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ABSTRACT
We survey all four years of papers published so far at the
Learning at Scale conference in order to reflect on the major
research areas that have been investigated and to chart possible
directions for future study. We classified all 69 full papers
so far into three categories: Systems for Learning at Scale,
Interactions with Sociotechnical Systems, and Understand-
ing Online Students. Systems papers presented technologies
that varied by how much they amplify human effort (e.g.,
one-to-one, one-to-many, many-to-many). Interaction papers
studied both individual and group interactions with learning
technologies. Finally, student-centric study papers focused
on modeling knowledge and on promoting global access and
equity. We conclude by charting future research directions
related to topics such as going beyond the MOOC hype cycle,
axes of scale for systems, more immersive course experiences,
learning on mobile devices, diversity in student personas, stu-
dents as co-creators, and fostering better social connections
amongst students.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
context/synthesis paper; survey paper; meta-analysis

INTRODUCTION
Although learning technologies have been around since the
dawn of the computer age in the 1960s with early systems like
PLATO [87], over the past decade the massive increases in
computing power and worldwide internet access have enabled
these technologies to scale to reach students in almost every
country. In response to recent trends, the Learning at Scale
conference formed in 2014 as an interdisciplinary venue where
researchers from fields such as learning science, computer
science, social sciences, and design come together to study
and address the sociotechnical challenges of scaling learning.
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Now that this conference has completed four years (it has
metaphorically “graduated from college”) and published 69
full papers, it is an appropriate time to take a step back to
reflect on where we have been as a community and where we
might go in the coming years. In this context/synthesis paper,
we survey all four years of Learning at Scale papers to reflect
on the major research areas that have been studied so far and
use those insights to chart possible directions for future study.

Why reflect on only the papers at Learning at Scale instead of
expanding our survey to include other related publications?
Because this new community was formed in recent years with
the explicit goal of addressing scale and bringing together
disparate fields instead of having legacy roots entrenched in
any one field. Since no single field is fully equipped to address
the challenges of designing the future of technology-enabled
education for a worldwide audience, we believe that the Learn-
ing at Scale publication record represents one of the most
representative overviews of the state-of-the-art in this space.

The contributions of this paper are:

• A taxonomy of all 69 full papers from all Learning at Scale
meetings so far (2014–2017), which reveals the major clus-
ters of research activity at this conference.

• A summary of representative papers from this taxonomy,
which introduces readers to the flavor of research done here.

• Design ideas for future research directions inspired both by
these existing papers and by evolving technological trends.

TAXONOMY OVERVIEW
Table 1 shows how we classified all 69 full papers from all
four years of Learning at Scale so far (2014–2017). Our ap-
proach was to work bottom up in an inductive manner by
first reading all of the papers and trying to characterize their
primary research contributions. At the highest level, we no-
ticed that nearly all papers contributed either software systems
or empirical studies. Out of the study papers, the next most
salient distinction was whether researchers were studying how
students interacted with existing software systems (e.g., how
they watch MOOC videos or use discussion forum software)
or studying the properties of online students themselves (e.g.,
their levels of self-efficacy or knowledge). Thus, we cre-
ated three top-level categories: SYSTEMS FOR LEARNING
AT SCALE, INTERACTIONS WITH SOCIOTECHNICAL SYS-
TEMS, and UNDERSTANDING ONLINE STUDENTS. We then
partitioned each category into a second level of sub-categories.
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SYSTEMS FOR LEARNING AT SCALE
One-to-One Systems Bayesian Ordinal Peer Grading [67]

BayesRank: A Bayesian Approach to Ranked Peer Grading [82]
Graders as Meta-Reviewers: Simultaneously Scaling and Improving Expert Evaluation for Large Online Classrooms [35]
Improving the Peer Assessment Experience on MOOC Platforms [76]
Peer Grading in a Course on Algorithms and Data Structures: Machine Learning Algorithms do not Improve over Simple Baselines [71]
PeerStudio: Rapid Peer Feedback Emphasizes Revision and Improves Performance [46]
Scaling Expert Feedback: Two Case Studies [34]
Scaling Short-answer Grading by Combining Peer Assessment with Algorithmic Scoring [47]
Self-evaluation in Advanced Power Searching and Mapping with Google MOOCs [85]

One-to-Many Systems Divide and Correct: Using Clusters to Grade Short Answers at Scale [4]
Gradescope: A Fast, Flexible, and Fair System for Scalable Assessment of Handwritten Work [72]
Teaching Students to Recognize and Implement Good Coding Style [83]
Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis [31]

Many-to-Many and An Automated Grading/Feedback System for 3-View Engineering Drawings using RANSAC [48]
Automated Systems An Exploration of Automated Grading of Complex Assignments [25]

