
Opportunistic Programming: How Rapid Ideation and
Prototyping Occur in Practice

Joel Brandt, Philip J. Guo, Joel Lewenstein, Scott R. Klemmer
Stanford University HCI Group

Computer Science Department, Stanford, CA 94305
{jbrandt, pg, jlewenstein, srk}@cs.stanford.edu

ABSTRACT
At times, programmers work opportunistically, emphasiz-
ing speed and ease of development over code robustness and
maintainability. They do this to prototype, ideate, and dis-
cover; to understand as quickly as possible what the right
solution is. Despite its importance, opportunistic program-
ming remains poorly understood when compared with tradi-
tional software engineering. Through fieldwork and a labo-
ratory study, we observed five characteristics of opportunis-
tic programming: Programmers build software from scratch
using high-level tools, often add new functionality via copy-
and-paste, iterate more rapidly than in traditional develop-
ment, consider code to be impermanent, and face unique
debugging challenges because their applications often com-
prise many languages and tools composed without upfront
design. Based on these characteristics, we discuss future re-
search on tools for debugging, code foraging and reuse, and
documentation that are specifically targeted at this style of
development.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Prototyping ; D.2.6 [Software Engineering]: Pro-
gramming Environments

General Terms
Design, Experimentation

Keywords
Opportunistic Programming, Prototyping, End-User Soft-
ware Engineering

1. INTRODUCTION
Hacking helps people prototype, ideate, and discover: An

interface designer creates as many prototypes as possible
before the user test next week. A museum exhibit designer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEUSE IV, May 12, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-034-0/08/05 ...$5.00.

a c

b

Figure 1: The Exploratorium Museum in San Fran-
cisco, California, where all exhibits are created in-
house. Exhibit designers are responsible for all
phases of development: designing interactions, con-
structing physical components, and developing soft-
ware. They are jacks-of-all-trades, their work en-
vironment (a,c) filled with computers, electronics
equipment, and manuals for a diverse set of soft-
ware. A typical exhibit (b) comprises many off-the-
shelf components hooked together using high-level
languages such as Adobe Flash.

explores many different directions to find the best way to
convey a scientific concept. A physicist writes a complex
real-time system to collect massive amounts of data during
an experiment that she can only run once. A professional
C++ programmer decides to create a simple web applica-
tion in his spare time to share bookmarks with his friends.
While these examples are diverse, there is a great deal of
commonality in how each of these individuals approach the
programming process. All of them emphasize speed and ease
of development over robustness and maintainability of code
— in many cases their code will only be run a few times,
or used for days or weeks at the longest. Similarly, each is
unlikely to invest a great deal of effort into learning com-
plicated libraries or tools to help them in their development
process — they may only be using those tools during the
afternoon that the development takes place. In this paper,
we refer to this approach as opportunistic programming.

Motivated by Clarke’s persona of the “opportunistic de-
veloper” [1], we define opportunistic programming as fol-
lows: It is an activity where non-trivial software systems
are constructed with little to no upfront planning about im-
plementation details, and ease and speed of development are
prioritized over code robustness and maintainability. This
is not simply “sloppy programming”; instead, this approach
enables prototyping, ideation, and discovery, tasks that ben-
efit significantly from being done rapidly, and are often best
accomplished by building a functional piece of software.

This paper presents five characteristics of opportunistic
programming that we have identified in our ongoing research
and suggests directions for further research on tools that
support this practice. We hope that this paper will gener-
ate discussion on the position of opportunistic programming
within the software engineering community.

1.1 Our current research
In this section, we introduce two of our ongoing projects

designed to better understand opportunistic programming.
We will present preliminary results in Section 2.

First, we are conducting fieldwork with exhibit design-
ers at the Exploratorium Museum in San Francisco, Cal-
ifornia. The Exploratorium is a museum of science, art,
and human perception. All exhibits are developed in-house
(see Figure 1), and the majority of these exhibits have in-
teractive computational components. Exhibit designers are
responsible for coming up with and implementing the inter-
actions that will best convey a particular scientific or per-
ceptual phenomenon. Many of these interactions can only
be achieved by developing custom pieces of software. For ex-
ample, an exhibit on microscopy required exhibit designers
to retrofit a research-grade microscope with a remote, kid-
friendly interface. While exhibit designers need to have the
skills to make these exhibits work — indeed, several of them
have training as computer scientists or electrical engineers —
they have little responsibility for the long-term maintainabil-
ity or robustness of an exhibit. (If an exhibit is successful, it
is commercialized by a separate division of the museum and
sold to other museums throughout the country.) As such,
they emphasize exploring many ideas as rapidly as possible
over ensuring robustness and maintainability. Our fieldwork
thus far has consisted of several open-ended interviews with
two of the exhibit designers to better understand their work
practice. We are currently beginning work on a retrospective
of how several of the exhibits were built.

