. ML already ranks amongst the most sought-after tech
skills, with ML-related MOOCs seeing some of the highest
enrollments [9, 10].

Although there is no single definition of informal learn-
ing [11], it is generally a process in which the onus of making
choices about learning goals, resources, and strategies is on
the learner, as opposed to teacher-led formal learning in the
classroom [12]. Informal learners of ML have the opportunity
to learn on-demand and access explanations and examples
of various ML concepts through the wealth of materials
available online [13]. But getting access to resources does not

necessarily translate to effective learning, as shown by prior
work on informal learners of other technical topics [14]–[16].
As advocated by tenets of learner-centered design [17], we
argue that to empower informal learners of ML to be the most
successful, we first need to better understand their motivations,
learning strategies, and challenges.

In this paper, we tackle three related research questions: 1)
What motivates informal learners from different backgrounds
to pursue ML? 2) What learning strategies do they use? and,
3) What challenges do they face in applying those learning
strategies? We took a qualitative approach and interviewed
22 informal learners (7 women) with training in a range of
fields, including CS, Engineering, Math, Medicine, Finance,
Linguistics, and Anthropology. They had diverse reasons for
learning ML, such as wanting to use it for medical understand-
ing, sports data analysis, sign language translation, as well as
various projects for career growth. Most did not work in ML-
specific job roles but were still interested in writing ML code.
Prior work has shown how non-specialist ML stakeholders
benefit from such exercises to better critique ML systems and
formulate advocacy arguments [18]. Our work aligns with
this ongoing research agenda of increasing AI literacy for
empowering stakeholders and non-specialist learners of ML
by drawing the focus on current learning practices.

To understand and interpret our interview findings, we used
the metacognitive lens of self-directed learning [19] and its
three-stage model (Figure 1). We found that our interviewees’
self-directed approach was often opportunistic and narrowly
focused on immediate task-based goals, with little attention
to strategizing systematic approaches and learning strategies.
While our interviewees struggled to some extent in all three
stages (see Figure 1), our findings indicate that the challenges
in gauging progress were the most acute. Learners tended to
omit evaluating learning outcomes, which led to feelings of
dissatisfaction, unpreparedness, and a sense that “there’s no
way to keep up!” In particular, we found that informal learners
mainly from non-CS/Engineering backgrounds struggled with
setting suitable learning objectives due to the interdisciplinary
and fast-paced nature of the ML field.

Based on our findings, we draw several implications for
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future research in Human-Computer Interaction (HCI) to better
support informal learners of ML (and similar technical skills)
in becoming more self-directed. Although some recent work
has been exploring self-direction in the context of learning
programming [20], ML is inherently different as it requires ad-
ditional skills in handling high-volume data, complex models,
interactions between code and data, and some mathematical
fluency [5, 21]. As such, we need to better understand the
unique strategies of informal learners of ML and how they
are able to set and achieve their learning goals. For example,
one approach may be to further study the specific contexts of
informal strategies among successful ML learners and draw
upon HCI’s progress with self-tracking and self-monitoring
technologies (e.g., in health and productivity domains) to
support struggling learners in identifying personal metrics
of progress; that can lead to developing personally-relevant
strategies to achieve learning goals. Given the ascent of remote
online learning during the pandemic and growing interest in
upskilling and reskilling in an ever-changing modern work-
place, addressing the challenges of self-directed learning will
be a pressing goal in the coming years.

Our paper makes the following contributions:
1) Empirical insights into the background, motivation, and

learning strategies of informal learners of ML.
2) Synthesis of key challenges that informal learners of ML

face, through the lens of self-directed learning.
3) Design opportunities for interventions tailored to infor-

mal learners to support their self-direction through self-
monitoring and self-reflection techniques.

II. RELATED WORK

Our work builds upon research on improving access to ML,
informal learners of ML, and self-directed learning.

A. Improving Access to ML Literacy

As ML-driven systems are increasingly being incorporated
into our personal devices and societal structures (e.g., law
enforcement, financial sectors, surveillance systems) [22]–
[24], there has been a growing call in the research community
to support the developers, end-users, and other stakeholders
of ML systems [25]–[29]. For example, recent studies have
explored how to improve AI literacy among non-expert stake-
holders of machine-learned systems through the use of inter-
active, transparent, example-based interfaces [25, 29], how the
use of personally relevant data might help in better grounding
self-advocacy arguments against harmful models [18] and how
children make sense of AI models [30, 31].

Researchers have also categorized challenges faced by tech-
nical professionals (e.g., software developers, ML experts) [5,
28, 32], such as the interpretability of models developed
by data scientists for hypothesis generation and stakeholder
communication [33]. Others have studied the process of ML
development (e.g., data iterations, ML diagnosis) carried out
by ML-practitioners to introduce interventions to support
it [28, 34, 35]. These efforts towards understanding how people
build ML systems have opened up more questions about the

processes people use for learning ML. In our research, we
call attention to the needs of the growing number of informal
learners from domains beyond CS who are interested in
learning ML, but may not necessarily be ML practitioners [36].

