
Software Developers Learning Machine Learning:
Motivations, Hurdles, and Desires

Carrie J. Cai
Google Research, Brain Team

Mountain View, CA, USA
cjcai@google.com

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

Abstract—The growing popularity of machine learning (ML)
has attracted more software developers to now want to adopt ML
into their own practices, through tinkering with and learning
from ML framework websites and online code examples. To
investigate the motivations, hurdles, and desires of these soft-
ware developers, we deployed a survey to the website of the
TensorFlow.js ML framework. We found via 645 responses that
many wanted to learn ML for aspirational reasons rather than
for immediate job needs. Critically, developers faced hurdles due
to a perceived lack of mathematical and theoretical background.
They desired frameworks to provide more basic ML conceptual
support, such as a curated corpus of best practices, conceptual
tutorials, and a de-mystification of mathematical jargon into
practical tips. These findings inform the design of ML frame-
works and informal learning resources to broaden the base of
people acquiring this increasingly important skill set.

Index Terms—machine learning, software developers

I. INTRODUCTION

Over the past decade, machine learning (ML) has become
pervasive across a wide range of domains, from self-driving
cars to conversational agents to medicine [1]–[4]. What has fu-
eled this growth is a combination of affordable GPU-powered
cloud computing services and modern ML frameworks such as
TensorFlow, Keras, Caffe, Theano, and PyTorch [5]. Whereas
in the past machine learning was accessible mostly to niche
specialists in research labs who wrote their own ad-hoc code,
nowadays it is much easier for non ML-specialists to get
started by building upon these popular frameworks.

Alongside this growth in ML frameworks has been a parallel
growth in interest among software developers who are learning
to adopt this new, relatively complex technology. With the
increasing availability of open-source ML frameworks and
online resources, some developers are learning ML in an
informal self-directed manner, through directly tinkering with
framework code and adapting code examples from official
API websites [6]. Many also consult resources such as online
programming tutorials [7] and YouTube videos [8].

How do software developers learn and adopt ML so that
they can apply it effectively in their own professional practice?
In this paper, we sought to understand: a) the motivations of
software developers learning to adopt ML, b) the technical
and knowledge hurdles they encounter, and c) their specific
desires for how modern ML frameworks can better support

these self-directed learning needs. We investigated these re-
search questions by deploying a survey to the website of the
TensorFlow.js ML framework [9] and analyzing 645 responses.
We chose this framework because it was designed to lower
barriers to using ML by making it accessible via JavaScript in
web browsers [10]; as such, it attracts a broad user base that
includes many software developers who are not ML specialists.

Our survey respondents were skilled in software develop-
ment (web programming in particular) but had little experience
with ML. Our analysis found that developers’ desires for ML
frameworks extended beyond simply wanting help with APIs:
more fundamentally, they desired guidance on understanding
and applying the conceptual underpinnings of ML itself. For
example, besides wanting more example code and utilities,
many wished for ML frameworks to provide conceptual tu-
torials, canonical models, and common ML best practices.
Along those lines, a substantial portion of respondents felt
that their own lack of conceptual and theoretical background
was a key hurdle to adopting ML, and desired resources to
bridge that gap. Many also indicated that their desire for
learning ML was aspirational, rather than a result of immediate
programming needs. These motivations and desires suggest
that, beyond providing a clear API, ML frameworks may need
to fill multiple roles and provide conceptual scaffolding.

Based on these findings, we discuss how ML frameworks
could better support software developers’ bootstrapping into
this new paradigm of computing, such as by de-mystifying
esoteric terminology into practical concepts, scaffolding re-
use and modification, and providing just-in-time ML best
practices within programming workflows. Our findings also
raise practical considerations around how ML frameworks can
better support learning-by-doing. This work points the way
toward the design of integrated learning resources for teaching
ML to developers and other non-specialists.

This paper’s main contributions are:
• Findings from a survey of 645 respondents, contribut-

ing a broad snapshot of software developers in their
early stages of learning and applying ML. This paper
synthesizes their motivations for learning and adopting
ML, the key hurdles they face, and their desires for ML
frameworks to better support conceptual understanding.

• Design recommendations for frameworks and learning
resources to make ML more accessible to more people.978-1-7281-0810-0/19/$31.00 ©2019 IEEE

II. RELATED WORK

A. ML for Non-Specialists

Although ML is a highly active area of research, there have
been relatively few prior studies of how non ML-specialists
adopt ML into their practices. Patel et al. interviewed 11 HCI
researchers and performed a lab study on 10 CS graduate
students who had integrated ML into their prototype sys-
tems [11]; they found that although these researchers were
experienced programmers, they still had trouble structuring
ML workflows, understanding model behavior, and evaluating
model performance. Dove et al. surveyed 51 UX designers
and found that they perceived ML to be a difficult design
material: they had trouble prototyping with ML since it
was hard to understand its capabilities and limitations [12].
Similarly, Yang et al. interviewed 13 UX designers who were
experienced in incorporating ML into products and found that
although they did not have a deep understanding of ML, they
created abstractions to help communicate ML-oriented designs
with engineers [13]. Our study contributes to this nascent
literature via a much larger-scale survey of 645 people, most
of whom were software developers rather than UX designers
or academic researchers, and on one of the most widely used
ML framework platforms.

B. End-User Programming

End-user programming is commonly defined as coding
that is done to achieve personal goals rather than to create
artifacts for broader public use [14]. Viewed in this light,
some of our survey respondents aspire to engage in end-
user ML programming by incorporating ML into their per-
sonal or hobby projects. More generally, our work fits into
the longstanding tradition of end-user programming research,
which includes both systems [15]–[18] and studies [19]–[22]
on making programming more accessible to broader audiences.
Our findings point toward the design of lower-barrier ML
frameworks that can potentially enable a broader range of
programmers to adopt these techniques into their software.