Autonomously Generating Hints by Inferring Problem Solving Policies [65]
AXIS: Generating Explanations at Scale with Learnersourcing and Machine Learning [86]
Enabling Real-Time Adaptivity in MOOCs with a Personalized Next-Step Recommendation Framework [64]
Fuzz Testing Projects in Massive Courses [73]
Hint Systems May Negatively Impact Performance in Educational Games [59]
How Mastery Learning Works at Scale [69]
Learning is Not a Spectator Sport: Doing is Better than Watching for Learning from a MOOC [39]
Mathematical Language Processing: Automatic Grading and Feedback for Open Response Mathematical Questions [50]
moocRP: An Open-source Analytics Platform [63]
Problems Before Solutions: Automated Problem Clarification at Scale [1]

INTERACTIONS WITH SOCIOTECHNICAL SYSTEMS
Individual Interactions with Demographic Differences in How Students Navigate Through MOOCs [29]
Learning Technologies Detecting Diligence with Online Behaviors on Intelligent Tutoring Systems [14]

Do Performance Trends Suggest Wide-spread Collaborative Cheating on Asynchronous Exams? [8]
Effects of In-Video Quizzes on MOOC Lecture Viewing [42]
Explaining Student Behavior at Scale: The Influence of Video Complexity on Student Dwelling Time [80]
How Video Production Affects Student Engagement: An Empirical Study of MOOC Videos [28]
Student Skill and Goal Achievement in the Mapping with Google MOOC [84]
Superposter behavior in MOOC forums [32]
Understanding In-Video Dropouts and Interaction Peaks in Online Lecture Videos [36]
Using Multiple Accounts for Harvesting Solutions in MOOCs [70]

Group Interactions within $1 Conversational Turn Detector: Measuring How Video Conversations Affect Student Learning in Online Classes [74]
Online Communities Addressing Common Analytic Challenges to Randomized Experiments in MOOCs: Attrition and Zero-Inflation [49]

Alumni & Tenured Participants in MOOCs: Analysis of Two Years of MOOC Discussion Channel Activity [56]
A Playful Game Changer: Fostering Student Retention in Online Education with Social Gamification [43]
Blended Learning in Indian Colleges with Massively Empowered Classroom [13]
Chatrooms in MOOCs: All Talk and No Action [10]
Do Professors Matter? Using an A/B Test to Evaluate the Impact of Instructor Involvement on MOOC Student Outcomes [78]
Monitoring MOOCs: Which Information Sources Do Instructors Value? [77]
Online Urbanism: Interest-based Subcultures as Drivers of Informal Learning in an Online Community [26]
Staggered Versus All-At-Once Content Release in Massive Open Online Courses: Evaluating a Natural Experiment [55]
Structure and Messaging Techniques for Online Peer Learning Systems that Increase Stickiness [41]
Teaching Recommender Systems at Large Scale: Evaluation and Lessons Learned from a Hybrid MOOC [40]
The Role of Social Media in MOOCs: How to Use Social Media to Enhance Student Retention [89]

UNDERSTANDING ONLINE STUDENTS
Modeling Student A Data-Driven Approach for Inferring Student Proficiency from Game Activity Logs [22]
Knowledge A Visual Approach towards Knowledge Engineering and Understanding How Students Learn in Complex Environments [23]

Brain Points: A Deeper Look at a Growth Mindset Incentive Structure for an Educational Game [60]
Effective Sampling for Large-Scale Automated Writing Evaluation Systems [18]
Epistemic Cognition: A Promising and Necessary Construct for Enriching Large-scale Online Learning Analysis [33]
Exploring the Effect of Confusion in Discussion Forums of Massive Open Online Courses [88]
Improving Student Modeling Through Partial Credit and Problem Difficulty [61]
Learning Transfer: does it take place in MOOCs? [9]
Probabilistic Use Cases: Discovering Behavioral Patterns for Predicting Certification [11]
Robust Evaluation Matrix: Towards a More Principled Offline Exploration of Instructional Policies [17]
The Prediction of Student First Response Using Prerequisite Skills [2]
Towards Detecting Wheel-Spinning: Future Failure in Mastery Learning [27]
Uncovering Trajectories of Informal Learning in Large Online Communities Of Creators [88]

Promoting Global Attrition and Achievement Gaps in Online Learning [38]
Access and Equity Correlating Skill and Improvement in 2 MOOCs with a Student’s Time on Tasks [7]

Learning about Learning at Scale: Methodological Challenges and Recommendations [81]
Learning to Code in Localized Programming Languages [15]
Mobile Devices for Early Literacy Intervention and Research with Global Reach [3]
Preventing Keystroke Based Identification in Open Data Sets [52]
The Civic Mission of MOOCs: Measuring Engagement across Political Differences in Forums [68]
Towards Equal Opportunities in MOOCs: Affirmation Reduces Gender & Social-class Achievement Gaps in China [37]

Table 1. Our taxonomy of all 69 full papers from Learning at Scale 2014, 2015, 2016, and 2017. (Paper order within each category is not significant.)