B. Informal Learners of Programming and ML
The concept of informal learning has been around for

decades, but the definition of informal learning can be varied
and encompasses several facets of learning. Some researchers
describe informal learning as a paradigm where an institution
sets the learning objectives and places the onus of determining
the means for achieving those objectives on the learner [12].
Other researchers prefer a broader meaning where the learning
is intentional, but unorganized and may be “self-directed,
family-directed or socially-directed” [11].

A study similar to ours surveyed web developers learn-
ing to use a specific ML framework and found barriers to
conceptual and theory learning [5]. In contrast, our work
takes a qualitative approach, using the lens of self-direction
to uncover broader metacognitive challenges while informally
learning ML that pertains to learners’ decisions about selecting
resources, uses of learning strategies, and methods of gauging
progress and evaluating outcomes.

C. Metacognition and Self-Directed Learning
Knowles describes self-direction as a “systematic process”

where an individual takes the initiative in diagnosing their
learning needs and goals, the human and material resources
needed to achieve them, choosing appropriate strategies and
evaluating learning outcomes [19]. Effective self-direction
requires metacognitive control where learners take charge
of their own process through 1) identifying learning needs
and goals, 2) choosing learning strategies, and 3) evaluating
outcomes to better prepare for subsequent attempts [19]. The
terms informal learning and self-directed learning are some-
times used interchangeably. In our work, we use the definition
of self-direction provided by Knowles as a lens to understand
to what extent people learning ML through informal means
are able to self-direct their learning by strategically guiding
their own metacognitive processes.

Systematic use of metacognition through self-monitoring
and self-regulation have long been associated with higher
academic success [20, 37, 38]. Despite the progress in
(semi-)formal settings, research on how informal learners use
metacognitive techniques while engaging with online learning
content is limited [39]. Past research has shown that informal
learners take the liberty to choose how to meet their learning
needs [12, 40, 41], but also that they may prefer “trial and
error” type approaches [42]. Given that metacognition can
be complicated and time-consuming, there is a clear need to
understand these processes in the informal learning context as
a first step towards improving them, which our study explores
within the context of ML.

III. METHODS

To address our research questions, we used a qualitative
approach that would allow us to capture the nuances of individ-



TABLE I
BACKGROUNDS OF INTERVIEWEES AND EXAMPLE PROJECTS THEY WORKED ON WHILE LEARNING ML.

ID (gender) Degree (area) Example project ID (gender) Degree (area) Example project
P01 (F) M.D. (Biology) Pain Management Studies P12 (M) B.S. (CS) Stock Market Prediction
P02 (M) Ph.D. (CS) Book Recommendation System P13 (M) B.E. (Electronics) Sports Data Analysis
P03 (M) B.E. (Mechanical) Game Development P14 (M) M.S. (CS) Unemployment index prediction
P04 (M) B.A. (Finance) Time Series Analysis P15 (M) B.S. (CS) Document image classification
P05 (F) M.S. (CS) Sign Language Detection P16 (F) M.S. (CS) Face Detection
P06 (M) B.E. (Electronics) Medical Image Analysis P17 (M) M.D. (Biology) (None yet)
P07 (M) B.S. (CS) Safe path prediction P18 (M) M.E. (Manufacturing) Ecommerce
P08 (F) B.S. (CS) Virtual Reality P19 (M) M.E. (Aerospace) Social Media Content Analysis
P09 (F) M.S. (CS) Chatbot for Learning P20 (M) Ph.D. (Chemistry) Financial Time Series Analysis
P10 (F) B.S. (IT) Introductory ML classes P21 (M) B.S. (Linguistics) Language Translation
P11 (F) M.S. (CS) Business/Customer Analytics P22 (M) B.A. (Anthropology) Stock Market Prediction

ual experiences [43, 44] and better understand learners’ back-
grounds, motivations, strategies, struggles and workarounds.
We conducted in-depth semi-structured interviews with 22
participants who had attempted to learn different technical
aspects of ML (e.g., theory, implementation) on their own.

A. Recruiting Informal Learners of ML

To recruit interviewees, we used an online screener survey
to gather a general understanding of the backgrounds of
informal learners of ML. Our survey consisted of demographic
questions about education, gender, location, age, current oc-
cupational role, and familiarity with different ML frameworks
and development tools.