Ko et al. discovered six categories of learning barriers in
end-user programming via a study of novice students learning
Visual Basic.NET in a university course [22]. Our study
findings corroborate some of these barriers (see Key Hurdles
section) but makes a novel contribution by uncovering how
these barriers manifest within the realm of machine learning.

Relatedly, a study with seven developers found that, in
domains that developers are unfamiliar with (e.g., network-
ing protocols), a lack of conceptual knowledge can make it
challenging to use API documentation [23]. Those researchers
noted that these conceptual aspects of API usability are under-
researched, thus deserving of more attention [23]. Our findings
build on this early work by uncovering the unique conceptual
challenges of programmers adopting ML, and contribute im-
plications for how ML frameworks can better address those
knowledge gaps.

C. Informal and Self-Directed Learning

Our respondents were mostly working professionals who
chose to learn ML-related programming. In a similar vein,
researchers have studied working professionals learning pro-
gramming in a range of settings, including research scien-
tists [24], web/graphics designers [21], [25], and high school
CS teachers [26]. Research has also been conducted on
the motivational and practical challenges of informal adult
learning, such as a lack of time and confidence [27], [28].
In addition, research on exploratory programming identified
programmers’ needs when learning to do ill-defined ex-
ploratory tasks such as data science, revealing the need for
fast iteration and backtracking [29]. Among these threads of
research, the line of work here that is most relevant to ours
studied conversational programmers [30]–[32]: non-technical
professionals at technology organizations who want to learn
some programming to help them communicate better with their
engineering colleagues. Like the non-specialist ML learners in
our study, conversational programmers have aspirational goals
and perceive that knowing a bit about programming may be
helpful for their careers, even if they do not need to code in
their jobs. Though similar learning challenges may arise, our
study specifically examines learners who are already proficient
in general programming, but who are new to ML.

III. METHODS: ONLINE SURVEY

To get a broad range of insights from people who are
learning or experimenting with ML, we deployed an online
survey to users of the TensorFlow.js framework [9]. This is a
JavaScript-based ML framework that enables programmers to
create neural networks and other models that can run in web
browsers. It is an official JavaScript port of the popular Tensor-
Flow system [33] for production-scale ML deployments. We
chose this framework in particular because it was explicitly
designed to lower the barriers to entry into ML and encourage
a broader developer population to try ML [10].

To reach a wide audience, we posted the survey as a link on
the home page of the framework’s website and also publicized
it through its user mailing list and Twitter account. Participa-
tion was voluntary; we did not pay survey respondents. We ran
this survey for two months during summer 2018. Participants
were required to be at least 18 years old.

A. The Survey Instrument

Our survey starts with questions about background and self-
reported technical proficiency:

• Which best describes your job role: e.g., web developer,
mobile app developer, data scientist, ML engineer, edu-
cator, technology leader (etc.), other (open-ended)

• Rate your level of proficiency in: 1) programming, 2) web
programming, 3) using existing neural networks1, 4) de-
veloping new neural networks, and 5) using/developing
other ML algorithms that are not neural nets. Each

1Modern ML frameworks are often used to make neural networks, so we
split ML proficiency by neural nets vs. other algorithms.

question presented a 5-point Likert scale from beginner
to expert, with an additional choice for “no experience.”

• In what ways have you previously tried to learn ML? e.g.,
online tutorials, books, courses, other (open-ended)

The survey also asked free-response questions, which were
divided into two sections. One section captured general learner
motivations and hurdles: Why are you interested in learning
ML? What hurdles have you faced in trying to learn ML?
Another section addressed framework-relevant motivations and
desires: What motivated you to try TensorFlow.js? What new
features would you like in TensorFlow.js?

B. Data Overview and Analysis

We received 645 total survey responses which contained
at least one non-blank open-ended response. To classify the
contents of open-ended responses, the research team (2 re-
searchers) first read over all responses. We used an inductive
analysis approach [34] to determine a classification scheme
for each question as a team. Then each researcher indepen-
dently coded the responses according to those categories. To
assess reliability and measure agreement between coders, we
computed the Cohen’s Kappa for all four questions. We found
substantial agreement between coders, with kappa scores of
κ = 0.68, 0.73, 0.73, 0.68 respectively. Finally, the research
team made another full pass through all responses together to
resolve any conflicts in labels.

C. Study Design Limitations

Our study was conducted through a single, widely used
platform, rather than multiple ML platforms or frameworks,
so our respondents may not be representative of all pro-
grammers. That said, our approach is consistent with prior
papers on learning programming which also surveyed par-
ticipants through a single widely-used platform to capture
overarching trends [35], [36]. More importantly, our focus on
the JavaScript community has the advantage of providing a
snapshot of a community in its early days of ML, in terms of
both libraries and ML expertise (rather than a more mature
ML community with experienced ML practitioners in, say,
Python or C++). Although it is possible that some respondents
are already proficient in ML, our data shows that the vast
majority do not work in ML-related jobs, and that most self-
reported limited prior experience with ML. Thus, the choice
of platform supports and is consistent with the overall aims of
this research.

We deployed this survey to the website of an ML frame-
work, not to an explicit learning resource such as an online
course. We deliberately chose this setting in light of the recent
growth of ML frameworks being developed to democratize
ML to a broader pool of developers, and informed by prior
observations that developers often learn opportunistically from
example code and documentation [6]. While we focus our
recommendations on how ML frameworks specifically can
better support non-specialists, our survey may also reflect
online learning experiences more broadly, given that some
respondents had also attempted to learn from tutorials, help

Fig. 1. Levels of programming and ML-related experience (N=644).

forums, etc. We used a survey to capture a broad snapshot of
experiences, but interviews with selected users could also help
us gain deeper insights to supplement the breadth achieved by
our survey. Finally, although the study achieved a substantial
sample size, the size and characteristics of the population
being sampled from are unknown, so we cannot rule out the
possibility of sampling bias.