Note that no single taxonomy can fully capture the nuances of
all papers, and we found that some papers had multiple types
of contributions; in those cases, we put each under what we
deemed as the category that best fit its primary contribution. A
few papers made methods or theory contributions, so we put
them into the categories that most closely fit their subjects.

Limitations: This taxonomy exclusively includes publica-
tions from Learning at Scale, which represents only a part
of the technology-enabled learning literature. A more com-
plete analysis might include conferences like Educational Data
Mining or Learning Analytics and Knowledge. We believe
that the methodology for creating this taxonomy is relatively
straightforward, however we recognize that there are more
systematic methods that have been used in adjacent fields [57],
including the Delphi method for group judgements [54].

In the following sections, we survey a representative sample
of papers from each category and sub-category in our taxon-
omy. Due to space constraints, we cannot summarize all 69
papers, so we picked a subset that embodies the themes of
each category. The remaining papers are all cited in Table 1.

SYSTEMS FOR LEARNING AT SCALE
The first set of papers from Table 1 that we synthesize are
those where researchers built interactive systems to support
learning at scale. These systems are often deployed in MOOCs
or large university courses. Although we categorized them
by the degree to which they potentially amplify human effort
(e.g., one-to-one, one-to-many, and many-to-many systems),
we also observed that feedback, grading, and hints were three
other common themes that cut across all sub-categories.

One-to-One Systems
The canonical one-to-one system presented at Learning at
Scale facilitates peer feedback, where each student gives one-
to-one asynchronous written feedback to evaluate the work of
their fellow students [76]. Researchers found that this strategy
approximates the quality of expert feedback [35] and is also
beneficial to the student giving the feedback [82].

PeerStudio efficiently recruits students to quickly provide fo-
cused feedback [46]. Kulkarni et al. report that feedback that
is not quickly received has the same effect as receiving no
feedback at all with respect to the student’s grade. Students
have several motivations for soliciting feedback, including
wanting comments about how a skill is expressed in their work
(like their grammar), comments on a specific part of the as-
signment, a “sanity check” before submitting their assignment,
or just to hear their classmates’ opinions. PeerStudio shows
how a human-centered system can organize students so that
they can be motivated to strengthen each other’s work.

Even in cases when peer feedback is not sufficient for grad-
ing assignments, it can still be valuable for enhancing expert
feedback. Joyner et al. deployed a peer feedback system as
part of Georgia Tech’s Online Masters of Science in Computer
Science program [35]. Expert graders who were able to see
peer feedback while grading provided significantly better feed-
back to students. In a separate study [34] Joyner examined
how Coursera, which provides an industry microcredential

certificate, trains high-achieving students to provide expert
reviews. The feedback of these experts-in-training is itself
reviewed, ensuring that the expert feedback that students will
eventually receive is consistent. Training experts appears to
be an effective strategy for providing fast feedback, with a re-
view occurring every two minutes, and the median time of 92
minutes from submitting an assignment to receiving a review.

Researchers have also highlighted limitations of peer feed-
back. Kulkarni et al. observed that multiple peer reviewers are
prone to give supportive but erroneous feedback to the same
submission [47]. Both Waters et al. [82] and Raman et al. [67]
present approaches for steering peer feedback in productive
directions by asking students to rank a small number of sub-
missions. Both use Bayesian methods to order these rankings.
The BayesRank model developed by Waters et al. optimizes
which submissions are ranked by which peers, while Raman
et al. precisely quantify the uncertainty of the rankings.

Reflection: Systems can empower direct student-to-student
interaction, often the most personalized asset in a course.

One-to-Many Systems
The canonical one-to-many system for learning at scale ampli-
fies the efforts of one individual (usually an expert instructor)
to reach a large number of students.

Scaling grading and assignment feedback is a significant chal-
lenge in MOOCs and large in-person courses. Several systems
presented at Learning at Scale work to ensure that the indi-
vidual expertise and feedback from a single instructor can be
applied to many students. Brooks et al. developed a system for
grading short answer questions by clustering responses using
standard text classification techniques [4]. They found that
clustering responses allowed instructors to complete grading
more quickly with no reduction in grading accuracy. Addi-
tionally more answers received feedback, and instructors were
able to spend more time giving more detailed feedback.

Head et al. developed one-to-many systems for programming
assignments: FIXPROPAGATOR and MISTAKEBROWSER [31].
Both aim to cluster feedback on code improvements: FIX-
PROPAGATOR sources these improvements from corrections
that instructors make to students’ submitted code, while MIS-
TAKEBROWSER sources improvements from students’ fixes
to their own code. The generated bug fixes improved grading
time, while also giving instructors a better sense of common
misconceptions among the students in the class. The task of
correcting students’ errors with a higher level of personalized
feedback is then made more manageable via clustering. Us-
ing tractable machine learning techniques improved both the
quality of feedback that students get and the instructor’s un-
derstanding of how students are progressing through a course.