Second, we recently conducted an exploratory laboratory
study with 20 individuals who were all competent program-
mers. The goal of our study was to understand what pro-
grammers do when asked to complete a task that encour-
ages opportunistic programming practices. We asked par-
ticipants to build a web-based group chat room with html,
php, and JavaScript. When recruiting, we specified that par-
ticipants should have basic knowledge of php, JavaScript,
and the ajax paradigm. However, almost all participants
were novices in at least one of the technologies involved. We
gave the participants several specifications for the chat room
(e.g., must support multiple concurrent users and update
without full page reloads) but encouraged them to otherwise
try to implement as much functionality as possible without
regard to code efficiency or programming style. We asked
them to approach this task as though they were working on
a hobby programming project, not on a class assignment,

in order to encourage opportunistic programming practices.
Participants were given 2.5 hours to complete this task, and
15 out of 20 met all of the specifications. We provided the
participants with a working execution environment within
Windows XP (Apache, MySQL, and a php interpreter) with
a “Hello World” php application already running, and al-
lowed them to use any resources (Internet, print, etc.) that
they wished during development. The data collection phase
of this study is complete, but the analysis is ongoing.

2. OPPORTUNISTIC PROGRAMMING IN
PRACTICE

In order to understand how to build better tools for op-
portunistic programming, it is important to understand how
it happens in practice. This section presents five common
characteristics we have identified in our ongoing research.

2.1 Build from scratch using high-level tools
Both our work at the Exploratorium and a prior study of

three other disciplines (web programming, toy development,
and ubiquitous computing design) [3] indicate that individu-
als engaging in opportunistic programming have the freedom
to select the tools they use. They choose to use high-level
tools that map closely to the task at hand and build their
systems from scratch by “gluing” these tools together. For
example, Exploratorium exhibit designers use user interface
tools such as Adobe Flash and Director, sound processing
tools such as Max/MSP, and high-level general-purpose lan-
guages such as Python as glue. Additionally, they appear
to be more interested in selecting tools that map closely to
the task at hand than selecting tools that they already know
how to use.

At first blush, it may seem that an optimal strategy would
be to find and modify an existing system that almost does
the desired task. Even with the assumption that such an
existing system is easy to find and open to modification,
this approach can prove quite problematic: First, modifying
an existing system requires first building a mental model of
that system. This can be difficult and time-consuming even
in the best of circumstances. Research at Microsoft [5] shows
that even when the code is well documented, the program-
mer is familiar with the tools involved, and the authors of
the original code are available for consultation, proper men-
tal model formation can still take a considerable amount of
time.

In our laboratory study, only three individuals chose to
modify an existing system, and two of those failed to meet
some of the specifications. Leveraging an existing system
allowed them to make quick initial progress, but made it dif-
ficult to achieve the exact specifications. For example, one
participant built upon an existing content-management sys-
tem with a chat module that already met 4 of the 6 specifica-
tions. He spent 20 minutes finding and 10 minutes installing
the system, thereby meeting those specifications faster than
all other participants. However, it took him an additional
58 minutes just to add timestamps to messages, and he was
unable to meet the final specification (adding a chat history)
in the final hour. The other two participants who modified
existing systems faced similar, albeit not as dramatic, frus-
trations.

Similarly, only three participants in our study used exter-
nal libraries, and in all cases these individuals already had

<?php

$res = mysql_query("SELECT id, name FROM table");

while ($row = mysql_fetch_array($res)) {

echo "id: ".$row["id"]."
\n";

echo "id: ".$row[0]."
\n";

echo "name: ".$row["name"]."
\n";

echo "name: ".$row[1]."
\n";

}

?>

Figure 2: A typical snippet of PHP code (querying
a database and iterating through returned values)
that nearly all lab study participants copied from
examples found on the web.

significant experience with those libraries. When one partic-
ipant who didn’t use external libraries was asked if he was
aware that libraries existed to make ajax calls easier, he
responded “yes . . . but I don’t understand how ajax works
at all . . . if I use one of those libraries and something breaks,
I’ll have no idea how to fix it.”

So why are those who engage in opportunistic program-
ming willing to spend effort to understand new tools but not
existing bodies of code or libraries? We suggest that good
tools typically have a “closeness of mapping” [6] that makes
learning the associated mental model much easier than con-
structing a mental model about an existing body of code.
Additionally, programmers are likely to employ a federation
of tools, one for each sub-task. A consequence of leveraging
tools over existing code is that development often occurs in
multiple languages. (E.g., a typical museum exhibit consists
of a Flash user interface that controls several stepper mo-
tors by communicating with an Arduino microcontroller via
TCP/IP code written in Python!)

