
Learnersourcing at Scale to Overcome Expert Blind Spots
for Introductory Programming: A Three-Year Deployment

Study on the Python Tutor Website
Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

Julia M. Markel
UC San Diego

La Jolla, CA, USA
jmarkel@ucsd.edu

Xiong Zhang
University of Rochester

Rochester, NY, USA
xzhang92@cs.rochester.edu

ABSTRACT
It is hard for experts to create good instructional resources due
to a phenomenon known as the expert blind spot: They forget
what it was like to be a novice, so they cannot pinpoint exactly
where novices commonly struggle and how to best phrase their
explanations. To help overcome these expert blind spots for
computer programming topics, we created a learnersourcing
system that elicits explanations of misconceptions directly
from learners while they are coding. We have deployed this
system for the past three years to the widely-used Python Tutor
coding website (pythontutor.com) and collected 16,791 learner-
written explanations. To our knowledge, this is the largest
dataset of explanations for programming misconceptions. By
inspecting this dataset, we found surprising insights that we
did not originally think of due to our own expert blind spots
as programming instructors. We are now using these insights
to improve compiler and run-time error messages to explain
common novice misconceptions.

INTRODUCTION
Novices suffer from a large variety of misconceptions when
learning computer programming, ranging from misunderstand-
ings about syntax to incorrect mental models of code execu-
tion [5]. Although ideally they would have human tutors to
help them, in practice millions of people are now learning on-
line from self-paced tutorials, YouTube videos, and MOOCs
where they do not have convenient access to human experts.

One way experts can scale their efforts is to write explanations
for novice misconceptions and display them inline within
instructional resources. But a fundamental shortcoming of
this approach is that experts often suffer from a cognitive
phenomenon called the expert blind spot [4], also known as
the curse of knowledge: They forget what it was like to be a
novice, so they have a hard time empathizing with the struggles
of novices. In the context of learning programming:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
L@S ’20, August 12–14, 2020, Virtual Event, USA.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7951-9/20/08 ...$15.00.
http://dx.doi.org/10.1145/3386527.3406733

Figure 1. Python Tutor [2] is a website that lets users write code (left)
and see how it executes step-by-step with visualizations of run-time state
(right). In this work-in-progress, we augment Python Tutor with learn-
ersourcing to collect novice misconceptions about programming errors.

• Experts may forget all the places in the code where novices
commonly struggle, since for them everything looks simple.
• Experts may provide incomplete explanations since they

assume novices have more prior knowledge than they do.
• Experts may use advanced jargon and vocabulary in their

explanations, since they assume novices know those terms.

Our hypothesis in this work-in-progress is that novices can
help overcome expert blind spots by providing their own
written explanations for common coding errors that they
are facing. Specifically, novices know exactly where they
struggle since they experience it firsthand; and once they over-
come those struggles they can hopefully write explanations
using terminology that fellow novices can relate better to.

To explore this hypothesis at scale, we took a learnersourc-
ing approach [6, 7] where we built a novel system to collect
crowdsourced explanations of programming misconceptions
by using learners as the crowd. We deployed this system
within Python Tutor [2], an online code editor and visual de-
bugger with tens of thousands of daily active users and over
ten million total users so far (Figure 1). Our intuition is that
by prompting learners there to provide explanations at the
exact moment they overcome a particular coding struggle, we
can collect a corpus of written explanations that can augment
educational materials to overcome common expert blind spots.

We deployed this system online for three years (2017–2020)
and collected 16,791 learner-written explanations spanning a
variety of novice coding misconceptions. By inspecting these
explanations, we (as experienced programming instructors)

pythontutor.com

Figure 2. a) The user encounters an error while coding in Python Tutor, b) fixes their code and re-runs, c) sees a pop-up box showing the error they just
fixed, and d) writes an explanation about what misconception led them to make that error. e) The user can also write freeform explanations at any time.

have found surprising insights that we did not originally think
of due to our own expert blind spots. We can use these insights
to augment tools with more novice-friendly explanations.

The research contributions of this work-in-progress are:

• A novel and scalable learnersourcing technique for collect-
ing novice explanations of programming misconceptions.
• Preliminary findings from a three-year deployment that

collected a dataset of 16,791 learner-generated explanations.