To ensure our survey reached a diverse population of
learners, we targeted users of informal online resources [16]
rather than formal university-based ML courses. These in-
formal learning resources included forums such as sub-
reddits (r/learnmachinelearning), popular ML tutorial sites
such as MachineLearningMastery and similar Medium posts,
videos on Youtube by individuals and several channels in-
cluding Google Developers, FreeCodeCamp, Simplilearn, and
Edureka. We also advertised the survey through our personal
contacts in industry and academia. The survey respondents
were offered a chance to win USD 50 in a raffle. We hosted
the survey for two months and collected responses from 28
different countries with respondents from Asia (46.4%), North
America (30.4%), South America (14.4%), and Europe (6.4%).

We received 126 completed survey responses, where about
a quarter of respondents (24.6%) identified as female, most
(86.5%) had at least one university degree, and all were
between the ages of 18-34. Many respondents (45.0%) came
from non-CS (non-computer-science) majors, including Busi-
ness, Chemistry, Economics, Education, Engineering, Law,
Management, Math, and Psychology.

Out of these screener survey respondents, 35 expressed an
interest in being interviewed, and we selected 22 people (7
women) to interview. Our selection criteria were to maximize
diversity in both demographics and job roles (e.g., software
developers, data scientists, faculty, research assistants).

B. Semi-structured Interview Protocol

Each interview was conducted remotely using Zoom video
conferencing and lasted approximately an hour. All intervie-

wees were offered USD 15 gift-cards for their participation.
Our semi-structured interview questions focused on under-

standing each learner’s motivations (e.g., why they were learn-
ing ML) and eliciting details about their learning strategies
(e.g., how they were learning ML). We asked the interviewees
about how they planned their learning approach and how
they selected resources on their own. Next, we used the
critical incident technique [45] to ask questions about how the
interviewees carried out their learning, focusing on examples
of any critical roadblocks they faced and what workaround
strategies they adopted (if any). We asked interviewees how
they tested their comprehension of ML concepts (if at all).
We also asked them to compare their learning experiences in
ML with their classroom learning experiences in other subject
areas. For example, we probed into skills or learning strategies
from other domains that they were able to transfer to ML and
any difficulties they faced along the way. We ended by asking
them to reflect on their achievements during their learning
experience, for example sharing their criteria of success and
to what extent they felt they achieved success.

C. Data Analysis and Presentation

The 22 interviews were video and/or audio recorded with
the interviewees’ consent and later transcribed. Two re-
searchers were involved in analyzing the qualitative data from
the interviews. We used an inductive analysis approach [46]
beginning with open-coding and a quote-by-quote strategy
to inspect each transcript. Our analysis was guided by the
principles of self-directed learning [19] and we considered how
interviewees’ responses were related to the different stages of
self-direction. We assigned multiple codes to responses where
necessary and had regular discussions within the research team
to reconcile our final coding scheme. Following this step, we
performed axial coding and also used affinity diagrams to
explore themes related to our main research questions around
motivations and learning strategies of informal learners of ML.

In Sections IV–VII that follow, we report on the diverse
motivations of these interviewees and the challenges they faced
in self-directing their learning of ML theory and practice.
While several of these challenges (section VI-A,VI-B,VII-B)
may apply more broadly to learners in other domains, we
highlight challenges that were unique to ML in sections V-A,
V-B,and VII-A.



Stage 3:

evaluating  
learning 

outcomes 
(section VII) 

Stage 1:
identifying  

learning needs
 and goals 

(section V) 

Stage 2:

choosing  
learning  

resources 
and strategy

(section VI) 

Challenges in  
self-directed  

learning of ML

Interdisciplinary nature of ML
 makes identifying knowledge gaps difficult

(section V.A)

Rapid advancements in ML  
leads to feelings of inadequacy 
(section V.B)

Variety of choices in resources overwhelm learners
who have limited acumen to judge the usefulness
(section VI.A)

Learners tend to be spontaneous rather than  
systematic in their learning approach
(section VI.B)

Unclear success metrics contributes
 to  challenges in gauging progress

(section VII.A)

Difficulty in accessing help for 
individualized feedback hindered progress

(section VII.B)

Fig. 1. We interviewed 22 informal learners of ML (machine learning) and categorized the challenges they reported according to the three stages of self-
directed learning [19]: identifying learning needs and goals, choosing learning resources and strategies, and evaluating outcomes to prepare for future attempts

IV. DIVERSE MOTIVATIONS FOR LEARNING ML

Table I shows that our interviewees came from diverse
educational and professional backgrounds, ranging from CS
to applied Engineering fields such as Aerospace, Manufac-
turing, Mechanical and Electronics. Others came from non-
CS/Engineering fields such as Math, Chemistry, Medicine,
Finance, Anthropology, and Linguistics. They were representa-
tive of screener survey respondents and included researchers,
technical educators, software developers, and data analysts,
among others. In addition, these interviewees expressed di-
verse motivations, ranging from personal curiosity and aspira-
tions for future job prospects to keeping up with advancements
in the field, similar to prior studies of informal learners of
technical concepts [5, 15, 47].