Similarly, AutoStyle provides real time feedback about
whether students are using good coding style, offering sug-
gestions tailored to the stylistic faux pas that the student is
committing [83]. AutoStyle also uses clustering on student
code submissions to identify specific interventions that can
be made to improve code style. Wiese et al. find that not
only does AutoStyle help improve students’ coding style, but



it also improves students’ ability to recognize good coding
style when they see it. AutoStyle is in essence acting as an
assistant instructor, with the ability to provide feedback that is
temporally and spatially much closer to the student’s learning
environment.

Reflection: Experts can effectively scale their reach by using
data to direct their feedback to clusters of students.

Many-to-Many and Automated Systems
Generalizing beyond one-to-many, AXIS [86] embodies a
many-to-many system by letting students submit their own
explanations of course concepts; over time it learns which
explanations were best understood by students, and eventually
the quality of the explanations offered rivaled explanations
written by experts. As opposed to one-to-many systems, the
main insight demonstrated in a system like AXIS is that mul-
tiple student inputs can converge to a consensus, which can
then be broadcast to subgroups of other students.

More generally, fully automated systems scale even better
since they can provide personalized feedback to each student
on demand without waiting for human intervention.

Many such systems try to provide feedback in the way a human
grader might provide, but doing so in an automated manner.
For instance, Kwon and McMains developed RANSAC, a
system for providing nuanced feedback for complex technical
drawings [48]. It is difficult to provide feedback for technical
drawings because rotations, translations, and the positioning
of a student’s drawing may actually be correct even though it
is not identical or congruent to the correct drawing. RANSAC
is able to manipulate technical drawings so that errors in a stu-
dent’s drawing are obvious, even to the extent that RANSAC
finds errors that are often missed by human graders.

As another representative example, MLP (Mathematical Lan-
guage Processing) by Lan et al. [50] digests the text of a math-
ematical equation provided as the answer to a free-response
question. It transforms the text of an equation into a vector
space of features, allowing these free responses to be clustered.
Depending on the cluster that an equation is a part of, the equa-
tion can either be marked as correct, or MLP can identify the
specific error made in the equation so that detailed feedback
can be provided and partial credit can be awarded.

Automated systems can also help evaluate students more fre-
quently, and in more piecemeal intervals, than might be fea-
sibly done by a human instructor. Basu et al. built OK, a
system that asks students about how their submitted computer
programs should behave before the program is evaluated for
correctness [1]. This intervention aligns the student’s mental
model of how the computer program is implemented with how
a correct version of the program should work. OK reduced stu-
dent questions about one assignment by 79%, suggesting that
rubrics and specifications may not be enough to completely
articulate an assignment’s requirements.

Finally, several systems aim to predict the best way to guide
students through different learning paths. Pardos et al. modi-
fied the edX platform to log user data and to suggest page des-
tinations based on student behavior [64]. Piech et al. used stu-

dent data from Code.org and Markov models to develop strate-
gies to prevent students from getting stuck during a course
[65]. Furthermore, O’Rourke et al. present evidence that inter-
vening with hints may actually detract from student learning
[59]. The question of when and how to intervene during a
learning experience is still an area open for exploration.

Reflection: Embedding intelligence into a system can allow
students to experiment with course concepts. This creates a
safer environment for failure, so that their errors can be cor-
rected quickly, privately, and without serious consequences.

INTERACTIONS WITH SOCIOTECHNICAL SYSTEMS
A great deal of technical software infrastructure underlies most
online learning environments, but the social infrastructure that
emerges when scaling learning to global populations has also
been a major research focus. The interplay between these
forces creates a sociotechnical system with emergent proper-
ties. The next set of Learning at Scale papers from Table 1
present empirical studies of learner interactions with such sys-
tems. In this section we survey a sample of representative
papers related to both individual and group interactions.

Individual Interactions with Learning Technologies
One major research direction here has focused on understand-
ing how students behave with respect to their use of the re-
sources and digital artifacts present in many online courses.
There have been several attempts at characterizing the gen-
eral patterns of student interactions with these technologies.
Wilkowski et al. present four simple categories to partition
MOOC student personas: no-shows, observers, casual learners,
and completers [84]. Though much of popular press coverage
of online courses has been concerned with their low com-
pletion rates [62], Wilkowski et al. re-frame the goal of an
online course as being meant for providing relevant learning
opportunities at whatever levels students are willing to engage.