IV. JOB ROLES AND PRIOR EXPERIENCE

To understand the context of our respondents’ perspectives,
we first describe their job roles and self-reported skill levels.
While some were ML engineers (12%) or ML researchers
(5%), the vast majority (83%) of respondents were non ML-
specialists. Among these non ML-specialists, most were de-
velopers (82%), including web developers, software engineers,
mobile app developers, developers in training, and data scien-
tists, with the most common category being web developers.
The remaining minority of job roles spanned a variety of
fields, such as entrepreneur, product manager, marketer, doctor,
maker, artist.

As Figure 1 shows, most respondents were skilled in soft-
ware development and web programming but inexperienced
in machine learning. Specifically, 66% reported limited expe-
rience (i.e., skill rating = No Experience, 1, or 2) in using
neural networks, 77% had limited experience in developing
new neural networks (NN), and 77% in using other (non-
NN) machine learning algorithms. In contrast, only a minority
reported limited experience in programming (23%) and web
programming (33%).

Respondents reported myriad ways in which they tried
learning ML. Among those who reported using specific learn-
ing resources, a vast majority turned to online tutorials (89%),
some took online courses (54%) or accessed online help
(52%), and fewer used print documents such as books and
magazines (34%). Only a minority had enrolled in formal
courses (20%). Some mentioned subscribing to specific educa-
tional YouTube channels such as The Coding Train [37]. This
prevalence and diversity of online resources indicates that our
respondents often participated in informal learning contexts
rather than formal classroom settings.

Intellectual Fascination 26%
cool and interesting 18%
superhuman intelligence 6%
better than normal programming 2%

ML is “The Future” 17%
perception that ML is the future of tech 10%
ML is rapidly rising in prominence 7%

ML Can Improve Human Lives 14%
solve critical problems 5%
make the world better 4%
automate mundane tasks 4%
create better user experiences 1%

Develop Career-Enhancing Skills 14%
expand technical skillset 7%
generally improve career potential 7%

Specific Application Domains (e.g., NLP) 14%
Immediate Need for Job or Hobby 11%
Other 12%

TABLE I
SUMMARY OF 286 RESPONSES TO “WHY ARE YOU INTERESTED IN

LEARNING MACHINE LEARNING?” TOTALS ADD UP TO MORE THAN 100%
SINCE WE PLACED SOME RESPONSES INTO MORE THAN ONE CATEGORY.

V. MOTIVATIONS FOR LEARNING ML

Respondents had diverse motivations for learning ML. Ta-
ble I shows that the most common was that they found the idea
of ML intellectually fascinating (26%). Other reasons included
feeling that ML is “the future” (17%), desire to improve human
lives (14%), desire to develop one’s career and skill sets (14%),
and interest in a specific application area (14%). Only a small
portion reported needing ML right now for a specific job task
or other use case (11%). Here are the most salient responses:

A. Intellectual Fascination

The most prominently reported interest in ML stemmed
from fascination by the perceived superhuman intelligence of
ML systems (26%). Some specifically alluded to its capacity
to accomplish feats such as the AlphaGo-Zero AI playing
Go better than the top humans [38]: “When I see ”Alpha-
Zero”...all you need to do is, input rule then it builds up
super-human player. Literally, it makes me thrilled then I
started learn ML.” Some also contrasted ML to traditional
programming, describing how ML transcends the limitations
of existing programming languages:“The core idea of just
training a machine and not traditional coding is fascinating.”

B. ML is “The Future”

Respondents also attributed their interest in ML to the
growing popularity and perceived future importance of ML
(17%). In particular, many described ML as inevitably being
the future. For instance, one person stated that “ML is the star
of the coming decade in IT industry,” and another declared it is
the “strongest thread in the future, beyond nano technology.”

While some were purely future-oriented in their responses,
others described ML as being rapidly rising in prominence.
For instance, people made remarks such as “ML seems to
be catching everyone’s attention” or “It’s the hot new stuff.”
Others pointed to the urgency of its unparalleled growth,
stressing that “it is a huge field which is emerging really fast
[...] going to change the computer industry really quickly.”

C. ML Can Improve Human Lives

14% of respondents attributed their interest in ML to its
potential for improving human lives. For example, many
looked to ML for “making the world a better place,” while
others wanted “to develop something which can help our
coming generation.” Responses described many humanitarian
goals, ranging from the desire to “get rid of cancer using
machine learning,” to helping “students interact with their
environment through technology.” One pointed to these more
worldly goals as a reason for growing beyond their current
job: “I’d like to be involved in some of the more important
problem solving in the world. At the moment I’m a frontend
web developer and I’m looking for greater challenges.”

Notably, one person desired to learn ML specifically be-
cause they felt that ML is not inclusive enough of end users
and non-ML domain experts: “I believe that doctors...need
to be more involved in developing AI/ML apps. The current
trend seems to be ‘AI/ML: better than doctor A-Z’ which I
believe is not a proper metric. A better more useful metric
would be ‘AI/ML: actually helps doctors [...] increase accu-
racy/efficiency to save more lives.’”

These results suggest that, for many seeking to learn ML,
the reasons extend beyond personal or strategic gains to greater
social causes. While many described in the prior section were
fascinated by the capacity of ML to mimic or even replace
human intelligence, the perspectives here reinforce a more
human-centric mindset: that automation ultimately serves to
better the lives of human beings.

D. Career-Related Motivations

14% of respondents alluded to future career motivations
or a desire to expand their skill set. These tended not to be
imminent needs in their current job, but rather aspirational
desires to gain new skills given a changing job landscape.
For example, some expressed that “as a dev I need to stay
relevant,” whereas others more explicitly cited “fear of future
unemployment” and “good salary” as practical motivations.