RELATED WORK
Learnersourcing is a crowdsourcing technique where learners
contribute annotations for future learners while they are using
an instructional resource [6]. It has been applied to generating
subgoal labels for educational videos [6], debugging hints for
computer engineering coursework [1], and explanations for
math problem solutions [7]. To our knowledge, we are the
first to use learnersourcing to collect novice misconceptions
about computer programming. Prior work has catalogued such
misconceptions from the instructor’s perspective, but they have
not attempted to collect explanations directly from learners [5].
The closest system to ours is HelpMeOut [3], which aggregates
Java errors into a web interface that an expert instructor can
later annotate with their notes; in contrast, our system directly
queries learners in-situ and was deployed for three years to
generate a large-scale dataset of learner explanations.

LEARNERSOURCING SYSTEM PROTOTYPE
Figure 2 shows our system prototype embedded within the
Python Tutor website: a) The user can directly write code on
the site or copy-paste in code examples and problems they
are working on from online tutorials. They will inevitably
encounter errors when they are coding, which are either syntax
errors or run-time errors. Figure 2a shows a run-time error
when line 3 is executed, with Python reporting “Unbound-
LocalError: local variable ‘y’ referenced before assignment.”
These message are hard for novices to understand [5] since
they use technical jargon and do not indicate why someone
might have made that error (i.e., what their misconception
was). Syntax errors in Python show even less helpful mes-
sages, most commonly “SyntaxError: invalid syntax.” b) After
they eventually fix the error, here by adding ‘global y’ on
line 3, they run the code again and the error is gone. c) At

that moment, our system pops up a dialog showing the user’s
previous code, its error message, and the question “What mis-
understanding do you think caused this error?” d) The user can
write a response or dismiss the dialog. Hopefully they write
an explanation using terms that fellow learners can empathize
with better than Python’s built-in error messages; in this exam-
ple, the user wrote “‘global’ needed when both global & local
variable have same name.” Their text is saved to our corpus,
along with the history of their coding session, which includes
both the erroneous and fixed code. Our rationale for designing
the system this way is that we want to collect the learner’s
thoughts right at the moment when they just fixed an error
so that their misconception is at the top of their mind.

Our prototype automatically pops up a dialog whenever the
user fixes a syntax or run-time error. Note that since it only
detects that an error message has disappeared, it is possible
to get false positives when the user, say, completely changes
their code in between attempted executions. In that case, the
original error may be gone, but they simply moved on without
trying to fix it. In the future, we could heuristically suppress
false positives by taking diffs between code executions and
not popping up a dialog box if the code diff is too large.

This prototype can collect explanations for a variety of er-
rors that novices encounter, which include both compile-time
(syntax) and run-time errors that Python automatically flags.
However, it is possible for code to execute to completion with-
out Python issuing any errors, but it still produces incorrect
results. These are known as semantic or logic errors [5], and
they are impossible for a system to detect without a test suite.
Since Python Tutor users mostly write freeform code without
a test suite1, we wanted to provide a way to collect learner-
sourced explanations for semantic errors. Thus, we added two
buttons to the bottom of the interface, shown in Figure 2e. The
user can click either “I just cleared up a misunderstanding!”
or “I just fixed a bug in my code!” at any time, which then
prompts for a written explanation. These buttons give users
a way to share freeform explanations for moments when they
get a sudden insight about what is wrong with their code, even
when Python cannot detect a syntax or run-time error.
1If a test suite were available, then the system could automatically
pop up a dialog whenever a test goes from failing to passing, since
that may indicate that a semantic error was fixed.

Figure 3. Number of learner-submitted explanations per month (May
2017–May 2020) for syntax errors (blue), run-time errors (red), and
freeform explanations using the buttons in Figure 2e (green). Due to the
host website’s UI changes, freeform was discontinued in March 2018.

We designed this system to be lightweight and unobtrusive so
that it can be deployed live to the Python Tutor website [2]
without adversely affecting learners’ experiences. It triggers
only when errors have been fixed or when the user clicks the
buttons in Figure 2e. The user can also choose to never see
these pop-ups; this may cause us to miss out on some potential
data, but it respects the rights of users not to be disturbed.

PRELIMINARY FINDINGS
We deployed this system to the Python Tutor website in 2017,
so we have collected over three years of data on its usage. For
this preliminary analysis, we took a three-year corpus of data
from May 19, 2017 to May 19, 2020. We also only looked
at data for Python 3, which is the most common language
that learners write on the Python Tutor site. (Other supported
languages include Python 2, Java, JavaScript, C, and C++.)

We explored two main research questions using this data:

1. Would learners be willing to use this system voluntarily as
they are working on their code on the Python Tutor website?