One particular behavior derived by Wilkowski et al. from
data they collected is that students will complete assignments
without looking at course materials until they reach an as-
signment they cannot complete. A similar observation was
made by Guo and Reinecke when studying MOOC navigation
behaviors [29]. Even students who would eventually earn a
certificate skipped 22% of course content. One of the most
common behaviors among certificate earners was navigating
from an assessment back to a lecture, suggesting that they did
not fully understand lecture material before they looked at the
assessment, or they skipped the lecture altogether. The authors
surmise that this behavior may reveal students’ motivations to
earn a credential rather than to truly engage with the material.

Since videos comprised the bulk of MOOC lecture content
[28], they are often studied as conduits of behavioral analysis.
For instance, Kim et al. performed a detailed study of students’
navigation through lecture videos [36]. They examine peaks
of activity within videos as a mechanism for identifying how
students use video content. Over 50% of all videos are not
watched until the end, and long videos have higher dropout
rates. Kim et al. also identified several different student actions
within videos including returning to missed content, following



a tutorial step, and repeating a non-visual explanation. This
work raises the open question of whether video content and
playback can be optimized for different student goals.

Reflection: Students come into online courses with diverse
goals, so course designers should make materials easy to
access along non-linear and incomplete paths.

Group Interactions within Online Communities
The communities that form during online learning experiences
involve a spectrum of participants from novices to experts,
sometimes with the explicit goal of providing mentorship
opportunities.

Researchers have observed that students want to contribute
to a course even after they have completed it. Joyner saw
that online students feel a sense of ownership of the program
that they participate in, and this feeling motivates students to
become teaching assistants [34]. Nelimarkka et al. conducted
interviews with “alumni” MOOC participants. They found
that alumni helped new students, and that these alumni were
motivated by the desire to learn more from other students [56].

Zheng et al. examined the social dynamics of a MOOC, which
they model as a “virtual organization” [89]. They collected
data from Facebook groups organized around several Coursera
courses, finding that forum post engagement on Facebook was
higher compared to the official Coursera forums for the same
course. Through a series of interviews with students, Zheng
et al. found that students felt that it was easier to make new
friends on Facebook compared to Coursera, and that there was
a greater sense of trust between students on Facebook since
accounts were connected to their real identities. Students re-
ported that they felt their interactions were more “real” on
Facebook, and that Facebook provided a platform that was eas-
ier for organizing group work compared to Coursera. Zheng et
al.’s study suggests that serious improvements can be made to
foster authenticity, trust, and other requirements for effective
collaboration, sharing, and teaching in online classrooms.

Examining traditional discussion channels is a ripe starting
point for examining the space of interactions in online learning
communities. Coetzee et al. studied chatrooms in MOOCs,
and although students report that the presence of a chatroom
helps them in the course, there is little evidence that chatrooms
provide any measurable performance benefits to students [10].
Coetzee et al. deployed both an embedded chat window in a
single-page version of the course, and a chat tab in another
version. They found that the embedded chat was used signifi-
cantly more often. Through interviews they learned that many
students liked to use the chat right before an assignment was
due, and although a minority of students used the chat, many
students reported that reading the discussions between other
students was helpful. Students posted hundreds of links in the
chatroom, including links to the course’s own forum and links
to code samples. This study opens up questions of how the
creation and curation of knowledge by students can be better
harnessed for wider community benefit.

Lastly, online communities of learning have subtleties of struc-
ture that may affect how students engage with the community.

Kotturi et al. explored these ideas by deploying different so-
cial and learning technologies in a set of online courses [41].
They found that merely making technologies available for fa-
cilitating online discussions and connections is not enough.
It is important to establish norms of behavior. Norms were
established by showing students exemplar samples of student
feedback, and by contacting the students to remind them that
their social participation in the course is important. Both of
these strategies led to higher student engagement in the studied
courses. This investigation highlights how technologies that
directly connect students can help students understand that
their individual presence and contribution matter, despite the
isolating effects of distance learning technology.

Reflection: Learning is an inherently social experience and
technologies can facilitate student-to-student interaction. But
these technologies may be secondary to establishing a culture
that encourages frequent and open communication.

UNDERSTANDING ONLINE STUDENTS
Learning at scale implies an activity that is distributed among
a diverse worldwide population. Therefore, understanding the
goals, needs, and obstacles of students from a wide variety of
backgrounds has been an active field of study at this confer-
ence. In this synthesis of the final set of papers from Table 1,
we discuss how student knowledge can be modeled in context,
and how global access and equity can be promoted.

Modeling Student Knowledge
To paraphrase Senator Howard Baker, designers of online
learning experiences are often interested in what students
know, and when they know it [19]. Modeling the diverse
array of student knowledge before, during, and after a course
can help instructors understand how course material can be
improved, when to intervene if a student is struggling, and
whether or not a student is prepared for more learning.

For example, Chen et al. investigated whether or not students
applied knowledge they gained in a MOOC after the con-
clusion of a course [9]. They tracked the public activity of
GitHub accounts that had been used by students in a course
on functional programming. After the course was over, they
found that past students wrote functional-style code with more
frequency than before the course. Their study demonstrated
that following students’ public activity after a course ends
can open up new methods of longitudinally evaluating the
effectiveness of online learning strategies.