We saw a great diversity in the array of projects that our
interviewees were attempting to build while learning ML. For
example, among those who already had some prerequisite
knowledge (e.g., math, programming, or an application do-
main), seven interviewees wanted to use ML skills for “pet
projects.” These ranged from social causes, such as language
translation for their local community, to self-development,
such as personal sports data analysis. One of our interviewees,
P20, who had a PhD in chemistry, described how he was
making his learning relevant to a personal interest in finance:
“I’m at that time in my life where I should be investing
[financially]. So [financial time series analysis] felt like an
applicable area.” P20 also shared how he often took a math-
based approach, such as learning “dimensionality reduction
by doing the math for it” and watching derivations being
worked out in online lectures. Three other interviewees with
math backgrounds were similarly motivated to understand the
derivations of mathematical formulae that underlie ML.

Others were motivated to create a working piece of ML-
powered software. For example, P21, a linguist who had no
prior background in programming, shared that he had decided
to develop an application for sentiment analysis as a proof-
of-concept. P21 acknowledged that setting himself a concrete

goal to develop a prototype was an “accidental” decision that
enabled him to make progress towards the larger goal of
automating language translation. One-third of all interviewees
(7/22) mentioned that implementing a working prototype by
following a tutorial-based “step-by-step” process was their
preferred approach.

In contrast, seven interviewees from non-CS backgrounds
were motivated to learn ML as a hobby and thus did not
begin with a specific project in mind. For example, P17, who
was trained as a physician, expressed that he was “interested
in machine learning and in [its application to] medicine.”
P17’s approach to learning ML was by completing online
course certifications, similar to the approach in medical train-
ing, therefore he wanted to “complete the probability course
[...] and this other statistics course [...] And on the side,
[complete] a linear algebra [course]” to ultimately imple-
ment “something like a ‘Hello World’.” P17 used the “Hello
World” analogy from introductory programming to describe
producing a first result in an ML project. This process in ML
seemed convoluted to him without knowing the underlying
mathematical theory.

Lastly, three interviewees were educators who were mo-
tivated to help software developers skill-up in ML. Their
approach was based on studying a variety of examples. For
example, P09 mentioned how she learned ML concepts on-
demand by trying to teach it in a way that is “accessible to
everybody.” In every session, P09 used ”different examples
[and went to] GitHub for additional projects.”

V. CHALLENGES IN IDENTIFYING LEARNING GOALS

According to the principles of self-directed learning, learn-
ers first have to identify their learning needs and goals [19].
We found this to be a key challenge experienced by our
interviewees as they struggled to identify the ML-specific
topics they needed to study. They usually lacked an adequate
understanding of the problem domain and the underlying data,
or lacked knowledge of relevant mathematical models, or did
not have the necessary implementation skills. Additionally, the



dynamic, fast-evolving nature of the ML field compounded the
difficulties in setting clear learning objectives, even for the
more technical interviewees.

A. Dealing with Interdisciplinary Nature of ML

The interdisciplinary nature of ML added a layer of com-
plexity for many of our interviewees in diagnosing knowledge
gaps, especially when they lacked one or more of the prereq-
uisite skills while leveraging different ML learning resources.

More than half of the interviewees (13/22) struggled to fa-
miliarize themselves with different areas of knowledge within
ML, such as math, programming, data processing, signal
processing, software engineering, and application domains
(e.g., linguistics, medicine). For instance, P17 (a medical
professional) describes his thoughts during his initial attempts
at learning ML: “I just decided that this was beyond me [...]
And I dropped out [of the course] because I just knew that I
couldn’t do it. I didn’t actually test that.” He had subsequently
given up on ML before picking it up again years later to invest
time in acquiring some foundational knowledge. A contrasting
approach was taken by interviewee P07, which was to “skip
that [conceptual] part, Google stuff and hack it.”

Due to the interdisciplinary nature of ML, it was possible to
have different points of entry for self-guided learning, focusing
on either the implementation or theory. For example, P07’s
rationale for choosing an implementation-first approach over
learning theory was based on his apprehensions that focusing
on theories would prevent him from “building anything new,
other than the assignments” and consume “a lot of time to
[...] start doing some stuff.” On the other hand, for some of
our interviewees, implementation-only approaches turned out
to be rather frustrating. P01 described how “just look[ing]
at the code and just implement[ing] the formula in the
course to complete the task” without first understanding “what
the formula is about or how they come up with a special
mathematical formula” made it difficult to reason about the
output she observed. In such cases, interviewees preferred
a more theory-first approach, focusing on “probability and
linear algebra” even though that was, according to P17, “a
little off the track of getting something produced.”