Surprisingly, fewer people described needing to use ML in
their current jobs, despite many feeling that ML is becoming
ubiquitous. Only 11% indicated that they needed ML for a
current project. One explanation could be that even production
teams are only now starting to experiment with ML. Some
described being “asked to look into it for a summer job,” or
“we are beginning to explore it at work.” Others felt usage of
ML required convincing team-mates to change their mindset:
“always hard to tell the PM [product manager] we can do
something with math, not just a if else.” A high barrier to entry
may mean that entire teams – not just individuals – could lack
the expertise to get started with ML.

Here the desire to learn ML more frequently stems from as-
pirational goals and perceived future needs than from concrete,
near-term challenges. Also, the recent hype and perceived
growth of ML may have led many to consider it imminent
and relevant, even in the absence of specific use cases.

Lack of Conceptual & Math Understanding 42%
don’t know math/stats/calculus/linear algebra 25%
don’t understand theory / underlying concepts 12%
don’t understand ML algorithms 5%

Lack of Resources Bridging Theory & Practice 21%
lack of documentation or tutorials 9%
tutorials are too complex 6%
lack of code-based examples 6%

Implementation Challenges 21%
architecturing structure of ML model 6%
API/syntax/language issues 6%
latency and performance issues 5%
training and testing are difficult 4%

Challenges in Getting Started 20%
don’t know where to start / no concrete use case 4%
don’t have a dataset 4%
too many choices in tools 4%
no time 4%
installation hurdles 4%

Other 5%

TABLE II
SUMMARY OF 232 RESPONSES TO “WHAT HURDLES HAVE YOU FACED IN
TRYING TO LEARN ML?” TOTALS ADD UP TO MORE THAN 100% SINCE

WE PLACED SOME RESPONSES INTO MORE THAN ONE CATEGORY.

E. Motivations when Selecting a Framework

Of the 421 responses to “What motivated you to try Tensor-
Flow.js?” the three most common categories were: 1) it lowers
barriers to getting started (35%), 2) it leverages the browser’s
run-time environment (28%), and 3) ease of deployment and
maintenance (19%). Developers were primarily drawn to the
easy-to-install nature of the framework (“No installations. No
version clashes. No virtual envs.”), and to the perception that
they could get started with ML with less cognitive overhead
(“I am already familiar with javascript as a web dev [...]
the only concepts I will need to grasp are ML concepts.”).
The speed with which they could get started may be key,
given that learners may desire the freedom to casually try out
ML without needing to first invest a large amount of upfront
effort: “If I enjoy it I will take a deeper dive.” Consistent
with expectancy-value theory [39], given limited time, casual
learners may be more inclined to try something new if the
perceived overhead is low. Finally, developers appreciated the
possibility of more easily deploying their ML apps to end-
users, with few software dependencies: “Its ability to be used
in a web browser, using any device without any environment
setup.” In sum, developers may be drawn to frameworks where
they can quickly try out ML in a lightweight way and easily
deploy or share their prototypes with others.

VI. KEY HURDLES TO LEARNING ML

Table II shows four main categories of hurdles to learning
ML; we now describe representative examples from each one.

A. Lack of Conceptual and Mathematical Understanding

By far the most frequently mentioned hurdle to learning ML
was a lack of conceptual understanding (42%). Though gener-
ally skilled in programming, respondents often encountered a
“steep learning curve of learning the foundation of ML con-
cepts,” and felt they “never get [a] full understanding of the
algorithm[s].” Notably, a substantial portion of respondents

attributed hurdles to their own lack of math background: many
felt they lacked “linear algebra knowledge,” “good calculus
background,” or “statistical experience.” This perspective may
in part be influenced by the prevalence of mathematical
terminology in online resources and documentation. For ex-
ample, respondents described being “too often faced with
mathematical equations (e.g. backward propagation), that are
very hard to implement correctly.”

These respondents felt that conceptual hurdles made it hard
to progress beyond the initial installation or basic tutorial
examples: “Beginning with the hello world of machine learn-
ing to a few tutorials later is hard because [of] the lack of
statistical experience. Math behind it.” Thus, even in cases
where logistical barriers are reduced (e.g., easier setup in web-
based environments), some still perceived a steep learning
curve due to math-related concepts.

B. Lack of Resources Bridging Mathematical Theory and
Real-World Practice

21% were hindered by a lack of resources bridging theory
and code. While some felt that current resources do not provide
enough conceptual intuition or theory underlying the code,
others desired less theoretical and more code-based examples.
Those who desired more theory wanted to “dive deeper into
the background details of algorithm,” and lamented that “most
tutorials online focus more on [...] just running the code
while not highlighting much on the mathematical part.” Others
desired less theory: “I am more of a web dev [...] so I have to
be productive and cannot be into all theory around ML,” and
wanted tutorials with “no crazy calculus as I haven’t taken it
yet, and ones that actually show code.”

These viewpoints might at first appear contradictory: while
some desired more explanations of mathematical theory, others
wished for more code and less math. However, both sides
reflect a common desire to translate esoteric math jargon into
practical concepts that are easier for non-ML-specialists to
digest. Interestingly, despite efforts to democratize ML, the
math-heavy terminology prevalent in online resources may
have inadvertently contributed to imposter syndrome: many
felt that current resources are targeted to those who already
have an ML background, commenting that they “cater to the
intermediate researcher,” that there are “few resources for
product management people,” or that there are “assumptions
made by tutorials of expected knowledge from the reader.”
Some had trouble finding tutorials to begin with, and disliked
“having to learn solely through documentation.”

These sentiments may reflect mismatched expectations: by
reducing installation and programming overhead, some frame-
works have broadened the range of users who can quickly
get started with basic examples. Yet, most still lack the
conceptual scaffolding necessary to take users beyond those
initial steps, thus leading to potential disappointment. This lack
of scaffolding is well depicted by one respondent as “abrupt
changes from high-level overviews to low-level code without
necessary transitions,” and by another as “the gap between
math theory and practice.”

C. Implementation Challenges

21% mentioned implementation challenges, the most com-
mon being related to structuring the components of an ML
model, converting raw data into algorithmic inputs and out-
puts, and training and testing models.