The medium of the online classroom also allows the kind of
action-tracking that is commonly associated with e-commerce
websites; such an approach can be constructively adapted to
improve the understanding of student learning paths. Fratam-
ico et al. deployed a virtual electrical engineering environment
in a course [23]. By logging every action that a student per-
formed, they were able to visualize sequences of actions over
time, including how student decisions resulted in divergent
and convergent paths of action. The data from these naturally
occurring paths can be used to inform future decisions about
student knowledge scaffolding and course structure.



In a philosophically similar approach, Coleman et al. adapted
the Latent Dirichlet Allocation (LDA) technique to character-
ize sets of student actions in a course [11]. Their approach
accurately identifies latent patterns of student interaction with
the course. These patterns can be visualized by amounts and
types of student activity over time. This study demonstrates a
method for understanding patterns of student behavior across
the many different artifacts within a course, which can pro-
vide information about how students are understanding course
content and where they are experiencing success and failure.

Reflection: Now that we have abundant techniques for mod-
eling student knowledge, what are effective and practical
methods to deploy them at scale and measure their efficacy?

Promoting Global Access and Equity
Many projects to scale learning inherently have a social mis-
sion. The Learning at Scale community exists in a unique
moment in history where we can imagine and oftentimes cre-
ate educational experiences that have the potential to reach
millions of people. Considering our privileged position and
the global impact that this can have, it is important to integrate
the values of equity, access, and openness into our work.

68 out of 69 Learning at Scale papers so far are authored by
researchers working in Western (e.g., U.S. and Western Eu-
ropean) institutions; the sole exception was from Microsoft
Research India [13], which is still a U.S. company. It is im-
portant for researchers to consider that the vast majority of
online students do not come from these same backgrounds [12,
21, 79]. Toward this end, Dasgupta et al. studied the effect of
language localization on the speed at which students learned
Scratch, a novice-oriented programming language [15]. With
data from five localized Scratch learning communities, their
analysis shows a small but significant increase in the speed
at which students learned Scratch when they were learning in
their native language. Making it easy for a learning experience
to be localized (perhaps even by members of the community)
should always be an important design consideration.

Furthermore, it is likely that the epoch of the computer desktop
will look like a mere blip in time when the future history of
computing is written, relative to the rapid spread and democ-
ratization of mobile devices. Notably, the only publication in
Learning at Scale so far to specifically focus on using mobile
devices for learning was a study by Breazeal et al. [3]. They
developed and deployed a mobile application for promoting
child literacy. They tested their system in Ethiopia, South
Africa, and the United States in settings with a wide spectrum
of access to technology. It took only a few days for all groups
of children to quickly learn how to use the tablets provided to
them. Their experiment pushed up against some limits of scale,
though, since the devices had to be delivered by the research
team, and their students were children with low literacy.

Scaling to a global audience also means reconciling drastically
different worldviews amongst course participants. Conflict
in online discussions is pervasive, but optimistically Reich
et al. show that civil and productive discussion is possible

Figure 1. Learning at Scale has become less focused on MOOCs as the
years progressed. MOOCs will still probably be an important part of
online education in the foreseeable future, but we are just beginning to
explore the variety of substrates that make scaled learning possible.

in an online course [68]. Their education policy MOOC at-
tracted students with diverse political beliefs, who participated
in forums and individual threads with equal frequency, often
endorsing posts by students with opposing political beliefs.
Students with different beliefs also discussed the same con-
troversial topics with the same level of frequency, suggesting
that they were willing to engage with each other about issues.
This course serves as a case study for practices and policies
which foster empathic and insightful learning experiences.

Finally, even if students have the skills and resources to take
part in an online course experience, there are still obstacles
about their sense of personal identity that hold them back.
Within the setting of a Chinese MOOC, Kizilcec et al. explored
the role of Social Identity Threat (SIT): the fear that one will
be negatively judged due to one’s personal identity [37]. First
they surveyed students about factors such as their gender, their
perceived class in society, and their parents’ socioeconomic
status. Students were then randomized into being prompted to
complete a writing assignment about either study skills (the
control), or about their values and message they would send to
their future selves (the intervention). Students with high SIT
(e.g., lower social class men) who received the intervention
completed the course at a significantly higher rate than those
in the same group who did not receive the intervention.

Reflection: Modern learner populations are globally diverse,
so it is important to empirically investigate new ideas about
student identity and the settings in which they are learning.

DISCUSSION: CHARTING THE FUTURE
We conclude by reflecting on salient facets of our taxonomy
and pointing out seven potentially fruitful directions for future
research in the coming years of Learning at Scale.