Our interviewees revealed yet another perspective for ap-
proaching learning ML: by first learning about ways of work-
ing with data, attempting to understand the nature of datasets,
and performing descriptive statistics and visualizations. For
example, P20 realized that before diving into ML, “the most
important thing is collecting data.” He further explained his
experience: “So, I’ve been trying to write a script to pull data
down and create a data structure to hold all that...I’ve actually
kind of been diverting from ML and going into something
ancillary to it...rather than looking at algorithms.” (P20).

We also observed that our interviewees were struggling to
strike a balance between learning programming “to get at least
a foundation” and learning theory to “understand what was
going on behind the scenes” to get to the point where they
could read available open-source projects or code examples
and “edit it to [their] own needs”. P21, further pointed out

how he needed to rely on his Linguistics domain knowledge to
steer the development of the ML models for better outcomes:

It was suggested that we use a standard text classi-
fication algorithm [...] we needed it to take every
single utterance without remembering any of the
previous stuff [...] and I wouldn’t have been able to
get that sort of input if I didn’t have that background
in linguistics. (P21)

B. Keeping up with Fast-paced Changes in ML

One of the goals of self-directed learning is to enhance
the ability of individuals to become successful lifelong learn-
ers [19]. We asked our interviewees how their experience of
learning ML compared with other technical topics they may
have learned, and one recurring theme was that the constant
change and rapid advances in the field of ML made it difficult
to keep up. Even three out of our six more technically-
experienced interviewees (e.g., those from CS backgrounds)
faced bouts of imposter syndrome [48] while learning ML.
They expected to always stay abreast with recent develop-
ments, failing which they developed a fear that their current
knowledge was inadequate. P21 explained how it was “really
rough [...] when TensorFlow was updated to TensorFlow 2.0”
because he felt like he was “giving up this stuff that [he]
worked really hard to learn.”

In addition to keeping up with learning new ML program-
ming tools, our interviewees also needed to stay current with
ML techniques. As ML techniques evolve, so do the possible
use-cases. This poses a unique challenge to the learners of
ML to rapidly adapt their mental models of possible tasks and
useful applications. For example, P22 shared that while it was
important to make efforts to learn about the new modelling
techniques and highlighted the value of “dissecting, as you’re
actually doing the actual project and not trying to find time
after it’s over”, there was little to no time available to do so
“because it’s a moving target.” The software developers in our
study often prioritized their pursuits based on time-sensitive
deliverables and sometimes compromised on gaining deeper
understanding, thus leading to feelings of falling behind.
P16’s narrative further highlights a common sentiment among
interviewees:

I don’t know as much as I would like to know
because the field is always changing, especially
with deep learning, computer vision, and natural
language processing [...] I feel like there’s no way I
can keep up with everything. (P16)

Although other computing domains, such as web develop-
ment, also go through fast-paced changes, our interviewees
felt that it was more challenging to keep up with ML, as
developments could be happening on multiple fronts, such
as, data availability, predictive models, and implementation
frameworks.



Fig. 2. Illustrates how P08 juggled between seven different resources without
having any clear learning gains. P08 was able to eventually resolve her
roadblock and select two specific resources by reaching out to a friend who
had some experience with ML.

VI. CHALLENGES IN CHOOSING LEARNING RESOURCES
AND STRATEGY

In the second stage of self-directed learning, learners seek
the resources that will help them achieve their learning objec-
tives [19]. We observed that our interviewees struggled at this
stage because they were dealing with “too many choices” and
often lacked a clear strategy for approaching their learning.

A. Down the Rabbit Hole: Difficulty in Choosing Resources

Due to the fast-paced, dynamic nature of the field (as seen
in Section V-B), our interviewees pointed out that there seems
to be a proliferation of ML-related learning materials. The
explosion of choices in learning resources across multiple
media types (e.g., blogs, videos, online courses) often left them
feeling overwhelmed and “at sea” [49].

Although our interviewees had access to online courses
which were “credible sources” of information that offered
some “structure and guidance”, these learners faced chal-
lenges in selecting courses appropriate for their specific needs.
According to P06, part of the challenge arose from the lack of
critical awareness to “distinguish between [courses] which just
want to sell you something and those that want you to learn
in a more structured way.” This lack of awareness often led
to interviewees who were inexperienced in CS or math to go
down, what P04 describes as, a “rabbit-hole”. He explained:
“I was doing sporadic tutorials but later took courses to go
through the [math] step by step [..] and then that led [me] to
another place. Hopping from one course to another [...] made
me realize I wasn’t understanding much.”

Figure 2 shows a typical cycle of going down a rabbit hole
by alternating between web searches, asking a friend, and
reading various online resources, as explained by P08.

B. Lack of a Systematic Approach to Learn ML

For effective self-direction, learners should be able to strate-
gize their approach according to their learning goals [19]. For
example, a learner may employ a number of strategies to assess
difficulty, decompose the problem, design solutions, manage
time and resources to learn new information, and engage in
practice, self-assessments and reflection [20, 38].