2. Can these explanations potentially help overcome expert
blind spots [4] and improve future instructional materials?

Learners submitted 16,791 explanations that were at least 10
characters long; we filtered out short strings since they were
uninformative. Submissions came from 141 countries, with
the most from the U.S., India, Canada, U.K., and Australia.
(Nearly all explanations were in English.) Out of these 16,791
explanations, 7,466 were in response to fixing syntax errors,
6,333 for fixing run-time errors, and 2,992 were freeform
explanations using the buttons in Figure 2e. Figure 3 shows an
average of around 300 submissions per month, or 10 per day.

This level of usage suggests that learners were willing to vol-
untarily contribute explanations, although response rates were
low. During this time period, the syntax error pop-up dia-
log box was shown 1,906,878 times but collected only 7,466
explanations: a 0.4% response rate. Run-time errors had a
0.3% response rate. This was unsurprising since we did not
give learners any incentive (other than altruism) to contribute;
and even those who contributed were unlikely to submit an
explanation for every error they saw. Most of the time they
just fixed the error and moved on with their coding task.

Nonetheless, we collected a large enough corpus to discover
many insights that surprised us as experienced programming
instructors. To our knowledge, this is the largest corpus of
explanations for programming misconceptions. In this prelim-
inary analysis, we grouped entries by error type and skimmed
all of the explanations to find common patterns.2

Many errors were trivial (e.g., typos, mismatched parentheses),
so here we report only those where learner-written explana-
tions gave meaningful insights about their misconceptions.

Linguistic Misconceptions
Many misconceptions involve troubles with mapping between
the syntax of natural languages (e.g., English) and code syntax.
Our own expert blind spots caused us to never think about
many of these since we had been programming for so long
that code syntax came “naturally” to us. But learners wrote
insightful explanations for many kinds of errors, including:

• Omitting quotes for strings: In natural language, there is no
need to use quotes for prose. Omitting a single-word string
like foo(Alice) is legal code but accesses an undefined
variable; omitting a multi-word string like ‘foo(My name
is Alice)’ leads to a parse error. Escape sequences like
\" are also confusing since they are not needed in English.
• Capitalization: Some learners capitalize the first letter of

variable/function names when they appear at the start of a
line of code, because in English the first word in a sentence
should always be capitalized. Those same names are not
capitalized when used later, which causes errors since most
programming languages are case-sensitive. They also some-
times mistakenly capitalized keywords such as For, While,
If, again because it looks more natural in written English.
• Singular/plural: A common idiom for iteration is to use a

plural noun for a collection and singular for each element
in it, such as ‘for name in names: <loop body>’.
Some learners were confused about whether to access ele-
ments inside the for-loop using singular or plural. Singular
name is correct most of the time, but sometimes the entire
collection needs to be accessed, such as names.remove().
• Pronoun references: Some learners used “pronouns” to refer

to their variables with shorthand, which surprised us. For
instance, in many small pieces of learner code, there is only
one object that is created and being operated on, such as
a list. After defining the list using a variable name, some
learners simply referred to that list as list later in their
code instead of using its name, which throws an error.
• Verb placement: Function calls are like verbs, so some

learners were confused by where to place them in a state-
ment (akin to a “sentence” in code). For instance, some
wrote parse(x)=input() since it reads left-to-right like

“parse the string x that comes from user input” but the correct
syntax is x=parse(input()) if parse returns a string.
• Incorrectly chaining conditions, like ‘if x != a or b’

which reads naturally in English as “if x is not equal to a
or b.” We also saw cases like ‘if x > min and < max’
which reads as “if x is greater than min and less than max.”

2Showing them to other instructors would be better for ecological
validity, but for this work-in-progress we started with ourselves.

• Iteration that reads like English: Variables like i are often
used to iterate from 0 to some upper bound. Some learners
wrote code like ‘while i <= 100’ or ‘for i in 100’,
which read in English like i will iterate up to 100. The
former fails because i is never initialized, and the latter
fails because for-loops need a collection to iterate over.

Mathematical Misconceptions
Since many intro. programming problems deal with numbers
and math, we discovered some surprising misconceptions from
mapping between the syntax of math and code. For instance:

• Upon learning that == means equals in programming, some
learners tried using x == y as an assignment statement
instead of x=y, since they wanted to “make x equal to y.”
This intuitively makes sense but has no side effect in code
(it just returns a boolean). These errors are hard to track
down since only later in execution when x is accessed will
they realize that it does not have the updated value from y.

• Similarly, some did not know that assignment statements
go from right to left like c=a+b, so they wrote left-to-right
assignments like a+b=c. The unhelpful error here is “can’t
assign to operator.” Again, based on mathematical equality,
order does not matter, but in programming it does matter.