1. Beyond the MOOC Hype Cycle
We believe that the wide array of insights published in Learn-
ing at Scale can be used to chart a trajectory for the growth and
diversification of technology-enabled learning sciences. Back
in 2011–2012, the three currently-largest MOOC providers
(Coursera, edX, and Udacity) were founded [53, 16, 20],



Figure 2. Personal attention and ease of delivery are two important
considerations for designing educational experiences. One main goal of
Learning at Scale is to contribute novel research that push toward the
top of this graph with systems that maximize both dimensions of scale.

prompting the New York Times to declare “The Year of the
MOOC” [62]. Following the model of the Gartner Hype Cy-
cle [24], 2012 encompassed the peak of enthusiasm, but by
2013 Udacity co-founder Sebastian Thrun was already calling
his own company a “lousy product” [6]. In a 2015 interview
Coursera co-founder Daphne Koller stated that MOOCs were
“emerging from the ‘trough of disillusionment.’" [58]. This
shifting balance is evident in Figure 1, where we plot the de-
creasing proportion of Learning at Scale publications each
year that are focused on MOOCs.

What enduring lessons are there from this first phase of the
MOOC hype cycle that can sustain forward-looking research
programs in the coming years? One starting point to consider
is that the MOOC revolution provided a valuable medium
in which challenges for scaling learning could be found, ad-
dressed, and refined. It is now clear, though, that the strategies
used to scale MOOCs have valuable applications outside of
MOOCs, and that there are methods for scale that have been
developed outside of MOOCs but could be incorporated back
into them. This duality can provide guidance for future work.

2. The Axes of Scale for Online Learning Systems
Two important variables to be considered when evaluating
the potential scale of educational experiences are the amount
of personal attention required in order for the experience to
be fully articulated, and how easily the experience can be
delivered. For example, the experience of progressing through
a Ph.D. program requires the personal attention of one or
several advisors who focus on a small number of individuals
in order to train them in a specific area of expertise. Each Ph.D.
experience is unlike any other, but the attention of advisors
is extraordinarily limited by funding and the amount of time
they can spend training each of their pupils.

Compare the high level of personalization necessary for Ph.D.
training to an experience like studying for a national standard-
ized test, where there is no consideration to customize the
test taking experience toward any of the attributes of the per-
son taking the test. In addition to these exams being blind to
the test-taker, the testing experience itself requires significant

physical infrastructure to distribute: test-takers must travel to
a prescribed location and then be monitored by proctors while
they take the exam. This experience is both not personalized
and fairly difficult to deliver at scale. Finally, consider the
modern experience of learning mathematics with access to a
computer or a smartphone. Any search engine will bring a
student volumes of books, numerous hours of lecture videos,
and thousands of static websites with explanations, strategies,
and problem sets. The experience of learning mathematics in
this way is trivially easy to distribute as long as both student
and teacher have an internet connection; however these videos,
books, and webpages have no knowledge of the student’s
background, interests, or intentions.

These two dimensions—personal attention and ease of
delivery—combine into what we call the Axes of Scale, il-
lustrated in Figure 2. We observe that the systems presented in
Learning at Scale enable learning experiences that are easily
and widely delivered with high levels of individual attention.
This observation informed the organization of the first section
of our taxonomy: Systems for Learning at Scale. Many of
these systems can be conceptualized as Euclidean translations
of existing methods towards the upper center of the Axes of
Scale. For example: AXIS more widely distributes an expert
explanation that might be provided by a personal tutor [86],
PeerStudio organizes feedback like a student might get during
an in-person seminar [46], and AutoStyle takes what could be
a static style guide and instead offers an interactive experience
for students [83]. We believe that the framework of Euclidean
translation on the Axes of Scale can be used as a tool for
inspiring new ideas about how to scale learning.

3. Toward More Immersive Online Course Experiences
One goal of the taxonomy that we have developed in Table 1
is to characterize some of the necessary ingredients for build-
ing engaging scaled learning experiences. We believe that
individual principles from each category can be extracted and
re-combined in novel ways to seed more immersive learning
experiences. For instance, our taxonomy identifies a cluster of
insights about video content including how videos should be
produced [28], how long they should last [36], and how stu-
dents interact with videos containing embedded assessments
[42]. Moving to another section of our taxonomy but continu-
ing with the thread of video and assessment we can see from
Koedinger et al. that students doing activities tend to be more
successful than students only watching videos [39].

A polymerization of these somewhat contradictory ideas might
lead to creating novel online learning experiences beyond
what is seen in standard MOOCs. For example, the Executive
Data Science Specialization Capstone, a Coursera course, puts
students into the shoes of a new data science manager [51].
By combining video interactions with real data scientists and
simulated emails, documents, and data products, this course
allows students to role play in an immersive fashion.