Among all of our interviewees, only five described a specific
learning approach that helped them achieve their learning
goals. While two of the interviewees (P06, P14) preferred
the traditional approach of learning ML that focuses on
understanding the theories and math, the others (P15, P19,
P20) took a more hands-on approach of learning concepts
through implementation. P15, a software engineer, described
how he used a combination of “bottom up” and “top down”
approaches to learn the fundamentals first, “but within two
or three weeks [...], started building a [proof of concept]
application [...] and [got] into the details of each component.”

In contrast, among the other 17 interviewees, we noticed
a tendency to pursue learning spontaneously and a lack of
clarity in formulating and articulating a systematic approach.
For example, P09, who was learning ML on-the-job, described
how she used a combination of library resources, online
courses, and training resources at work and somewhat ran-
domly went through different ML topics. Using this approach
for over six months, P09 admitted that she failed to make
progress as per her expectations and had wasted a lot of
time and effort. Furthermore, when interviewees mentioned
having a preference for a particular learning approach from
prior experience (as described in section IV), they expressed
difficulties adhering to and staying consistent in their practices
for various reasons such as distraction and exhaustion. For
example, P17 preferred pursuing certifications similar to his
training in Medicine, but it was difficult for him to learn
ML systematically as it demanded a new way of thinking,
and having to deal with unfamiliar vocabulary. He often lost
focus and digressed from the topic he was studying because
he kept finding “too many interesting topics” which seemed
like “shiny objects” that he should follow:

In the context of diagonalization [...] I find someone
saying that the ‘similarity’ relationship represents a
‘change of basis’. I have been exposed to ‘change
of basis’ sometime ago, but now I can follow up
on this to connect these two ideas. In this example,
‘orthogonality’ is [what] I am interested in. (P17)

Another interviewee, P13 who was learning about the
application of ML in the context of social media and adver-
tisements, tried to brush up on his programming skills and ML
concepts at the same time by taking courses. With his program-
ming course, P13 did not experience much success: “I got too
confused with classes and OOP concepts [in Python], because
it is slightly different from JavaScript, so I dropped out.”
Despite attempting to follow systematic approaches offered
by courses, P13 struggled to formulate a suitable structure for
his specific learning conditions and needs: “I was doing two



things at one time, whereas I should’ve just focused on one
course [and made time] for hands-on [practice].” Four other
interviewees confirmed similar struggles with prioritizing their
time and selection of learning resources.

VII. CHALLENGES IN EVALUATING OUTCOMES

The final stage of self-directed learning involves evaluating
outcomes of learning strategies, through self-reflection or
feedback [19]. We found that evaluating learning outcomes
came across as the most challenging aspect of self-directed
learning for our interviewees. Many reported lacking a strategy
to gauge their own progress, while some others experienced
difficulties in reaching out for feedback.

A. Lack of Strategy in Gauging Progress

Unlike a learner in the classroom, an informal learner
may not have a predetermined rubric for self-evaluation, or
a mentor to help them strategize their learning path [11].
When we probed our interviewees to define their criteria for
success and what they considered an evidence of progress,
we found out that the aspect of gauging progress was largely
ignored. Relatedly, interviewees rarely shared any thoughts
about improving their own learning strategies. Any moments
of insight that may have occurred when implementing ML
projects were difficult to capture and use for self-reflections.

Aligned with findings from prior studies, our interviewees’
experiences with learning were opportunistic and focused on
obtaining immediate results through trial and error [50]–[52].
Most of our interviewees (18/22) reported that they rarely
spent any time thinking about their learning techniques or what
was not working well. In fact, they only reflected on some
fundamental questions for the first time when prompted during
our interview. For example, P09, who had spent over a year
working with natural language processing for the development
of a chatbot, shared that she had “never thought about what
was a good resource.” She further confessed that “I am not
aware [of useful resources] even now.” Interviewees indicated
that when they were pressed for time and juggling other
responsibilities, they were “not even trying to gauge anything”
and their efforts were directed to “just get [it] done.”

We probed into the difficulties in gauging progress and
found that it was hard to even recognize progression in
learning, which tended to be mostly focused on the output of
their machine learning models. Interviewees mentioned feeling
worried and disappointed because there was a long interval
between starting coding and seeing its outcomes, which made
immediate feedback difficult to obtain. Moreover, the result
of an ML project may be suboptimal even if implemented
correctly. The result-oriented success criteria combined with
the absence of a method for observing progress hindered
our interviewees from forming achievable milestones. P21
expressed that gauging progress while learning ML “caused a
lot of stress”, partly because of his lack of technical training:

If I had known [...] what sort of path was normal,
I could have set some pretty doable milestones. The
milestones that I set for myself [...] tended to be

centered around completing a project, or doing a
publication [...], but those are big goals. (P21)

When we inquired about what constituted moments of
learning, our interviewees revealed that their learning approach
tended to be somewhat eclectic, making it hard to recall
specific moments of insight. For example, P22 said building
an ML app was such an iterative process that even while
working with a well-resourced team, it was still a struggle to
capture reflections and realizations that occurred between “the
50 other things that they tried that didn’t work.” He went on to
add that, “we do take notes [...] but [...] questions keep coming
up because people forget that they’ve been looked at before
[...] saves a lot of cycles if you can capture that correctly.”