This approach has many benefits. In addition to facili-
tating the process of mental model development, it allows
developers to compartmentalize different components of the
system, which is beneficial when opportunistic programming
is used for ideation and exploration (discussed further in Sec-
tion 2.4). Additionally, it makes debugging easier, as it is
easy to make state visible “at the glue” (discussed further in
Section 2.5).

Interestingly, this characteristic of opportunistic program-
ming contrasts with both professional software engineer-
ing and end-user development: Professionals are often con-
strained by the tools that their team or organization have
adopted and are, in fact, often recruited based on their
knowledge of particular tools; end-user programmers might
not have the expertise to be able to select and adopt the
proper tools.

2.2 Add new functionality via copy-and-paste
“Copy-and-paste programming” — writing code by itera-

tively searching for, copying, and modifying short blocks of
code (< 30 lines) with desired functionality [4] — appears to
be a staple of opportunistic programming. In our laboratory
study, all participants employed this practice extensively.
One high-level reason for this is obvious: When people are
working in a domain in which they are novices, copy-and-
paste programming is simply easier than trying to come up
with the code by oneself. For example, the vast majority of

participants were novices with ajax and copied-and-pasted
snippets of ajax setup code rather than try to learn to write
it from scratch. However, copy-and-paste is not simply for
novices; several participants were expert php programmers
and still employed this practice for some pieces of code, like
the one shown in Figure 2. When one participant searched
for and copied a piece of php code necessary to connect to
a MySQL database, he commented that he “had probably
written this block of code a hundred times”. Upon further
questioning, he reported that he always wrote the code by
copy-and-paste, even though he fully understood what it
did. He claimed that it was “just easier” to copy-and-paste
it than to memorize and write it from scratch.

Cognitive science research on human performance and
human error offer a deeper insight into why this may be
true [10]. Psychologists divide human performance into
three levels: skill-based (e.g., walking), rule-based (e.g.,
navigating to another office in a well-known building), and
knowledge-based performance (e.g., planning a route to a
place one has never been). We believe that copy-and-paste
programming allows developers to engage in rule-based per-
formance regardless of whether or not they are experts with
the tools they are using. Broadly speaking, the rule they
follow to accomplish the goal of “implement functionality
foo” is: 1.) search for code that does foo; 2.) evaluate qual-
ity of found code; 3.) copy code into project; 4.) modify
as necessary; 5.) test code. Because the individuals doing
opportunistic programming are programmers, it is easy for
them to come up with the high-level goals, and copy-and-
paste programming gives them a rule by which to meet those
goals, regardless of familiarity with existing tools.

This observation opens up interesting questions on how
programmers locate “promising” code. In opportunistic pro-
gramming, we believe the primary source is through web
search. Indeed, while we encouraged participants in our lab
study to bring any external resources they typically used
while programming (e.g., books), not a single participant
did so. All participants used the Internet to locate code to
copy, and all but three used this exclusively. The remain-
ing three also copied from code they had written in the past.
Strategies for locating code were quite consistent with Infor-
mation Foraging Theory [9]: First, whenever possible, par-
ticipants would look to their own code before searching on
the Internet because the former was written in their own per-
sonal style and was perceived as being easier to comprehend.
When searching the Internet, participants used a variety of
clues to gauge information “scent” (the potential for find-
ing high-quality information down a certain search path):
attractiveness and professionalism of the website, the com-
plexity and modularity of the code examples, and so forth.
If the quality of a code snippet was not satisfactory, they
would often look for confirmation by comparing against re-
lated snippets from other websites before pasting the code
into their project. Finally, once a participant was satisfied
with a snippet of code copied from a particular site, she
would often remain “loyal” to that site, copying additional
code from there without searching the whole web.