First, respondents were uncertain how to structure the basic
architecture of a model such as a neural net: “It is just too
difficult to implement even a CNN if the user doesn’t know
its basic structure.” As tutorials tend to offer a limited set
of simple examples, people struggled to identify the correct
architecture to use for their own specific scenario. As a result,
they encountered a range of implementation challenges, such
as not knowing “how many units I have to put in [while]
adding layers to the model,” “how to apply the suitable
activations in each layer,” and “deciding what optimizers,
loss function etc. to use.” These resemble coordination and
use barriers from Ko et al.’s list [22]. Without a conceptual
understanding of which architectures to use in which scenarios,
users’ level of success tended to depend on whether the code
examples mapped well to their desired use case. While many
struggled to find relevant examples (“all demos are using
sequential models, [but] I would like to create a model with
different input sets.”), those who found relevant ones had a
smoother experience (“The getting started tutorial was similar
to my problem so it was a good starting point.”).

Beyond structuring the model itself, programmers found it
difficult to wrangle raw data into input/output formats to feed
into ML models. One reason for this is that data structures
need to first be converted into data objects used in neural
nets: people spent time “going back and forth between user
provided values and tensors” and “converting plain arrays
into tensors.” However, these symptoms may also be indicative
of a deeper challenge: developers may not know how to
transform a real-world dataset and problem statement into a
concrete ML formulation, an instance of a design barrier [22].

Aside from structuring the model and transforming data into
inputs, people also encountered hurdles training and testing
their models, such as not knowing what to do if the model
is not performing well (“How do I debug a program that
isn’t working?”) and not understanding what is happening
behind the scenes (“A lot of things are still black boxes,
and part of results are indistinguishable from magic.”). These
resemble understanding and information barriers from Ko et
al. [22]. Some also found the process of tuning parameters
burdensome (e.g., “Seems like most of the work goes into
tweaking parameters”, “Too many parameters”).

D. Challenges in Getting Started

A commonly reported set of hurdles included challenges in
even getting to the point where they could start productively
writing ML code (20%), due to not knowing what problems to
address using ML in the first place. For instance, respondents
had trouble “deciding what aspects and applications of ML
to focus upon”, “not knowing exactly what kind of projects to
work on”, and more generally, “what to apply ML to, where
ML succeeds, where it sucks.” These reports are consistent

Pre-made Models Demonstrating Best Practices 22%
Include Conceptual Tutorials and Examples 15%
Visualizations and Visual Programming 12%
Cross-framework Compatibility 12%
Data Wrangling Utilities 9%
Faster Computation 9%
Missing specific API function calls 7%
Other 19%

TABLE III
SUMMARY OF ML FRAMEWORK DESIRES (201 RESPONSES). TOTALS ADD

UP TO > 100% SINCE SOME RESPONSES FIT MULTIPLE CATEGORIES.

with our prior finding that many people desire to learn ML
aspirationally and thus may not have a specific use case in
mind or even a strategy to determine which problems to
tackle first. The decision overhead in getting started can be
substantial, given that casual learners may have limited time.
One respondent reported: “Due to the rest of life, I have to fit
learning into small 5-15 minute blocks.”

Relatedly, respondents also had trouble finding appropriate
data sets. Some simply said they lacked “interesting data sets
to work with.” Others found it hard to “gather data for [my]
own tests” or felt they “don’t know how to make or use them.
Maybe I need to learn Data Science.” Because ML relies on
training data at its core, finding and cleaning interesting yet
not-too-complex data sets could be challenging, particularly
for programmers and web developers who may not be used to
wrangling data [16], [40] on a regular basis.

This lack of a concrete starting point is further compounded
by an abundance of choices in frameworks and applications.
People enumerated hurdles such as “picking the right ML
framework,” uncertainty over “what systems to use,” or gen-
erally “too many possibilities.” These fall under selection
barriers in Ko et al.’s list [22]. Faced with a large space of
options, developers may simply turn to the most popular or
convenient frameworks with the lowest perceived overhead.
In light of these hurdles, web-based frameworks may have
been attractive to JavaScript developers because they reduced
some challenges to getting started, such as installation and
programming language barriers.

VII. DESIRES FOR ML FRAMEWORKS

Table III summarizes responses about what new features
respondents would like to see in the ML framework. Re-
sponses revealed an underlying desire for conceptual scaffold-
ing, beyond basic support for using the API: users desired to
be taught the implicit ML best practices and concepts that
would enable them to effectively apply the framework to their
particular problems. Note that some also had desires unrelated
to conceptual scaffolding (e.g. faster computation), but those
tended to be the minority of respondents who had more ML
experience. We now elaborate on the three top categories:

A. Pre-made Models Demonstrating Best Practices

The most frequently reported desire was to provide pre-
made ML model architectures that illustrate best practices
in the field (22%). For instance, some saw using pre-made
models as a means for observing well-vetted canonical ex-
amples: “I’d like to be able to use predefined neural net

architectures that are ‘standard’ or proven to work for a
particular application.” Others asked for general ML idioms
(“Show some recommended mythology”) or industry-standard
procedures (“Are there recommended approaches to follow
when productionizing a model?”). Some simply desired mod-
els to work out-of-the-box so that they could easily incorporate
them into their application code. While some frameworks
do offer pre-made machine learning modules, these resources
could be more useful to non-specialists if they came equipped
with best practices for how to adapt them to example problems,
so that users know when and where they can be applied. This
could help build conceptual understanding, the lack of which
many cited as a key learning hurdle.