While our interviewees believed a systematic way of step-
ping through the learning experience would have been de-
sirable, a lack of clear metrics for success and the lack of
a way to observe their learning processes deterred learners
from taking better control of their learning. Furthermore, our
interviewees’ typical methods of gauging progress, such as
obtaining accurate output while programming, seemed to be
unsuitable when results from ML models were suboptimal.
These findings suggest that alternative methods of progress
tracking could be useful in the context of ML.

B. Challenges in Seeking Help and Feedback

Self-directed learning principles suggest that more experi-
enced peers or mentors can often play a key role in helping
evaluate learning outcomes [19]. In the case of our inter-
viewees, who were mostly learning by themselves, it was
challenging to find appropriate help when they needed it. Part
of the difficulty in obtaining help arose from social challenges
(e.g., difficulty finding a community for support).

Nine of our interviewees, mainly from CS backgrounds,
confirmed that it was faster for them to learn by asking friends
who already had relevant experience or following advice
shared on online communities like Facebook groups. However,
the majority of our interviewees from non-CS backgrounds
expressed challenges in navigating their way through self-
learning ML using social means alone. For example, P18,
who was trained as a Manufacturing Engineer, attributed the
challenges to the interdisciplinary nature of the ML field,
which meant that “there are no ready-made answers” and
that one has to rely on different experts who may be skilled
only in “statistics or [...] good at just teaching the tools or
someone who is good at [communicating] the logic of it.”

Some interviewees, such as P21, added that they felt that
“there’s stigma in the professional fields towards people that
don’t have a CS background that are doing ML.” Similarly,
P03, who had a Mechanical Engineering background but had
been practicing Data Analytics for seven years before learning
ML added: “It’s hard to be able to convince someone that I can
do ML without a formal degree.” There was a general sense
among our interviewees, irrespective of their backgrounds, that
connecting with and developing relationships with ML pro-
fessionals was important for their own progress. However, the



aforementioned challenges hindered some of our interviewees
from tapping into help sources for individualized feedback.

VIII. DISCUSSION

In this paper, we contribute insights into what motivates
informal learners from different backgrounds to pursue ML,
how they select their learning strategies, and what types of
challenges they face. Our work complements literature in HCI
aimed at understanding different populations of informal learn-
ers who are acquiring computing-related skills [14, 15, 47,
53]–[55]. By borrowing the lens of self-directed learning [19],
we identified the challenges specific to each stage of learn-
ing, such as setting objectives, planning a learning path and
evaluating outcomes. We found that while informal learners
were motivated to make progress, they resorted to trial and
error strategies, where they often consulted a resource (e.g.,
a course) because it was easy to access, without necessarily
assessing the benefits of the pursuit (trial). In the absence of
such reflections, these pursuits resulted in failure (error) in
terms of utilizing time or making progress towards desired
outcomes (see Fig. 1 Stage 3). Although researchers have used
terms such as ‘informal learning’ and ‘self-directed learning’
interchangeably [5, 56, 57], our findings indicate that self-
direction is an advanced metacognitive process that may be
challenging to carry out while learning a complex technical
skill informally.

A. Importance of understanding the variation in motivations
for learning ML informally

First, our study revealed the broad diversity that exists
within the population of informal learners of ML (see Table I),
complementing earlier studies that have identified specific sets
of ML learners [7, 30, 58]. Most of our interviewees were not
ML specialists and wanted to learn ML for personal interest
tasks (e.g., in sports, finance) or in their professional domain
(e.g., in education, health). Similar to the growth of end-user
programmers across several domains [59], it is likely that
there will be an increase in the population of people from non-
CS backgrounds who create and adapt ML-specific solutions.
But, as we found in our study, the challenge of learning ML
can be more acute because learners have to master not only the
programming-level details, but also understand the structure of
their data, the nuances of the underlying domain, and advanced
mathematical and statistical concepts.

By using the lens of self-direction, we found that most
learners found it challenging to accurately diagnose their
learning needs and resorted to using familiar strategies. For
example, learners with a background in math often resorted to
performing derivations of mathematical formulae used in ML
algorithms, while those with prior programming knowledge
sought code examples which helped them structure their pro-
grams. However, not all learners who pursue ML are equipped
with effective sense-making tools from relevant prior knowl-
edge. This suggests that learners might benefit from being
introduced to a range of effective learning strategies from
more experienced learners with a similar background, who

can serve as “mastery” or “coping” models [60]. Learners may
also benefit from alternative ways of gauging their progress,
as their usual results-focused approach does not factor in the
uncertainty of producing a usable model.