4. The Future is in Mobile Devices
One necessity for effectively scaling education is making sure
that students have the technology available to access courses
and educational content. All Learning at Scale papers so far



(except for one [3]) focus on education delivered via traditional
computers, but the nature of computing devices, and how
people spend time on those devices, is quickly changing. In the
last six months of 2016 global mobile internet usage surpassed
desktop internet use [75]. The adoption of smartphones is
accelerating all over the world: In 2015 68% of adults owned
a smartphone in advanced economies, compared to 37% in
emerging economies [5]. The three major MOOC providers,
Coursera, edX, and Udacity, all publish their own mobile
applications for both iOS and Android devices [12, 21, 79].
Despite the rise of mobile computing in the past few years,
only one paper in our taxonomy specifically evaluates a scaled
learning approach targeted for mobile devices [3]. Unlike
a desktop or laptop, 94% of American smartphone owners
say they carry their phone with them “frequently” [66]. How
can we design for learning at scale when every student has a
classroom in their pocket? With growing mobile internet use it
is necessary to follow students to the devices they are using in
order to evaluate the challenges and opportunities of learning
on a mobile device rather than assuming that they will always
be learning at their desks.

5. Addressing More Diverse Student Personas
Another trend that our taxonomy reveals is that there is
widespread interest in categorizing students by their behavioral
traces [84, 32, 11] and simultaneously there is general interest
in tracking student learning trajectories [65, 22, 17, 23, 64].
How should we design online learning experiences consider-
ing that we can characterize students by behaviors and goals?
So far the approach taken has been to try to predict student
behavior and then to intervene, perhaps with a suggestion, like
in Pardos et al. [64]. However, we know from user personas
in HCI and prior studies that students use course materials
according to their personal goals, which often do not include
completing an entire course. The existence of these personas
serves as a rebuttal to the common criticism of low completion
rates in MOOCs: not every student who is seeking learning
opportunities is looking to complete a course. As designers
of courses and learning systems we should embrace this fact,
especially given the diverse needs of online learners. This fact
begs the question: Are there scalable approaches for explicitly
guiding students according to their persona? Mullaney et al.
observe that many students only ever see the beginning of a
course [55]. Therefore, perhaps students should be offered
guidance at the beginning of a course about how to best use the
materials depending on what their goals are. In addition to be-
ing given explicit direction, inferences from student behavioral
data could be used to offer feedback and encouragement to
students who aspire to complete a course. Allowing students
to visualize their own path through a course could better help
them plan for keeping up with course demands.

6. Students as Active Co-Creators of Courses
Students are by no means passive participants in online learn-
ing experiences. Students curate knowledge, including course-
relevant web links as explored by Coetzee et al. in their analy-
sis of chatroom activity [10]. Huang et al. report that students
who post in MOOC forums with the highest volume tend to
create posts that are high in quality and the presence of their

posts are correlated with higher overall forum activity [32]. In-
terviews conducted by Nelimarkka et al. show that past course
participants are altruistically motivated to stay in course chat-
rooms to help new students [56]. Students also act as testers of
learning materials and experiences, since they report inaccura-
cies or inconsistencies if they can find them. In several ways
open courses share the properties of open source software,
insofar as they are large collaborative projects in which many
people participate and contribute to varying degrees. A series
of MOOCs on Coursera called the Data Science Specialization
takes this open source metaphor even farther [44]. Students
are encouraged to create their own tutorials and data analy-
ses, which they can then contribute to a community website
using GitHub. This mechanism allows the students to actively
contribute back to the course community, and it gives them
the opportunity to practice skills taught in the specialization.
Clearly there is a demonstrated desire by students who want
to contribute to courses, but systems for organizing these con-
tributions have not yet materialized. Perhaps there is a way to
reconcile the visions of early connectivist cMOOCs with the
modern xMOOC platforms that are now pervasive [30].

7. Fostering Better Social Connections in Online Courses
One of the biggest and most concerning consequences of
scaled education is that it is more difficult for students to
develop meaningful relationships compared to in-person edu-
cational settings. Education is much more than just the deliv-
ery of information; traditionally it has been an intensely social
experience with students and instructors sharing a physical
space. Online learning platforms commonly have forums, but
forums often fall short of students’ social needs. Zheng et al.
report that these forums do not facilitate collaboration, nor do
they allow students to build trust with each other compared to
communicating on a Facebook group [89]. Facebook groups
are not specifically designed for group learning, suggesting
there are unexplored possibilities for creating environments
that better serve groups of learners. To this end, Kulkarni et
al. built Talkabout, a system for scaling and structuring small
group video discussions [45]. They found that students who
participated in these discussions were more engaged with the
course and performed better. Kotturi et al. further tested Talk-
about, noting that the mere option to use the system was not
enough to motivate students to participate [41]. Expectations
needed to be set via regular communications with students
so that using Talkabout became a normal component of class
activity. Even if there are more social options available com-
pared to forums, students can benefit from the establishment
of course culture that encourages face-to-face interactions.
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