B. Include Conceptual Tutorials & Examples in Frameworks

Another common desire was for more conceptual tutorials
and examples (15%) to be included into frameworks, beyond
API documentation: “I prefer learning by doing, so I would
like to see more tutorials, examples and books...” Some
described how current ML frameworks tend to be disjoint
from online learning resources: “I...start on other ML learning
resources (e.g. google results, Andrew Ng coursera) and once
I am finished will try to implement ideas in Tensorflow.” To
this point, some appreciated when conceptual exercises were
embedded directly within the programming workflow: “It was
nice [...] to have the small code demos that you can edit and
run right there. Really helps basic understanding.” For theories
that are complex and esoteric, developers desired that they be
paired with concrete examples to aid understanding: “More
examples in the documentation. I’m an engineer and it’s
easier to understand examples than math theories.” Overall,
these comments reflect a desire to bridge the conceptual gulf
between mathematical jargon and code, a key challenge for
many non-specialists. In sum, users desired conceptual support
to be more tightly interwoven into frameworks.

C. Visualizations and Visual Programming Interfaces

Many respondents also desired run-time visualizations of
ML model behavior and, to a lesser extent, visual program-
ming interfaces (12%). Visualizations could help learners build
conceptual understanding of a neural net’s mechanics, as
well as diagnose otherwise opaque problems: For instance,
some wanted to see “a clear visual representation of what
the network does”; others wanted to easily access internal
states (“output and weights of each hidden layer”) and track
progress as the network is being trained. Graphing data such
as loss and accuracy could help “identify if [the] network
is too small (not catching up) or too big (overfitting)”.
Although more frameworks are providing visualizations (e.g.
Gestalt [41], TensorFlow Graph Visualizer [42]), actively
leveraging those visualizations to support conceptual under-
standing for novices remains an open research problem.

VIII. DISCUSSION AND DESIGN IMPLICATIONS

Although frameworks have broadened the range of people
who can quickly get started with ML, developers still face

many challenges learning and adopting ML into their own
practices. Evidently, providing a framework API intended to
ease software development is not enough. In light of our find-
ings, we discuss how to redesign ML programming resources
to better serve the growing user base of non-specialists.

A. De-mystify Mathematical and Algorithmic Concepts

A substantial portion (42%) of respondents attributed key
learning hurdles to their own lack of mathematical and al-
gorithmic background (Table II). Despite ongoing efforts to
lower the barriers to ML, and despite a preponderance of
ML-newcomers aspiring to learn, surprisingly many of these
developers perceived current resources to be intended for more
advanced audiences. This impression is in part fueled by the
prevalence of esoteric, math-heavy terminology (e.g. ReLU) in
code and documentation. To reduce imposter syndrome, future
resources could create an intermediate layer of scaffolding
that synthesizes theory into digestible, practical concepts.
For example, the mathematical details of gradient descent
could be abstracted into practical concepts used for tuning
a model’s learning rate. While some online tutorials do offer
such conceptual scaffolding (e.g. The Coding Train, Fast.ai),
many framework users were unaware of them. Integrating
those resources directly into ML frameworks can help provide
conceptual scaffolding during active experimentation.

B. Support Learning-by-Doing

Our survey also revealed that developers desired ML frame-
works to teach them not only how to use the API, but also the
implicit best practices and concepts that would enable them to
effectively apply the framework to their particular problems.
Though ML frameworks are not traditional learning platforms,
developers are indeed using them as lightweight vehicles for
learning and tinkering.

These desires raise important questions: How can ML
frameworks better provide informal hands-on learning oppor-
tunities? Should ML frameworks coordinate with existing on-
line learning resources, or build their own custom experiences?
For example, to support those who would like to learn-by-
doing ML without taking an online course, ML frameworks
could provide key points in the API where curriculum de-
velopers could embed dynamically runnable pedagogical code
snippets. One practical challenge is that frameworks may need
to satisfy the needs of both advanced ML researchers and
newcomers. Thus, for ML education to scale, ML frameworks
may need to more clearly distinguish between a spectrum of
resources aimed at different levels of expertise, and make
explicit the target audience for each. To set appropriate
user expectations, for example, frameworks could differentiate
between API-specific onboarding and ML onboarding, or
explicitly unify the two.

C. Support Re-use and Modification of Pre-made ML Models

A common desire was to have access to libraries of canoni-
cal ML models that demonstrate best practices across a diver-
sity of use cases (Table III). Canonical models could enable

users to modify an existing template rather than creating new
ones from scratch. Although pre-made models are already used
by experts for re-purposing existing models to new domains
[43], or for taking output from one neural net as input to
a different neural net [44], [45], in their current form, these
models are meant for expert use and do not provide support
for novice consumption.

In our survey, developers reported substantial hurdles ap-
plying and modifying existing examples to their own use
cases. Thus, the provision of pre-made ML models should
also be coupled with explicit support for modification. One
way is to provide repositories of model modifications and
“remixes” as first-class objects. For example, authors could up-
load modifications to a centralized gallery (similar to Scratch’s
Remix [46]). Or, GitHub pull requests for uploading new pre-
made models could be standardized to include modification
examples. Overall, we view supporting model modification as
important future work.

D. Synthesize ML Best Practices into Just-in-time Hints

Interestingly, many novices were drawn to ML with hopes
that it could better the world and push the frontiers of intel-
ligence (Table I); such high-level worldly goals tended to be
less prominent in people learning regular programming, who
instead focused more on task- or career-oriented goals [47].
This observation may be rooted in the paradoxical appeal of
ML and recent trends in deep learning [48]: on the surface,
they appear to drastically reduce human effort spent hand-
engineering features, by discovering program parameters au-
tomatically from data. In practice, however, authoring ML re-
quires substantial human intelligence and expertise, involving
a myriad of decisions beyond that of regular programming:
e.g., which model architectures to use, pre-processing steps
to apply to raw data, and hyperparameters to tune. Relative
to older ML techniques (e.g., SVMs) where feature selection
is vital, in more recent techniques (e.g., deep neural net-
works [48]) where model tuning is a key challenge, it may
be even more bewildering how specific sets of parameters
affect model performance. While experts may acquire this folk
wisdom through years of dedicated trial and error, the decision
overhead can be overwhelming or even demoralizing for casual
learners. Furthermore, the hype surrounding ML means that
developers may not have a clear sense of which problems are
practically feasible for ML to begin with.