Prior studies have identified a need to expand ML literacy
by accommodating the needs of people from backgrounds
beyond CS [27]. Empowering stakeholders of ML systems
with an understanding of the underlying mechanics may even
help them become better critics of ML system design and
help achieve the vision for responsible AI systems [18, 61].
Our study is only one step in this direction, and further
studies are needed from learner-centered perspectives [17]
to accommodate the domain-specific needs of informal ML
learners.

B. Promoting reflective learning strategies for ML

The informal learners of ML in our study needed to identify
several high-value resources to help them develop their mental
model of the problem and solution, which quickly became
overwhelming given the deluge of ML resources. These learn-
ers often proceeded with ill-defined goals and vague success
metrics and often struggled in choosing resources and learning
strategies that may be helpful for them. What we observed
in learners’ behaviors is close to what has been described as
“information foraging” [49]. Our interviewees were oppor-
tunistic rather than strategic about their information-seeking
process. We found that learners’ attention was usually focused
on producing immediate results at the cost of developing
long term competency, what has previously been termed
as the production bias [62]. Additionally, our participants’
implementation-oriented approach could be explained by as-
similation bias [62] as learners tended to adhere to familiar
problem-solving techniques.

New tools can support self-direction among informal learn-
ers of ML to allow them to optimize their learning time
and to become aware of potential biases [63]. One way to
discover the factors that favor learning could be by providing
learners with means of observing and tracking their experience
across mediums (e.g., inspired by [64]–[70]). For example,
visualization techniques could show learners the patterns from
interaction traces [71] on various platforms they use for learn-
ing ML. Additionally, personal logs produced in the process
of learning (e.g., notes, to-dos, calendars) could augment these
self-awareness techniques. Future work could explore how
to capture the natural externalizations of learners’ thoughts
through different mediums. Such personal data could then be
used to create digital forms of bullet journals [72] that the
learner could use for self-reflections (Fig. 1 Stage 3).

C. Personalized success metrics for gauging learning progress

The problem of vague goals and personal success metrics
described by our interviewees has also appeared in prior
work [68, 70]. Providing tools for determining the criteria
for success can provide learners with contextual awareness
beyond their immediate task needs, and subsequently prompt
them to diversify their support systems for learning ML.



Future work could also explore the design of a learning track-
ing system with optional self-defined metrics that adaptively
gauge progress while learning ML. Metrics could include
the progress in learning new vocabulary, or measure appli-
cation of a newly learned concept in a prototype project. An
adaptive learning process can lead to the discovery of un-
foreseen problems and accelerate problem resolution towards
learner’s objectives. Continual re-evaluation and iteration of
the goals [68] could serve as invaluable feedback of the
learning progress (Fig. 1 Stage 3). This could be tailored
for ML and other complex technical topics where continuous
learning is key. Future work could investigate how reflections
could be integrated in the informal learners’ routine, such as
through incorporating subtle reminders or reflective activities
within the learner’s calendar [73].

D. Limitations and Future Work

Although we recruited interviewees from diverse demo-
graphic and professional backgrounds, those who responded to
our screener survey are likely more proactive and autodidactic
than the general learner population. We used self-report to
collect qualitative data from learners’ recollection of their
experiences, and therefore the reported information may differ
from their real-time struggles while learning. Note that the fo-
cus of our conversations was on higher-level learning strategies
rather than the lower-level technical details of struggling with
a specific programming language or framework. Future studies
could use observational or in-situ data collection methods
such as Experience Sampling [65, 74] or journaling to collect
real-time evidence of struggle. To complement our qualitative
work, researchers can use empirical findings from Learning
Sciences to design alternatives adapted for use in informal con-
texts. Lastly, we did not explore demographic differences, for
example background-specific, gender-specific, or occupation-
specific needs or learning goals, which is another avenue for
future work.

IX. CONCLUSION

We have contributed insights from interviews with informal
learners of ML, shedding light on their diverse backgrounds,
motivations, and learning strategies. Using the metacognitive
lens of self-directed learning, we identified challenges across
the three stages of self-direction that prevent informal learners
from strategically gauging their own progress and reflecting
about their learning. Despite being highly motivated and
investing a lot of time and effort, many of the informal
learners of ML in our study felt overwhelmed and struggled
to keep up. There are several opportunities for future research
to use learner-centered and human-centered approaches to
better understand emerging populations of informal learners
and better support these learners with interventions using self-
monitoring and self-reflection techniques. Ultimately, there is
a need to better support lifelong learning of ML and other
complex technical topics among populations who will not
necessarily be formally trained in CS or related fields.
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