2.3 Iterate rapidly
Developers tend to favor a short edit-debug cycle when

doing opportunistic programming. Figure 3 presents an
overview of the length of edit-debug cycles in our labora-
tory study. The graph shows that for the vast majority of

9696969696969696
9393939393939393
2828282828282828
9898989898989898
7474747474747474
7373737373737373
5656565656565656
7272727272727272
7878787878787878
7676767676767676
5252525252525252

128128128128128128128128
3939393939393939
7272727272727272
8181818181818181
3333333333333333

246246246246246246246246
6565656565656565
4343434343434343
9797979797979797

0% 20% 40% 60% 80% 100%

< 10 sec 10−30 sec 30−60 sec 1−2 min 2−5 min 5−10 min 10−30 min > 30 min

Figure 3: Histogram of per-subject edit-debug cycle
times in our laboratory study. Total number of edit-
debug cycles for each subject are given by the black
number on each bar, and bar length is normalized
across subjects. A black line separates cycles of less
than and greater than 5 minutes. For all subjects,
80% of edit-debug cycles were less than 5 minutes
in length.

subjects, 50% of their edit-debug cycles were less than 30
seconds in length, and for all subjects, 80% of their edit-
debug cycles were less than 5 minutes in length. Only 2
subjects had edit-debug cycles of longer than 30 minutes,
and each only underwent 1 such cycle. These times are much
shorter than those commonly reported by professional pro-
grammers; in a 2006 Oriole technical blog article, a Java
developer estimates that an average cycle takes 31 minutes
and a short cycle takes 6.5 minutes [7].

We believe that this rapid iteration is a consequence of
both copy-and-paste programming in general and program-
mers’ tendencies to attempt rule-based performance using
unfamiliar tools (both discussed in Section 2.2). This desire
for rapid iteration has clear implications for tool selection
as well. Programmers tend to, for example, prefer inter-
preted languages over compiled languages for opportunistic
programming, favoring human productivity much more than
code execution speed [7, 8].

2.4 Consider code impermanent
Developers often consider the code they write opportunis-

tically to be impermanent, since often times the code will
only be used once (e.g., to run an experiment), and some-
times the code may not even be used at all! For example, one
Exploratorium exhibit designer reported that the only time
he reuses code is when “[he] wrote it for the last project [he]
worked on”. Otherwise, code reuse is “just too much trou-
ble.” Furthermore, opportunistic programming is often used
to ideate and explore the design space when prototyping —
it is a kind of“breadth-first”programming where many ideas
are thrown away early.

More interesting, however, are the consequences of this
perceived impermanence. First, code written opportunis-
tically receives little to no documentation. An exhibit de-
signer at the Exploratorium remarked that it simply wasn’t
worth his time to document code because “[he] ended up
throwing so much away”. During the development process, it
isn’t clear what code will be kept, so programmers choose to
document nothing rather than to waste effort. At first, this
lack of documentation doesn’t seem like a problem. How-
ever, the code is only perceived as impermanent. During
a talk in 2007, Joshua Schachter, creator of del.icio.us, de-
scribed how the service had been written in a style that we
would classify as opportunistic programming: The project
started out as nothing more than a 100-line Perl script for
sharing his bookmarks with his friends. His company re-
cently decided to completely rewrite their software because
the current system serving millions of users had become a
mass of “terrifying Perl code” [11].

This perceived impermanence also leads to what we call
code satisficing. Programmers will often implement func-
tionality in a sub-optimal way during opportunistic devel-
opment in order to maintain flow [2]. In one example of code
satisficing from our laboratory study, the participant was at-
tempting to implement a fixed-length queue using an array.
She was a novice php programmer, but a very experienced
programmer overall. She took a guess at php array notation,
and guessed wrong. Instead of looking up the notation, she
decided to create ten global variables, one for each element
of the “array”. She commented that “[she knew] there was a
better way to do this” but “didn’t want to be interrupted”.
However, this led to problems down the road. She made a
typographical error when implementing the dequeue oper-
ation that took her over ten minutes to debug and clearly
broke her flow.

2.5 Face unique debugging challenges
Opportunistic programming leads to unique debugging

challenges. First, because programmers often employ a fed-
eration of languages (as mentioned in Section 2.1), they
often cannot make effective use of sophisticated debugging
tools intended for a single language. They are thus forced to
make state and control flow changes visible through mecha-
nisms like print statements. During our laboratory study,
we observed that people who were better at opportunistic
programming would do things to make state visible while
adding new functionality. For example, they would insert
print statements preemptively“just in case” they had to de-
bug later. Individuals who were less experienced would have
to do this after a bug occurred, which was much more time
consuming. Interestingly, the less experienced programmers
spent a significant amount of time trying to determine if a
block of code they had just written was even executing, let
alone whether it was correct! (We are currently analyzing
data to make more precise claims about this behavior.)

Second, because there is little or no upfront design, pieces
of the system often do not have clean interfaces (e.g., com-
munication between functions often might get done via a
global variable.) This makes debugging more difficult, be-
cause the programmer must maintain a mental model of the
entire system, not just of the particular component she is
currently debugging.