To help narrow this broad space of decision possibilities,
ML frameworks and resources should embed tips on best
practices into the programming workflow, ranging from high-
level tips (e.g., which classes of models are suitable for which
problems), to low-level strategies (e.g., common diagnostic
checks for debugging a model). For example, to give devel-
opers a starting point, integrated tools could automatically
analyze a user’s dataset (e.g., determine its domain) and
suggest plausible models. Likewise, ML frameworks could
run automatic diagnostic checks on model performance, and
surface practical tips (e.g., “decrease learning rate” if the
model is not converging), along with an explanation for the

underlying concepts behind those tips. These tips could help
developers casually become aware of ML idiosyncrasies from
within their existing programming workflow. As the frontiers
of ML are still evolving, this wisdom can also help both
experts as well as novices in creating a shared reservoir of
community-curated best practices. As such, it serves as a form
of universal design [49], where focusing on a particular user
population can result in technologies that benefit everyone.

E. Emphasize and Support the Experimental Nature of ML

Although a stronger conceptual foundation could be helpful,
in practice much of modern ML practice also involves dedi-
cated trial and error. Despite the heavy math involved, even
ML experts build intuition over time through experimentation,
relying on rules of thumb as opposed to pure applications
of mathematical theory. In our study, a surprisingly large
portion of respondents felt that theoretical understanding was
their main limitation. These findings, coupled with existing
evidence that novices may expect ML to “just work” as a
black box [11], suggest that ML resources ought to emphasize
experimental trial and error as a core part of the ML process.
Such an emphasis could also help combat imposter syndrome,
in cases where a developer may otherwise be discouraged if
a model fails to perform as intended.

Likewise, while pre-made models and data pre-processing
utilities could initially help programmers easily integrate ML
into personal projects, their convenience may also hinder
learning, if users never learn how to systematically use trial
and error as a way to overcome unexpected model behavior. To
scaffold and encourage experimentation, ML resources could
offer pre-made models coupled with exercises specifically ded-
icated to debugging, modifying, and transferring those models
to new scenarios. Alternatively, the scaffolding of pre-made
models could be gradually removed, so that developers can
gradually advance from using pre-made models to modifying
or developing new ones.

IX. CONCLUSION

Software developers are now treating modern ML frame-
works as lightweight vehicles for learning and tinkering.
Our work provides evidence that, even with the existence of
such APIs, developers still face substantial hurdles due to a
perceived lack of conceptual and mathematical understanding.
In the future, ML frameworks could help by de-mystifying
theoretical concepts and synthesizing ML best practices into
just-in-time, practical tips. Taken together, this work provides
timely implications for how to assist developers in adopting
this powerful form of computing into their own practices.

ACKNOWLEDGMENTS

We would like to thank Yannick Assogba, Michael Terry,
Lauren Hannah-Murphy, and Sandeep Gupta for their thought-
ful guidance and feedback on this research. We also thank
Nikhil Thorat, Daniel Smilkov, Ann Yuan, Martin Wattenberg,
Fernanda Viegas, and the TensorFlow.js team for their support.

REFERENCES

[1] C. J. Cai, E. Reif, N. Hegde, J. Hipp, B. Kim, D. Smilkov, M. Wat-
tenberg, F. Viegas, G. S. Corrado, M. C. Stumpe, and M. Terry,
“Human-centered tools for coping with imperfect algorithms during
medical decision-making,” in Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. ACM, 2019.

[2] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[3] A. S. Miner, A. Milstein, S. Schueller, R. Hegde, C. Mangurian, and
E. Linos, “Smartphone-based conversational agents and responses to
questions about mental health, interpersonal violence, and physical
health,” JAMA internal medicine, vol. 176, no. 5, pp. 619–625, 2016.

[4] C. Urmson et al., “Self-driving cars and the urban challenge,” IEEE
Intelligent Systems, vol. 23, no. 2, pp. 66–68, 2008.

[5] P. Guo, “How did people write machine learning code in the past?”
Comm. of the ACM blog, 2018, accessed: 2019-04-01.

[6] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’09. New York,
NY, USA: ACM, 2009, pp. 1589–1598.

[7] A. Mysore and P. J. Guo, “Porta: Profiling software tutorials using
operating-system-wide activity tracing,” in Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology,
ser. UIST ’18. New York, NY, USA: ACM, 2018, pp. 201–212.
[Online]. Available: http://doi.acm.org/10.1145/3242587.3242633

[8] K. Khandwala and P. J. Guo, “Codemotion: Expanding the design space
of learner interactions with computer programming tutorial videos,” in
Proceedings of the Fifth Annual ACM Conference on Learning at Scale,
ser. L@S ’18. New York, NY, USA: ACM, 2018, pp. 57:1–57:10.
[Online]. Available: http://doi.acm.org/10.1145/3231644.3231652

[9] “TensorFlow.js: A JavaScript library for training and deploying ML
models in the browser and on Node.js,” https://js.tensorflow.org/, 2018,
accessed: 2019-04-01.

[10] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan, N. Kreeger, P. Yu,
K. Zhang, S. Cai, E. Nielsen, D. Soergel et al., “Tensorflow. js: Machine
learning for the web and beyond,” SysML, 2019.

[11] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating
statistical machine learning as a tool for software development,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’08. New York, NY, USA: ACM, 2008, pp. 667–676.

[12] G. Dove, K. Halskov, J. Forlizzi, and J. Zimmerman, “Ux design
innovation: Challenges for working with machine learning as a design
material,” in Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’17. New York, NY, USA: ACM, 2017,
pp. 278–288.

[13] Q. Yang, A. Scuito, J. Zimmerman, J. Forlizzi, and A. Steinfeld,
“Investigating how experienced ux designers effectively work with
machine learning,” in Proceedings of the 2018 Designing Interactive
Systems Conference, ser. DIS ’18. New York, NY, USA: ACM, 2018,
pp. 585–596.