• Omitting * for multiplication: Instead of writing 3*x, they
write 3x, which gives a syntax error since it looks like a vari-
able name that starts with a digit. x3 does not work either
since it also denotes a variable name. Also, in math a(b+c)
and (a+b)c both mean multiplication, but in Python the for-
mer signifies a function call of a() and the latter is a syntax
error. Note that Python may display vastly different error
messages for the same misconception, and those errors give
no indication of the learner’s underlying math confusion.

• When numerical data is read from files or terminal input,
they often start as strings. If they are not properly converted
to numbers, it is still possible to use math operators like +
and > on them, which will perform string concatenation and
comparison, respectively. These can lead to subtle semantic
and logic errors, even though the code does not crash.

Polyglot Programming Misconceptions
Many learners came to Python from other languages like Java,
C, C++, or JavaScript. As polyglot programmers, they wrote
explanations for some common cross-language errors:

• API mismatches: Many languages share identically-named
functions for operating on built-in types. Some learners
were surprised that Python’s API differed in subtle ways,
such as the string split() method not accepting some
kinds of parameter values that are allowed in JavaScript.

• Compiled languages allow code to call a function (or class)
that is defined syntactically lower down in the source file,
but in Python everything must be defined before being used.

• Python uses colon+indentation instead of {braces} for block
scopes, which was a common frustration. More subtly, other
languages allow single-line blocks without braces, but in
Python it still needs colon and, optionally, newline+indent;
this fact led to surprising and non-obvious error messages.

DISCUSSION AND ONGOING WORK
This preliminary analysis revealed some of our own expert
blind spots as programming instructors. While many miscon-
ceptions seem apparent in retrospect, we never even considered
many of them before reading these learner-submitted expla-
nations. Some of these have been reported in prior studies
mostly from classroom settings [5], but the novel contributions
of our scalable technique and large data set are: 1) We can au-
tomatically collect data that tells us exactly which Python error
messages map to specific misconceptions, and how frequently
those occur in the wild. 2) We logged all of the code that led
to those errors, which we can later distill into error-inducing
code snippets. 3) We have explanations written in the learners’
own words, which can help us create custom error messages
using terminology that learners can better relate to.

Using this data, we are developing an automated tool that can
detect the most common types of learner misconceptions and
give more helpful error messages than what Python prints by
default. Developing this tool is mostly a matter of engineering
effort in writing custom parsers, heuristics, and analyzing run-
time value data for run-time errors. However, we would not
know what features we should include in such a tool if not for
our data-driven approach. Without learnersourcing, we would
need to manually sift through millions of automatically-logged
syntax and run-time errors and guess what those learners in-
tended to do instead of reading their firsthand explanations.

That said, learner-provided explanations have some limitations:
As expected, many are low-quality and even inaccurate, so the
signal-to-noise ratio is low. It still takes many hours of our
time to read through thousands of these explanations to find
patterns. In the future, we could augment learnersourcing with
a system where Python Tutor users vote on which explanations
make the most sense to iteratively improve their contents.

Acknowledgments: This material is based upon work sup-
ported by the National Science Foundation under Grant No.
NSF IIS-1845900.

REFERENCES
[1] Elena L. Glassman, Aaron Lin, Carrie J. Cai, and Robert C. Miller.

2016. Learnersourcing Personalized Hints (CSCW ’16). ACM.

[2] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based
Program Visualization for CS Education (SIGCSE ’13). ACM.

[3] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R.
Klemmer. 2010. What Would Other Programmers Do: Suggesting
Solutions to Error Messages (CHI ’10). ACM, 1019–1028.

[4] Mitchell J Nathan, Kenneth R Koedinger, and Martha W Alibali. 2001.
Expert blind spot: When content knowledge eclipses pedagogical
content knowledge. In Proceedings of the third international conference
on cognitive science. Beijing: University of Science and Technology of
China Press, 644–648.

[5] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and
Other Difficulties in Introductory Programming: A Literature Review.
ACM Trans. Comput. Educ. 18, 1, Article 1 (Oct. 2017).

[6] Sarah Weir, Juho Kim, Krzysztof Z. Gajos, and Robert C. Miller. 2015.
Learnersourcing Subgoal Labels for How-to Videos (CSCW ’15). ACM.

[7] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado,
Krzysztof Z. Gajos, Walter S. Lasecki, and Neil Heffernan. 2016. AXIS:
Generating Explanations at Scale with Learnersourcing and Machine
Learning (L@S ’16). ACM, 379–388.

	Introduction
	Related Work
	Learnersourcing System Prototype
	Preliminary Findings
	Linguistic Misconceptions
	Mathematical Misconceptions
	Polyglot Programming Misconceptions

	Discussion and Ongoing Work
	References