3. FUTURE RESEARCH
We conclude with a brief discussion of our planned fu-

ture research. Once we have completed our fieldwork and
finished analyzing the data from our laboratory study, our
next goal will be to understand how to better develop tools
that are specifically intended to support opportunistic pro-
gramming. So far, we have identified three broad areas that
would benefit from better tool support:

Debugging — Debugging in opportunistic programming
is made difficult for a number of reasons: Many languages
are used in a single project, code satisficing leads to code
that is not well encapsulated, and developers often refuse to
invest time in learning complex (but powerful) tools. We
believe that an ideal debugging solution would be language
independent (or at the very least, work for many languages),
and work across control-flow boundaries when multiple lan-
guages are “glued” together. Additionally, we believe that
debugging tools could better leverage the rapid iteration in-
herent in opportunistic development — e.g., code that was
written 30 seconds ago is likely the code that the program-
mer wants to test and debug.

Code Foraging and Reuse — While there has been
a large amount of recent research on tools to aid searching
for code, the vast majority of these tools focus on finding
and presenting these code snippets. We believe there are
significant opportunities to support the process of compar-
ing, reasoning about, integrating, and modifying found code.
Additionally, we believe that there may be opportunities to
combine the process of searching one’s past projects and
searching the Internet for functionality.

Documentation — Although much of the code that is
written during opportunistic programming is thrown away,
the process itself is extremely valuable. An exhibit de-
signer at the Exploratorium commented that while he rarely
wanted to go back and look at code from prior projects, he
often wanted to review the process by which he did some-
thing. We believe there are many interesting questions re-
garding both what should be documented during oppor-
tunistic programming, and how best to produce that docu-
mentation.

There has, of course, been a great deal of research on
these topics in both the fields of traditional software engi-
neering and end-user software engineering. We believe that
by building upon the research from both of these commu-
nities as well as leveraging what we are currently learning
through our fieldwork and exploratory studies, we can create
tools which improve the experience of developers engaging
in opportunistic programming.

4. REFERENCES
[1] S. Clarke. What is an end-user software engineer? In

End-User Software Engineering Dagstuhl Seminar,
Dagstuhl, Germany, 2007.

[2] M. Cśıkszentmihályi. Flow: The Psychology of
Optimal Experience. Harper Collins, New York, NY,
USA, 1990.

[3] B. Hartmann, S. Doorley, and S. R. Klemmer.
Hacking, mashing, and gluing: A study of
opportunistic design and development. Technical
Report 2006-14, Stanford HCI Group, 2006. http:
//hci.stanford.edu/cstr/reports/2006-14.pdf.

[4] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In Proceedings of the International
Symposium on Empirical Software Engineering, pages
83–92, Washington, DC, USA, 2004. IEEE Computer
Society.

[5] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: A study of developer work habits. In
Proceedings of the International Conference on
Software Engineering, pages 492–501, New York, NY,
USA, 2006. ACM.

[6] D. A. Norman. Things that Make Us Smart, chapter 3,
pages 43–76. Perseus Books, New York, NY, USA,
1993.

[7] T. M. O’Brien. Dead time (. . . code, compile, wait,
wait, wait, test, repeat).
http://www.oreillynet.com/onjava/blog/2006/03/

dead_time_code_compile_wait_wa.html.

[8] J. K. Ousterhout. Scripting: Higher-level
programming for the 21st century. IEEE Computer,
pages 23–30, 1998.

[9] P. L. T. Pirolli. Information Foraging Theory. Oxford
University Press, Oxford, England, 2007.

[10] J. Reason. Human Error. Cambridge University Press,
Cambridge, England, 1990.

[11] J. Schachter. Guest lecture on creating del.icio.us.
Stanford CS343 course: What Do Great Software
Developers Know? http://cs343-spr0607.stanford.

edu/index.php/Writeups:Joshua_Schachter.

http://hci.stanford.edu/cstr/reports/2006-14.pdf
http://hci.stanford.edu/cstr/reports/2006-14.pdf
http://www.oreillynet.com/onjava/blog/2006/03/dead_time_code_compile_wait_wa.html
http://www.oreillynet.com/onjava/blog/2006/03/dead_time_code_compile_wait_wa.html
http://cs343-spr0607.stanford.edu/index.php/Writeups:Joshua_Schachter
http://cs343-spr0607.stanford.edu/index.php/Writeups:Joshua_Schachter

	1 Introduction
	1.1 Our current research

	2 Opportunistic Programming in Practice
	2.1 Build from scratch using high-level tools
	2.2 Add new functionality via copy-and-paste
	2.3 Iterate rapidly
	2.4 Consider code impermanent
	2.5 Face unique debugging challenges

	3 Future research
	4 References