[14] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the art in
end-user software engineering,” ACM Comput. Surv., vol. 43, no. 3, pp.
21:1–21:44, Apr. 2011.

[15] M. Burnett, J. Atwood, R. Walpole Djang, J. Reichwein, H. Gottfried,
and S. Yang, “Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm,” J. Funct. Program., vol. 11,
no. 2, pp. 155–206, Mar. 2001.

[16] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
visual specification of data transformation scripts,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser. CHI
’11. New York, NY, USA: ACM, 2011, pp. 3363–3372.

[17] C. Kelleher and R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” ACM Comput. Surv., vol. 37, no. 2, pp. 83–137, Jun.
2005.

[18] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “Coscripter: Automat-
ing & sharing how-to knowledge in the enterprise,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’08. New York, NY, USA: ACM, 2008, pp. 1719–1728.

[19] L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook, “Tinkering and gender in end-user pro-
grammers’ debugging,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’06. New York, NY,
USA: ACM, 2006, pp. 231–240.

[20] C. Bogart, M. Burnett, A. Cypher, and C. Scaffidi, “End-user program-
ming in the wild: A field study of coscripter scripts,” in 2008 IEEE
Symposium on Visual Languages and Human-Centric Computing, Sept
2008, pp. 39–46.

[21] B. Dorn and M. Guzdial, “Learning on the job: Characterizing the
programming knowledge and learning strategies of web designers,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp. 703–712.

[22] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing, ser. VLHCC ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 199–206.

[23] A. J. Ko and Y. Riche, “The role of conceptual knowledge in api
usability,” in 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2011, pp. 173–176.

[24] G. Wilson, “Software carpentry: Getting scientists to write better code
by making them more productive,” Computing in Science Engineering,
vol. 8, no. 6, pp. 66–69, Nov 2006.

[25] B. Dorn and M. Guzdial, “Graphic designers who program as informal
computer science learners,” in Proceedings of the Second International
Workshop on Computing Education Research, ser. ICER ’06. New
York, NY, USA: ACM, 2006, pp. 127–134.

[26] L. Ni and M. Guzdial, “Who am i?: Understanding high school computer
science teachers’ professional identity,” in Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’12.
New York, NY, USA: ACM, 2012, pp. 499–504.

[27] S. T. Phipps, L. C. Prieto, and E. N. Ndinguri, “Teaching an old dog
new tricks: Investigating how age, ability, and self efficacy influence
intentions to learn and learning among participants in adult education,”
Academy of Educational Leadership Journal, vol. 17, no. 1, p. 13, 2013.

[28] Z. Dornyei and I. Ottó, “Motivation in action: A process model of l2
motivation,” 1998.

[29] M. B. Kery and B. A. Myers, “Exploring exploratory programming,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 2017, pp. 25–29.

[30] P. K. Chilana, C. Alcock, S. Dembla, A. Ho, A. Hurst, B. Armstrong,
and P. J. Guo, “Perceptions of non-cs majors in intro programming:
The rise of the conversational programmer,” in 2015 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2015, pp. 251–259.

[31] P. K. Chilana, R. Singh, and P. J. Guo, “Understanding conversational
programmers: A perspective from the software industry,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’16. New York, NY, USA: ACM, 2016, pp. 1462–1472.

[32] A. Y. Wang, R. Mitts, P. J. Guo, and P. K. Chilana, “Mismatch
of expectations: How modern learning resources fail conversational
programmers,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’18. New York, NY, USA:
ACM, 2018, pp. 511:1–511:13.

[33] “TensorFlow: An open source machine learning framework for every-
one,” https://www.tensorflow.org/, 2018, accessed: 2019-04-01.

[34] J. Corbin, “Basics of qualitative research,” 1998.
[35] P. J. Guo, “Older adults learning computer programming: Motivations,

frustrations, and design opportunities,” in Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’17.
New York, NY, USA: ACM, 2017, pp. 7070–7083.

[36] ——, “Non-native english speakers learning computer programming:
Barriers, desires, and design opportunities,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, ser. CHI ’18.
ACM, 2018, pp. 396:1–396:14.

[37] “The Coding Train – YouTube channel,”
https://www.youtube.com/channel/UCvjgXvBlbQiydffZU7m1 aw,
2018, accessed: 2019-04-01.

[38] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol.
550, pp. 354–, Oct. 2017.

[39] A. Wigfield and J. S. Eccles, “Expectancy–value theory of achievement
motivation,” Contemporary educational psychology, vol. 25, no. 1, pp.
68–81, 2000.

[40] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise data
analysis and visualization: An interview study,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 12, pp. 2917–2926,
Dec. 2012.

[41] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay,
“Gestalt: Integrated support for implementation and analysis in machine
learning,” in Proceedings of the 23Nd Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’10. New York, NY,
USA: ACM, 2010, pp. 37–46.

[42] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané,
D. Fritz, D. Krishnan, F. B. Vigas, and M. Wattenberg, “Visualizing
dataflow graphs of deep learning models in tensorflow,” IEEE Trans.
Visualization & Comp. Graphics (Proc. VAST), 2018.

[43] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 1717–1724.

[44] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[45] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[46] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52,
no. 11, pp. 60–67, Nov. 2009.

[47] M. Guzdial, “Learner-centered design of computing education: Research
on computing for everyone,” Synthesis Lectures on Human-Centered
Informatics, vol. 8, no. 6, pp. 1–165, 2015.

[48] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[49] C. Stephanidis, D. Akoumianakis, M. Sfyrakis, and A. Paramythis,
“Universal accessibility in hci: Process-oriented design guidelines and
tool requirements,” in Proceedings of the 4th ERCIM Workshop on User
Interfaces for all, Stockholm, Sweden, 1998, pp. 19–21.

